# Alliant Ammunition and Powder Company, L.L.C.

# FIELD INVESTIGATION REPORT AND RISK ASSESSMENT

# **HAZARDOUS WASTE MANAGEMENT UNITS 5 AND 7**

Radford Army Ammunition Plant, Radford, Virginia

**MARCH 2003** 

Draper Aden Associates 2206 South Main Street Blacksburg, Virginia 24060 DAA Job No. B02271.01



LtR# 03.57 2
Recd 07-01-203

C: Jake
Redden
Distoia
McKenna

# COMMONWEALTH of VIRGINIA

# DEPARTMENT OF ENVIRONMENTAL QUALITY

W. Tayloe Murphy, Jr. Secretary of Natural Resources Street address: 629 East Main Street, Richmond, Virginia 23219 Mailing address: P.O. Box 10009, Richmond, Virginia 23240 Fax (804) 698-4500 TDD (804) 698-4021 www.deq.state.va.us

(804) 698-4000 1-800-592-5482

Robert G. Burnley

Director

June 25, 2003

Ms. C. A. Jake Environmental Manager Alliant Ammunition and Powder Company, LLC Radford Army Ammunition Plant Route 114, P.O. Box 1 Radford, Virginia 24141

Re: Radford Army Ammunition Plant (RFAAP), Radford, VA

EPA ID No. VA1210020730

Field Investigation Report and Risk Assessment for Units 5 and 7<sup>1</sup>

(Unit 5/S04; Unit 7/S04)

Dear Ms. Jake:

The Department of Environmental Quality, Office of Waste Permitting (the Department) has reviewed the Field Investigation Report and Risk Assessment for Units 5 and 7 (Report) submitted with your correspondence of March 5, 2003. According to previous discussions and correspondence, RFAAP will attempt to remove the sources of contamination by achieving clean closure at the units. RFAAP had originally planned to revise the closure plans for HWMUs 5 and 7 based upon the results of the initial investigative sampling. Since, RFAAP believes the sampling results may already show that concentrations of contaminants are not a risk to human health or the environment, the *Report* provides a risk assessment instead of revised closure plans.

The May 27, 1988 approved closure plans for HWMUs 5 and 7 provided for closure only by landfilling (i.e., wastes in-place and capping). Therefore, if RFAAP wishes to continue pursuing clean closure of the capped units, revised closure plans that include procedures and standards for clean closure must be submitted. To assist with the revising the closure plans, an electronic copy of

Permit Event Code/NA

<sup>1</sup> PCCP

RFAAP – Units 5 and 7 Ms. C. A. Jake Page 2

the Department's *Draft Guidance Manual for Closure Plans and Post-Closure Plans (Draft Guidance)*, September 28, 2001 has been provided to Mr. J. Redder of your staff.

Concerning the Field Investigation Report and Risk Assessment for Units 5 and 7, the Department is providing the following comments:

- 1) The closure requirements for hazardous waste surface impoundments of 40 CFR 264.228(a)(1) requires the removal or decontamination of "contaminated containment system components (liners, etc.), contaminated subsoils, and structures and equipment contaminated with waste and leachate." Therefore, in order to demonstrate clean closure of these units, the soil and liner material immediately beneath the wastes must be sampled as well to determine if they meet clean closure standards.
- 2) EPA Region III Risk-Based Concentration (RBC) and Soil Screening Levels (SSLs) are not appropriate clean closure standards. Refer to Section 3.13 of the *Draft Guidance* for the requirements of all acceptable clean closure standards (i.e., analytical non-detection, background, and risk-based).
- 3) If RFAAP intends to demonstrate that clean closure may be achieved with wastes in-place, every sample of waste must not exceed the land disposal restrictions (LDRs) treatment standards specified in 40 CFR 286, Subpart D.

In addition to the above comments, the Department recommends that the revised closure plans include more than one option for meeting clean closure standards (e.g., no removal of wastes or soils, excavation and removal of contaminated materials, etc.) in order to minimize the need for future revisions. Please submit the revised closure plans within ninety (90) calendar days calendar of receipt of this letter.

The Department has also received the Professional Geologist's certification submitted with your correspondence of April 30, 2003. However, as indicated in comment 5 of the Department's October 18, 2002 letter, 40 CFR 264.115 requires that the certification be signed by an independent Professional Engineer registered in the Commonwealth of Virginia. Please provide the P.E. certification within thirty (30) calendar days of receipt of this letter.

If you have questions, please contact me at (804) 698-4131 or by e-mail at gweng@deq.state.va.us.

Sincerely,

Garwin W. Eng

Environmental Engineer Senior Office of Waste Permitting

Sn.W.En

RFAAP – Units 5 and 7 Ms. C. A. Jake Page 3

c: Robert N. Davie, III
Radford Army Ammunition Plant
SMARF-OP, P. O. Box 2
Radford, Virginia 24141-0099

Robert G. Thomson – EPA Region III (3HS13) Aziz Farahmand – WCRO, DEQ Leslie A. Romanchik – DEQ Mark S. Leeper – DEQ Howard F. Freeland – DEQ Central Hazardous Waste File



Radford Army Ammunition Plant Route 114, P.O. Box 1 Radford, VA 24141 USA

April 30, 2003

Mr. Garwin Eng Hazardous Waste Permitting Virginia Department of Environmental Quality 629 East Main Street Richmond, Virginia 23219

Subject:

Certification of Field Investigation Report and Risk Assessment HWMUs 5 and 7

Radford Army Ammunition Plant

Radford, Virginia

EPA ID#: VA12101020730

Dear Mr. Eng:

Enclosed is the original of the Professional Geologist's certification concerning the subject report.

If you have any questions or concerns, please contact Jerry Redder at 540/639-7536.

Sincerely,

C. A. Jake, Environmental Manager

Alliant Ammunition and Powder Company, L.L.C.

c:

R. Thomson, EPA Region 3

c:

Aziz Farahmand, DEQ-WCRO

Coordination:

J. McKenna

bc:

Administrative File

J. McKenna, ACO Staff

John Tesner, Baltimore CoE

J. J. Redder

A. Kassoff, P.G., Draper Aden Associates

Env. File

ROZN'O ENV 4-28-03



2206 South Main Street

Blacksburg, Virginia 2-3060 (540) 552-0444 × Far (540) 552-6291 daa/d daa.com > www.daa.com

13-38 C: Jake Rédder McKenn Envfile

March 5, 2003

Mr. Jerry Redder Alliant Ammunition and Powder Company, L.L.C. **Environmental Department** P.O. Box 1 Radford Army Ammunition Plant Radford, Virginia 24141-0100

RE: Certification of Field Investigation Report and Risk Assessment for Hazardous Waste Management Units 5 and 7, Radford Army Ammunition Plant, Radford, Virginia

Dear Mr. Redder:

This letter is to provide Virginia Professional Certification for the Field Investigation Report and Risk Assessment for Hazardous Waste Management Units 5 and 7, Radford Army Ammunition Plant, Radford, Virginia. I certify that I have prepared or supervised preparation of the aforementioned report, that the report has been prepared in accordance with industry standards and practices, and that the information contained within the report is truthful and accurate to the best of my knowledge.

Should you have any questions, please give me a call at 540/552-0444.

Sincerely,

DRAPER ADEN ASSOCIATES

Andrew E. Kassoff, P.G.

Environmental Program Manager

Virginia Professional Certification Number PG 873



Radford Army Ammunition Plant Route 114, P.O. Box 1 Radford, VA 24141 USA

April 21, 2003

Mr. Garwin Eng Hazardous Waste Permitting Virginia Department of Environmental Quality 629 East Main Street Richmond, Virginia 23219

Subject:

Extra Copies of Field Investigation Report and Risk Assessment HWMUs 5 and 7

Radford Army Ammunition Plant

Radford, Virginia

EPA ID#: VA12101020730

Dear Mr. Eng:

Thank you for taking the time to discuss the subject report with our consultant Draper Aden, Jim McKenna (ACO Staff), and Jerry Redder (AAPC Environmental Engineer) April 16, 2003. Draper Aden is preparing notes from the telephone conference and meeting.

Enclosed are 4 additional copies of the subject report.

If you have any questions or concerns, please contact Jerry Redder at 540/639-7536.

Sincerely,

C. A. Jake, Environmental Manager

Alliant Ammunition and Powder Company, L.L.C.

c: R. Thomson, EPA Region 3 (w/encl.)

c: Aziz Farahmand, DEQ-WCRO (w/o encl.)

Coordination:

J. McKenna

bc:

Administrative File

John Tesner, Baltimore CoE

J. J. Redder

A. Kassoff, P.G., Draper Aden Associates

Env. File



# COMMONWEALTH of VIRGINIA

# DEPARTMENT OF ENVIRONMENTAL QUALITY

W. Tayloe Murphy, Jr. Secretary of Natural Resources Street address: 629 East Main Street, Richmond, Virginia 23219

Mailing address: P.O. Box 10009, Richmond, Virginia 23240

Fax (804) 698-4500 TDD (804) 698-4021

www.deq.state.va.us

Robert G. Burnley Director (804) 698-4000 1-800-592-5482

March 10, 2003

Ms. C. A. Jake
Environmental Manager
Alliant Ammunition and Powder Company, LLC
Radford Army Ammunition Plant
Route 114, P.O. Box 1
Radford, Virginia 24141

Re: Radford Army Ammunition Plant (RFAAP), Radford, VA EPA ID No. VA1210020730 Field Investigation Report and Risk Assessment for Units 5 and 7<sup>1</sup> (Unit 5/S04; Unit 7/S04)

Dear Ms. Jake:

The Department of Environmental Quality, Office of Waste Permitting (the Department) has received your correspondence of March 5, 2003 concerning the field investigation and risk assessment for Units 5 and 7. You may expect to receive comments from the Department in May 2003.

As indicated in the Department's October 18, 2002 letter, review of this report will be coordinated with EPA Region III and the Federal Facilities Restoration Program. Therefore, please forward two (2) additional copies of the report to the Department and one (1) additional copy to Mr. Robert G. Thomson at EPA Region III.

<sup>&</sup>lt;sup>1</sup> PCCP Permit Event Code/NA

RFAAP – Units 5 and 7 Ms. C. A. Jake Page 2

If you have questions, please contact me at (804) 698-4131 or by e-mail at gweng@deq.state.va.us.

Sincerely,

Garwin W. Eng

Environmental Engineer Senior Office of Waste Permitting

Gran Mr. Ez

c: Robert N. Davie, III
Radford Army Ammunition Plant
SMARF-OP, P. O. Box 2
Radford, Virginia 24141-0099

Robert G. Thomson – EPA Region III (3HS13)
Aziz Farahmand – WCRQ, DEQ
Leslie A. Romanchik – DEQ
Mark S. Leeper – DEQ
Howard F. Freeland - DEQ
Central Hazardous Waste File



Radford Army Ammunition Plant Route 114, P.O. Box 1 Radford, VA 24141 USA

March 5, 2003

Mr. Garwin Eng Hazardous Waste Permitting Virginia Department of Environmental Quality 629 East Main Street Richmond, Virginia 23219

Subject: Field Investigation Report and Risk Assessment HWMUs 5 and 7

Radford Army Ammunition Plant, Radford, Virginia

EPA ID#: VA12101020730

Dear Mr. Eng:

Enclosed is the subject report and risk assessment. The effort was accomplished following your instructions of October 18, 2002 and our notification letter October 1, 2002.

Based on the results of the field investigation and risk assessment the residual material in HWMU-5 and in HWMU-7 is not hazardous and should be left in place. The Units are capped using impermeable PVC membranes and 2-3 feet of soil; therefore, there is no risk of exposure to human health and/or the environment through direct ingestion of the residual material or by inhalation of vapors or fugitive dusts. In addition, the concentrations of the inorganic and organic constituents detected in soil samples collected from both Units do not pose a risk to groundwater via migration from the soil. Therefore, leaving the residual material in place does not pose a threat to human health and/or the environment according to VDEQ guidelines and regulations. Accordingly, Radford AAP requests that certifications for clean closure for soil be issued for both Units.

The certification from the independent Professional Geologist will be sent under separate cover.

If you have any questions or concerns, please contact Jerry Redder at 540/639-7536.

Sincerely,

C. A. Jake, Environmental Manager

Alliant Ammunition and Powder Company, LLC

c: Aziz Farahmand, DEO-WCRO

R. N. Davie, Operations Division Chief, Radford AAP

Garwin Eng Field Investigation Report and Risk Assessment HWMUs 5 and 7 March 5, 2003 Page 2

Coordination:

IJMcKenna

bc:

Administrative File

L. DiIoia, ACO Staff

S. McKening, ACO Staff

John Tesner, Baltimore CoE

J. J. Redder

A. Kassoff, P.G., Draper Aden Associates

Env. File

# Alliant Ammunition and Powder Company, L.L.C.

# FIELD INVESTIGATION REPORT AND RISK ASSESSMENT

# HAZARDOUS WASTE MANAGEMENT UNITS 5 AND 7

Radford Army Ammunition Plant, Radford, Virginia

**MARCH 2003** 

Draper Aden Associates 2206 South Main Street Blacksburg, Virginia 24060 DAA Job No. B02271.01

| TAB        | LE (    | OF C                           | ONTENTS                                                                    | i   |  |  |  |  |  |  |
|------------|---------|--------------------------------|----------------------------------------------------------------------------|-----|--|--|--|--|--|--|
| 1.0        | ĪN      | JTRO                           | DUCTION/EXECUTIVE SUMMARY                                                  | 1   |  |  |  |  |  |  |
|            | .1      |                                | SCRIPTION OF HWMU-5                                                        |     |  |  |  |  |  |  |
| _          | .2      |                                | SCRIPTION OF HWMU-7                                                        |     |  |  |  |  |  |  |
| •          |         | בו                             | SCRI HON OF 11 WIND /                                                      |     |  |  |  |  |  |  |
| 2.0        | S       | UBSU                           | RFACE EVALUATIONS                                                          | 2   |  |  |  |  |  |  |
|            | 2.1     | FIELD INVESTIGATION PROCEDURES |                                                                            |     |  |  |  |  |  |  |
| 2          | 2.2     | SITE GEOLOGY                   |                                                                            |     |  |  |  |  |  |  |
|            | 2.      | .21                            | Material Profile of HWMU-5                                                 |     |  |  |  |  |  |  |
|            |         |                                | Material Profile of HWMU-7                                                 |     |  |  |  |  |  |  |
| 2          | 2.3     |                                | IL SAMPLE COLLECTION AND ANALYTICAL RESULTS                                |     |  |  |  |  |  |  |
|            |         | .3.1                           | HWMU-5                                                                     |     |  |  |  |  |  |  |
|            |         |                                | HWMU-7                                                                     |     |  |  |  |  |  |  |
|            | 2.      |                                | Waste Characterization Analytical Results                                  |     |  |  |  |  |  |  |
| 3.0        | ъ       | roiz A                         | ASSESSMENT                                                                 | Q   |  |  |  |  |  |  |
| -          | .1      |                                | CILITY-WIDE BACKGROUND STUDY (IT CORPORATION)                              |     |  |  |  |  |  |  |
| _          | 5.2     |                                | VMU-5                                                                      |     |  |  |  |  |  |  |
| 3          |         |                                | Comparison of Inorganic Constituent Concentrations to Background           |     |  |  |  |  |  |  |
|            |         |                                | Comparison to EPA Region III Residential Soil and Soil-to-Groundwater SSLs |     |  |  |  |  |  |  |
| 2          | 3.<br>3 |                                | VMU-7                                                                      |     |  |  |  |  |  |  |
| 3          | ••      | л.<br>3.1                      | Comparison of Inorganic Constituent Concentrations to Background           |     |  |  |  |  |  |  |
|            | -       |                                | Comparison to EPA Region III Residential Soil and Soil-to-Groundwater SSLs |     |  |  |  |  |  |  |
| 3          | 4<br>4  |                                | POSURE ASSESSMENT                                                          |     |  |  |  |  |  |  |
|            | • •     | 27,                            |                                                                            |     |  |  |  |  |  |  |
| 4.0        | C       | ONCI                           | USIONS AND RECOMMENDATIONS                                                 | .12 |  |  |  |  |  |  |
| 4          | .1      | GE                             | NERAL GROUNDWATER MONITORING PROGRAM ISSUES                                | .12 |  |  |  |  |  |  |
|            | 4.      | 1.1                            | HWMU-5                                                                     | .12 |  |  |  |  |  |  |
|            | 4.      | 1.2                            | HWMU-7                                                                     |     |  |  |  |  |  |  |
| 4          | .2      |                                | ICHLOROETHENE IN GROUNDWATER AT HWMU-5                                     |     |  |  |  |  |  |  |
| <b>5</b> 0 | ъ       |                                |                                                                            |     |  |  |  |  |  |  |
| 5.0        | R.      | FFFR                           | FNCFS                                                                      | 15  |  |  |  |  |  |  |

#### LIST OF TABLES

- Table 1 HWMU-5 Summary of TAL Inorganic Constituents and TCL Organic Constituents Detected in Soil Samples
- Table 2 HWMU-7 Summary of TAL Inorganic Constituents and TCL Organic Constituents
  Detected in Soil Samples
- Table 3 Summary of Waste Characterization Analytical Results
- Table 4
   Facility-Wide Background Concentrations
- Table 5 HWMU-5 Comparison of Inorganic Constituent Concentrations to Background Concentrations
- Table 6 HWMU-5 Comparison of Detected Organic Constituent Concentrations to USEPA Region III Soil-to-Groundwater Soil Screening Levels
- Table 7 HWMU-7 Comparison of Inorganic Constituent Concentrations to Background Concentrations
- Table 8 HWMU-7 Comparison of Inorganic Constituents of Potential Concern and Detected Organic Constituent Concentrations to USEPA Region III Soil-to-Groundwater Soil Screening Levels

#### LIST OF FIGURES

Figure 1 Site Plan – Hazardous Waste Management Unit 5
Figure 2 Site Plan – Hazardous Waste Management Unit 7
Figure 3 Soils Mapping – Hazardous Waste Management Units 5 and 7
Figure 4 Cross Section A-A' – Hazardous Waste Management Unit 5
Figure 5 Cross Section A-A' – Hazardous Waste Management Unit 7

#### LIST OF APPENDICES

- Appendix A Boring Logs
- Appendix B Data Validation Reports and Laboratory Analytical Results
- Appendix C Waste Characterization Laboratory Analytical Results
- Appendix D Hazardous Waste Management Unit Cap Repair Documentation
- Appendix E Alternate Source Demonstration for Trichloroethene HWMU-5

#### 1.0 INTRODUCTION/EXECUTIVE SUMMARY

Alliant Ammunition and Powder Company, L.L.C. (AAPC) retained Draper Aden Associates (DAA) to conduct subsurface evaluations to determine the nature and extent of residual material from cleanup activities contained in closed Hazardous Waste Management Units (HWMUs) 5 and 7 at the Radford Army Ammunition Plant (Radford AAP) in Radford, Virginia. AAPC and the United States Army intended to implement source removal activities in 2003 in support of clean closures for both Units; the results of the field investigation conducted by DAA would be used in the preparation of individual closure plans for both Units. However, the laboratory analytical data collected during the field investigation indicated that the residual material in the Units is not hazardous and does not pose a threat to human health and/or the environment according to VDEQ guidelines and regulations. Therefore, the purpose of the project shifted to compiling a quantitative risk assessment in accordance with the USEPA *Risk Assessment Guidance for Superfund* (RAGS). This document presents the results of the field investigation and the risk assessment.

# 1.1 DESCRIPTION OF HWMU-5

HWMU-5 is a former lined surface impoundment. A Site Plan for HWMU-5 is illustrated in Figure 1. HWMU-5 is located approximately 3,000 feet southwest of the New River. The Unit is located on a river terrace that slopes gently downward to the north toward the New River. The Unit was put into operation as an unlined surface impoundment in 1970. In 1981, the Unit was retrofitted with a 60-mil Hypalon Liner; the bottom of the liner was covered with approximately 12 inches of sand, and the sides were covered with approximately 6 inches of sand and six inches of rip-rap. During operation, the Unit received stormwater runoff, spilled liquids, and washdown waters from an acid tank farm. The Unit was taken out of operation in 1986, and was closed in 1989 in accordance with the VDEQ-approved Closure Plan dated May 1988. The basin was drained of all waters, the soil was treated in-place with flyash and cement kiln dust to achieve a target pH of 6.3 and 10.5, and the basin was filled with soil and stone and capped. No waste has been processed through HWMU-5 since it was closed.

# 1.2 DESCRIPTION OF HWMU-7

HWMU-7 is a former unlined holding and neutralization basin located on the floodplain of the New River. A Site Plan for HWMU-7 is illustrated in Figure 2. Intermittent drainages are located to the north and south of the Unit, and the New River is located approximately 225 feet to the west of the Unit. The Unit was put into operation in 1972. During operation, influent into HWMU-7 included: spills, runoff, and wash down waters from the Acid Tank Farms in the Oleum Plant Area; waste sulfuric acid and caustics from oleum production; and waste caustic mixed with acidic water for neutralization. The Unit was taken out of operation in 1986, and was closed in 1989 in accordance with the VDEQ-approved Closure Plan dated May 1988. The basin was drained of all waters, the soil was treated in-place with flyash and cement kiln dust to achieve a target pH of 6.3 and 10.5, and the basin was filled with soil and stone and capped. No waste has been processed through HWMU-7 since it was closed.

### 2.0 SUBSURFACE EVALUATIONS

#### 2.1 FIELD INVESTIGATION PROCEDURES

On October 31 and November 1, 2002, DAA advanced 16 soil borings at each Unit using a track-mounted Geoprobe® rig. The boring locations for HWMU-5 and for HWMU-7 are illustrated in **Figure 1** and **Figure 2**, respectively. The borings were located in a pattern to best determine the horizontal and vertical extent of the residual material in each Unit. At each Unit, nine borings were advanced within the Unit boundaries, and six borings were advanced around the perimeter just outside of the Unit boundaries. One additional boring was advanced approximately 30 feet topographically upgradient from each Unit for the collection of background soil samples. Soil samples were collected continuously throughout each of the borings. The differentiation between residual material and native soil was based on visual observation. The borings were backfilled with bentonite upon completion.

The nine borings located within HWMU-5 were advanced through the cap system and residual material and were terminated in the base sand layer; the borings did not penetrate the bottom 60-mil Hypalon liner. The nine borings located within HWMU-7 were advanced through the cap system and residual material and into the clay bottom liner; four of the borings were advanced through the clay liner and into native soils. The boring logs for both Units are presented in **Appendix A**.

At each Unit, DAA randomly collected eight soil samples from the 16 borings for laboratory analysis for the USEPA Target Analyte List (TAL) inorganic compounds and for the USEPA Target Compound List (TCL) organic compounds. The laboratory analytical results were subjected to Level IV data validation. The data validation reports and laboratory analytical data are presented in **Appendix B**.

DAA collected composite soil samples Unit-5-TCLP and Unit-7-TCLP from the residual material from the borings advanced within HWMU-5 and HWMU-7, respectively. The composite soil samples were submitted to the laboratory for waste characterization analysis. The waste characterization laboratory analytical results are presented in **Appendix C**. The soil cuttings and waste Geoprobe<sup>®</sup> sample collection sleeves were containerized (one drum per Unit) and staged at a central location on-site pending proper disposal.

The geosynthetic layers within the caps of both Units were penetrated by the Geoprobe<sup>®</sup> borings. The caps were repaired in accordance with VDEQ guidance. The results of the cap restoration activities are presented in **Appendix D**.

# 2.2 SUBSURFACE GEOLOGY

According to the Soil Survey of Montgomery County, Virginia (USDA, 1985), the areas in which HWMU-5 and HWMU-7 are located are underlain by soils of the Unison-Urban Land Complex (Figure 3). The Unison-Urban Land Complex makes up about 40% of the surface area

of Radford AAP, and consists of about 50% deep and well drained Unison soils, 30% Urban Land, and 20% other soils. This complex of soils varies in slope from 2 to 25%. In an undisturbed area, the Unison soils have a 15-inches thick surface layer of dark brown loam and a 43-inches thick subsoil of yellowish-red, sticky plastic clay underlain by a red sandy clay loam to a depth of 58 inches. This clay-rich layer is typically underlain by a brown sand to about 10 feet below ground surface (bgs), which then grades into a brown clay. Permeability is moderate in Unison soils, natural fertility is low, and organic matter content is low to moderate. The soil is medium to strongly acidic. Urban land is covered by pavement or structures; the original soil has been physically altered or obscured so that classification is not practical.

Underlying the soils throughout most of Radford AAP is a series of dolomite, limestone and shale strata known as the Cambrian-aged Elbrook Formation. The Elbrook Formation is the major outcropping formation as well as the predominant karstic formation below the facility. Sinkholes, solution channels, pinnacled surfaces, and springs are common to the Elbrook Formation. The bedrock beneath Units 5 and 7 is generally encountered at depths ranging from approximately 28 feet to over 65 feet below ground level, although the soil/bedrock interface is gradational.

Groundwater at both Units generally is encountered within the weathered bedrock residuum. Groundwater movement beneath HWMU-5 is toward the northeast; the groundwater contours and topography in this area suggest that HWMU-5 is located on a river terrace that contains several karst features and drains north toward the New River. Groundwater movement beneath HWMU-7 is generally to the west toward the New River, and to the northeast and southwest toward intermittent drainages that flow into the New River north and south of the Unit.

### 2.2.1 Material Profile of HWMU-5

According to the 1989 closure documentation, the cover system installed over the neutralized residual material at HWMU-5 consisted of a two-foot clay layer overlain by a 30-mil PVC membrane, which was in turn overlain by a one-foot drainage sand layer. The drainage sand layer was overlain by a one-foot soil cover and a one-foot topsoil and grass cover. Additional elements of the cover system included rip-rap slope protection and a filter cloth underneath the rip-rap to prevent piping of the cover soil along the Unit perimeter.

At HWMU-5, the nine borings located within the Unit boundaries (5GP-1, 5GP-2, 5GP-3, 5GP-6, 5GP-8, 5GP-9, 5GP-10, and 5GP-11; **Figure 1**) were advanced to depths ranging from 10 to 12 feet below ground surface (bgs). The nine borings encountered a layer of topsoil approximately 0.5 foot thick, which was underlain by red-brown sandy clay ranging in thickness from 1 foot to 2 feet. The red-brown sandy clay in turn was underlain by light gray sand (drainage layer) ranging in thickness from 0.75 foot to 1 foot. The 30-mil PVC liner was encountered beneath the drainage sand layer. The PVC liner was underlain by light gray and yellow-brown mottled clay ranging in thickness from 2.5 feet to 4 feet. The clay layer in turn was underlain by red-brown to yellow-brown silty sand with green, compacted residual material. Borings 5GP-1 and 5GP-6 were terminated in light gray sand beneath the residual material – this

sand corresponds to the sand placed above the Unit's 60-mil Hypalon liner. The thickness of the residual material ranged from 4.5 feet to 6 feet. The remaining seven borings were terminated in residual material. The 60-mil Hypalon liner was not penetrated by any of the borings. A geologic cross-section of HWMU-5 is included as **Figure 4**.

The six borings located around the perimeter of HWMU-5 (5GP-4, 5GP-7, 5GP-12, 5GP-13, 5GP-14, and 5GP-15) were advanced to a depth of 4 feet bgs each. Red-brown to brown clay with gravel was encountered in each of the perimeter borings; no residual material was encountered in these six borings.

Boring 5GP-16 was located approximately 30 feet topographically upgradient from HWMU-5 for the collection of a background soil sample. Boring 5-GP-16 was advanced to a depth of 4 feet. Brown clay and red-brown sandy clay were encountered in boring 5GP-16.

#### 2.2.2 Material Profile of HWMU-7

According to the 1989 closure documentation, the cover system installed over the neutralized residual material at HWMU-7 consisted of a two-foot clay layer overlain by a 30-mil PVC membrane, which was in turn overlain by a one-foot drainage sand layer. The drainage sand layer was overlain by a one-foot soil cover and a one-foot topsoil and grass cover. Additional elements of the cover system included rip-rap slope protection and a filter cloth underneath the rip-rap to prevent piping of the cover soil along the Unit perimeter.

At HWMU-7, the nine borings located within the Unit boundaries (7GP-1, 7GP-2, 7GP-3, 7GP-5, 7GP-6, 7GP-8, 7GP-9, 7GP-10, and 7GP-11; Figure 2) were advanced to depths ranging from 12 to 20 feet below ground surface (bgs). The nine borings encountered a layer of topsoil approximately 1 foot to 1.5 feet thick, which was underlain by yellow-brown sandy clay ranging in thickness from 1.25 feet to 2 feet. The yellow-brown sandy clay in turn was underlain by light gray sand (drainage layer) ranging in thickness from 0.50 foot to 1.5 feet. The 30-mil PVC liner was encountered beneath the drainage sand layer. The PVC liner was underlain by yellow-brown silty sand with green, compacted residual material. The thickness of the residual material ranged from 5 feet to 8.5 feet. The residual material in turn was underlain by red-brown to yellow-brown sandy clay ranging in thickness from 1.75 feet to 3 feet. Borings 7GP-5, 7GP-6, 7GP-8, 7GP-10, and 7GP-11 were terminated in the sandy clay. Borings 7GP-1, 7GP-2, and 7GP-9 penetrated the sandy clay and encountered dark gray fine sand and silt with round gravel; the dark gray sand and silt exhibited an aquatic odor. The red-brown to yellow-brown sandy clay was not encountered in boring 5GP-3; the dark gray sand and silt was encountered beneath the residual material at a depth of 9.5 feet bgs in boring 7GP-3. A geologic cross-section of HWMU-7 is included as Figure 5.

Five of the six borings located around the perimeter of HWMU-7 (7GP-7, 7GP-12, 7GP-13, 7GP-14, and 7GP-15) were advanced to a depth of 4 feet bgs each; boring 7GP-4 was advanced to a depth of 8 feet bgs. Brown sand was encountered in each of the perimeter borings, and dark gray fine sand and silt with round gravel was encountered at a depth of 7.75 feet bgs in boring 7GP-4. No residual material was encountered in the six perimeter borings.

Boring 7GP-16 was located approximately 30 feet topographically upgradient from HWMU-7 for the collection of a background soil sample. Boring 7GP-16 was advanced to a depth of 4 feet. Brown sand was encountered in boring 7GP-16.

#### 2.3 SOIL SAMPLE COLLECTION AND ANALYTICAL RESULTS

#### 2.3.1 HWMU-5

On October 31, 2002, DAA randomly collected eight soil samples from the 16 borings advanced at HWMU-5. The eight samples and the material from which they were collected are listed below:

- 5GP-1 (1-2') cap material (clay and sand above the PVC membrane);
- 5GP-1 (9-10') residual material;
- 5GP-3 (9-10') residual material;
- 5GP-6 (10-11') base sand (beneath the residual material);
- 5GP-8 (7-8') residual material;
- 5GP-8 (11-12') residual material;
- 5GP-12 (3-4') soil adjacent to the Unit; and
- 5GP-16 (3-4') background soil.

Aliquots of the eight soil samples were submitted to Severn Trent Laboratories of North Canton, Ohio for analysis for the USEPA Target Analyte List (TAL) inorganic compounds. Separate aliquots of the eight soil samples were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis for the USEPA Target Compound List (TCL) organic compounds. The laboratory analytical results were subjected to Level IV data validation. The data validation reports and laboratory analytical data are presented in **Appendix B**. A summary of the TAL inorganic constituents and the TCL organic constituents detected in the eight soil samples from HWMU-5 at concentrations above the respective Limits of Quantitation (LOQs) is presented in **Table 1**.

As shown in **Table 1**, the concentrations of TAL inorganic constituents detected in the samples of residual material are comparable to the TAL inorganic constituent concentrations detected in the samples of the cap material, base sand, adjacent soil, and background soil; the highest concentrations of 10 of the 16 TAL inorganic constituents detected were observed in the samples of the cap material, base sand, or adjacent soil. Cap material sample 5GP-1 (1-2') exhibited the highest concentrations of barium (85.1 mg/kg), lead (12.9 mg/kg), potassium (1,580 mg/kg), vanadium (64.9 mg/kg), and zinc (35.3 mg/kg). Base sand sample 5GP-6 (10-11') exhibited the highest concentration of calcium (9,930 mg/kg). Adjacent soil sample 5GP-12 (3-4') exhibited the highest concentrations of aluminum (19,600 mg/kg), iron (33,400 mg/kg), magnesium (2,200 mg/kg), and manganese (457 mg/kg). Residual material sample 5GP-1 (9-10') exhibited the highest concentrations of chromium (31.7 mg/kg), cobalt (17.6 mg/kg), and copper (19.8 mg/kg). Residual material sample 5GP-8 (7-8') exhibited the highest concentrations of arsenic (4.1 mg/kg) and beryllium (1.3 mg/kg). It should be noted that

background soil sample 5GP-16 (3-4') exhibited an arsenic concentration of 4.0 mg/kg. Residual material sample 5GP-8 (11-12') exhibited an aluminum concentration of 19,600 mg/kg – the same concentration as adjacent soil sample 5GP-12 (3-4').

Only one TCL organic constituent was detected in three of the eight soil samples from HWMU-5. The pesticide 4,4-DDD was detected in residual material samples 5GP-1 (9-10') and 5GP-8 (7-8') at concentrations of 0.019 mg/kg and 0.051 mg/kg, respectively, and in base sand sample 5GP-6 (10-11') at a concentration of 0.0067 mg/kg. No other TCL organic constituents were detected in any of the soil samples from HWMU-5.

#### 2.3.2 HWMU-7

On November 1, 2002, DAA randomly collected eight soil samples from the 16 borings advanced at HWMU-5. The eight samples and the material from which they were collected are listed below:

- 7GP-1 (1-3') cap material (clay and sand above the PVC membrane);
- 7GP-2 (8-12') residual material;
- 7GP-2 (13.5-14.5') base clay (beneath the residual material);
- 7GP-3 (10-11') native soil (beneath the Unit);
- 7GP-4 (3-4') soil adjacent to the Unit;
- 7GP-5 (6-11') residual material;
- 7GP-8 (5-8') residual material; and
- 7GP-16 (3-4') background soil.

Aliquots of the eight soil samples were submitted to Severn Trent Laboratories of North Canton, Ohio for analysis for the USEPA Target Analyte List (TAL) inorganic compounds. Separate aliquots of the eight soil samples were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis for the USEPA Target Compound List (TCL) organic compounds. The laboratory analytical results were subjected to Level IV data validation. The data validation reports and laboratory analytical data are presented in **Appendix B**. A summary of the TAL inorganic constituents and the TCL organic constituents detected in the eight soil samples from HWMU-7 is presented in **Table 2**.

As shown in **Table 2**, the concentrations of TAL inorganic constituents detected in the samples of residual material are comparable to the TAL inorganic constituent concentrations detected in the samples of the cap material, base clay, native soil, adjacent soil, and background soil; the highest concentrations of 15 of the 18 TAL inorganic constituents detected were observed in the samples of the cap material, base clay, native soil, and background soil. Cap material sample 7GP-1 (1-3') exhibited the highest concentrations of magnesium (4,290 mg/kg) and manganese (662 mg/kg). Base clay sample 7GP-2 (13.5-14.5') exhibited the highest concentrations of cobalt (16.2 mg/kg) and iron (29,300 mg/kg). Native soil sample 7GP-3 (10-11') exhibited the highest concentrations of arsenic (26.1 mg/kg), barium (229 mg/kg), beryllium (1.5 mg/kg), calcium (28,100 mg/kg), chromium (32.8 mg/kg), copper (23.2 mg/kg), lead (35.1 mg/kg), and potassium (2,970 mg/kg), as well as the only detections of selenium (3.5 mg/kg),

and cyanide (0.69 mg/kg). Background soil sample 7GP-16 (3-4') exhibited the highest concentration of zinc (39.7 mg/kg). Residual material sample 7GP-2 (8-12') exhibited the highest concentration of nickel (21.6 mg/kg). Residual material sample 7GP-8 (5-8') exhibited the highest concentrations of aluminum (22,400 mg/kg) and vanadium (61.8 mg/kg).

Only three TCL organic constituents were detected in two of the eight soil samples from HWMU-7. The pesticide 4,4-DDD was detected in base clay sample 7GP-2 (13.5-14.5') at a concentration of 0.0035 mg/kg. In native soil sample 7GP-3 (10-11'), the pesticide 4,4-DDE and the semi-volatile compound n-nitrosodiphenylamine were detected at concentrations of 0.0035 mg/kg and 0.75 mg/kg, respectively. No other TCL organic constituents were detected in any of the soil samples (including the residual material samples) from HWMU-7.

## 2.3.3 Waste Characterization Analytical Results

DAA collected composite soil samples Unit-5-TCLP and Unit-7-TCLP from the residual material from the borings advanced within HWMU-5 and HWMU-7, respectively. The composite soil samples were submitted to the laboratory for waste characterization analysis. The soil cuttings and waste Geoprobe® sample collection sleeves were containerized (one drum per Unit) and staged at a central location on-site pending proper disposal.

The waste characterization laboratory analytical results are presented in **Appendix C**, and summarized **Table 3**. Based on the results of the waste characterization analyses, the residual material at HWMU-5 and at HWMU-7 cannot be classified as hazardous.

#### 3.0 RISK ASSESSMENT

The procedures used to evaluate the data gathered during the field investigations at HWMU-5 and HWMU-7 were derived from the USEPA Soil Screening Guidance (July 1996) and the USEPA Risk Assessment Guidance for Superfund (RAGS). For the purposes of the risk assessments for each Unit, the detected constituent concentrations were compared to those from background samples collected from nearby areas (boring 5GP-16 at HWMU-5 and boring 7GP-16 at HWMU-7) as well as to facility-wide background concentrations derived from the IT Corporation Radford Army Ammunition Plant Facility-Wide Background Report (December 2001). Due to the fact that the planned future use for the capped Units is to leave them in place, the only potential exposure pathway was determined to be through constituent migration from soil to groundwater. Therefore, following the comparison to background concentrations, any constituent concentrations that exceeded their respective background concentrations were then compared to USEPA Region III Soil-to-Groundwater soil screening levels (SSLs). In addition, although expsosure to the residual material through direct ingestion was determined to be improbable, any constituent concentrations that exceeded their respective background concentrations also were compared to USEPA Region III risk-based concentrations (RBCs) for residential soil ingestion.

As specified in the USEPA Region III Soil-to-Groundwater SSLs memo (October 27, 1999), the soil-to-groundwater SSLs used in this risk assessment were the Region III tap water (residential) RBCs multiplied by a dilution attenuation factor (DAF) of 20. The DAF of 20 was chosen because Radford AAP is an industrial facility with no users of groundwater; therefore, this was deemed protective of human health and the environment. The DAF 20's for the constituents presented in this report were derived from the latest USEPA Region III RBC Table (October 9, 2002).

The Soil Screening Guidance is a tool developed by the USEPA to help standardize and accelerate the evaluation and cleanup of contaminated soils at sites on the National Priorities List (NPL) where future residential land use is anticipated. The Soil Screening Guidance provides a methodology to calculate risk-based, site-specific SSLs for contaminants in soil that may be used to identify areas needing further investigation at NPL sites. SSLs are designed for screening purposes. Exceedances of SSLs typically indicate that more detailed assessment is necessary. Accordingly, no exceedances of SSLs would indicate that no further assessment is necessary. SSLs are not intended as cleanup levels, and are not intended as trigger levels that require remediation.

SSLs developed in accordance with the *Soil Screening Guidance* are based on future residential land use assumptions and related exposure scenarios. The Radford AAP is an industrial site and will never be used for residential purposes; however, SSLs developed in accordance with the *Soil Screening Guidance* can be used for sites with non-residential land use as a tool to conduct a conservative initial screening. As stated in the *Soil Screening Guidance: Fact Sheet* (July, 1996), "Generally, at sites where contaminant concentrations fall below SSLs, no further action or study is warranted..."

# 3.1 FACILITY-WIDE BACKGROUND STUDY (IT CORPORATION)

In August and September 2001, the IT Corporation conducted a Facility-Wide Background Study at the Main Manufacturing Area and the New River Unit of Radford AAP in accordance with a USEPA Region III-approved Work Plan. As stated in the Radford Army Ammunition Plant Facility-Wide Background Report (December 2001), the primary objective of the study was to collect soil samples representative of background conditions to establish a baseline for inorganic constituents of concern at Radford AAP. Sampling locations were positioned in tree stands to ensure associated soil samples were representative of areas that had not been affected by previous site activities or releases. Wherever possible, background sample locations were placed in tree stands estimated to predate potential construction activity at each location. The background soil samples were analyzed for the USEPA TAL inorganic compounds and for the USEPA TCL organic compounds. No TCL organic compounds were detected in the background soil samples.

Following the collection and analysis of the background soil samples, IT Corporation initially calculated facility-wide point estimates for the background soil data as confidence limits. As a result of discussions with the USEPA and VDEQ, the final facility-wide point estimates for the background soil data were calculated as tolerance limits. The use of tolerance limits rather than confidence limits evolved from comments questioning the use of the 95% upper confidence limit (UCL) as the point estimate for the background value. The 95% UCL was originally included in the Facility-Wide Background Study as a general point of reference. A confidence interval is used for comparisons within a single population. A compliance data set is then typically compared to a known standard. Using the 95% UCL as a single point comparison or background value, however, is likely to result in classifying many chemicals as greater than background when they are not. These misclassifications would be due to the 95% UCL representing an estimate of the mean. Such misclassifications could occur as often as 50% of the A tolerance limit is used for comparisons of similar but distinct populations. concentration range is defined from a background data set, within which a large proportion of compliance data should fall with high probability. Therefore, it was recommended that a 95% upper tolerance limit (UTL) be developed in the Background Study for use as point-by-point comparisons.

The 95% UTLs calculated by the IT Corporation for the inorganic constituents detected in the background soil samples from the Main Manufacturing Area are summarized in **Table 4**. These facility-wide background values, in conjunction with the Unit-specific background concentrations detected in the samples from borings 5GP-16 and 7GP-16, were used in the initial comparisons to background for the inorganic constituents detected in the soil samples from HWMU-5 and HWMU-7, respectively.

#### 3.2 HWMU-5

## 3.2.1 Comparison of Inorganic Constituent Concentrations to Background

The initial comparison of the detected inorganic constituent concentrations to background concentrations for the soils samples collected from HWMU-5 is summarized in **Table 5**. The maximum detected constituent concentrations were compared to those from background sample 5GP-16 (3-4') as well as to the facility-wide background concentrations. All of the maximum detected constituent concentrations exceeded the concentrations detected in background sample 5GP-16 (3-4'). However, with the exception of calcium, magnesium, and potassium, the maximum detected inorganic constituent concentrations did not exceed the facility-wide background concentrations; therefore, the detected inorganic constituents are not considered to be constituents of potential concern. Furthermore, due to the fact that calcium, magnesium, and potassium are not hazardous constituents as listed in Appendix VIII of 40 CFR Part 261, they are not considered to be constituents of potential concern even though their maximum detected concentrations exceeded their respective background concentrations.

# 3.2.2 Comparison to EPA Region III Residential Soil and Soil-to-Groundwater SSLs

Based on the initial comparison to background concentrations, none of the inorganic constituents detected in the soil samples from HWMU-5 were considered to be constituents of potential concern. Therefore, only the detected TCL organic constituent 4,4-DDD was compared to the USEPA Region III residential soil RBC and Soil-to-Groundwater SSL. As shown in **Table 6**, the maximum 4,4-DDD detected concentration of 0.051 mg/kg is below the residential soil RBC of 2.7 mg/kg, and below the soil-to-groundwater DAF 20 SSL of 11 mg/kg. Therefore, 4,4-DDD is not considered to be a constituent of potential concern at HWMU-5.

## 3.3 HWMU-7

# 3.3.1 Comparison of Inorganic Constituent Concentrations to Background

The initial comparison of the detected inorganic constituent concentrations to background concentrations for the soils samples collected from HWMU-7 is summarized in **Table 7**. The maximum detected constituent concentrations were compared to those from background sample 7GP-16 (3-4') as well as to the facility-wide background concentrations. With the exception of zinc, all of the maximum detected constituent concentrations exceeded the concentrations detected in background sample 7GP-16 (3-4'). The maximum detected concentrations of beryllium, calcium, magnesium, potassium, and selenium exceeded their respective facility-wide background concentrations. Due to the fact that calcium, magnesium, and potassium are not hazardous constituents as listed in Appendix VIII of 40 CFR Part 261, these three constituents are not considered to be constituents of potential concern, even though their maximum detected concentrations exceeded their respective background concentrations. However, although the only detected concentrations of beryllium and selenium were observed in native soil sample 7GP-3 (10-11'), these two constituents were retained for further comparison to the USEPA Region III Soil-to-Groundwater SSLs. The maximum detected concentrations for the remaining

inorganic constituents did not exceed their respective facility-wide background concentrations; therefore, these detected inorganic constituents are not considered to be constituents of potential concern.

## 3.3.2 Comparison to EPA Region III Residential Soil and Soil-to-Groundwater SSLs

Based on the initial comparison to background concentrations, the concentrations of inorganic constituents beryllium and selenium detected in native soil sample 7GP-3 (10-11') were retained for comparison to the USEPA Region III residential soil RBCs and Soil-to-In addition, the cyanide, 4,4-DDE, and n-nitrosodiphenylamine Groundwater SSLs. concentrations detected in native soil sample 7GP-3 (10-11') and the 4,4-DDD concentration detected in base clay sample 7GP-2 (13.5-14.5') were compared to the respective USEPA Region III residential soil RBCs and Soil-to-Groundwater SSLs. As shown in Table 8, the detected concentrations of beryllium, selenium, cyanide, 4,4-DDD, 4,4-DDE, and n-nitrosodiphenylamine are all below their respective residential soil RBCs and below their respective soil-togroundwater DAF 20 SSLs. Furthermore, organic constituents 4,4-DDD, 4,4-DDE, and nnitrosodiphenylamine have never been detected in the groundwater at HWMU-7 during annual monitoring for the all of the constituents listed in Appendix IX (Groundwater Monitoring List) of 40 CFR Part 264 as required by the Hazardous Waste Post-Closure Care Permit for the Unit. Therefore, beryllium, selenium, cyanide, 4,4-DDD, 4,4-DDE, and n-nitrosodiphenylamine are not considered to be constituents of potential concern at HWMU-7.

#### 3.4 EXPOSURE ASSESSMENT

HWMU-5 and HWMU-7 are capped using impermeable PVC membranes and 2-3 feet of soil; therefore, there is no risk of exposure to human health and/or the environment through direct ingestion of the residual material or by inhalation of vapors or fugitive dusts. In addition, the constituent concentrations that exceeded their respective background concentrations were below their respective USEPA Region III risk-based concentrations (RBCs) for residential soil ingestion.

The only potential exposure pathway is through constituent migration from soil to groundwater. However, Radford AAP is an industrial facility with no users of groundwater. Furthermore, based on the comparison to the USEPA Region III Soil-to-Groundwater SSLs (derived from the Region III tap water RBCs multiplied by a DAF of 20), none of the constituents detected at HWMU-5 and at HWMU-7 at concentrations exceeding the facility-wide background concentrations are considered to be of concern. Therefore, exposure via constituent migrations from soil to groundwater is not considered to be a potential risk.

#### 4.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the field investigation, the residual material in HWMU-5 and in HWMU-7 is not hazardous and should be left in place. The Units are capped using impermeable PVC membranes and 2-3 feet of soil; therefore, there is no risk of exposure to human health and/or the environment through direct ingestion of the residual material or by inhalation of vapors or fugitive dusts. In addition, the concentrations of the inorganic and organic constituents detected in soil samples collected from both Units do not pose a risk to groundwater via migration from the soil. Therefore, leaving the residual material in place does not pose a threat to human health and/or the environment according to VDEQ guidelines and regulations. Accordingly, Radford AAP requests that certifications for clean closure for soil be issued for both Units.

# 4.1 GENERAL GROUNDWATER MONITORING PROGRAM ISSUES

The groundwater at HWMU-5 and at HWMU-7 currently is monitored in accordance with the requirements of the Final Hazardous Waste Post-Closure Care Permit for Hazardous Waste Management Units 5, 7 10, and 16 (October 4, 2002). Due to the fact that the results of this investigation indicate that the residual material at both Units is not hazardous, Radford AAP desires to develop a protocol with which to cease groundwater monitoring at HWMU-5 and HWMU-7 under the Final Hazardous Waste Post-Closure Care Permit. This protocol is similar to the procedures specified in Permit Conditions V.F.1.c and V.F.2.c, wherein corrective action can be terminated if the Permittees demonstrate that the Groundwater Protection Standard has not been exceeded for three (3) consecutive years. In the event that the Groundwater Protection Standard is not exceeded for three (3) consecutive years at HWMU-5 and/or HWMU-7, Radford AAP will submit to the VDEQ a Minor Modification to the Final Hazardous Waste Post-Closure Care Permit petitioning for clean closure for groundwater at HWMU-5 and/or HWMU-7.

# 4.1.1 HWMU-5

Radford AAP proposes to monitor the groundwater at HWMU-5 for those inorganic constituents detected in the October 31, 2002 soil samples that are also listed in Appendix VIII (Hazardous Constituents) of 40 CFR Part 261, as well as for the one organic constituent (4,4-DDD) detected in the October 31, 2002 soil samples. Radford AAP will monitor for these constituents in addition to the constituents listed in the compliance groundwater monitoring list for HWMU-5 specified in the Final Hazardous Waste Post-Closure Care Permit, as appropriate. Due to the fact that no other organic constituents were detected in the soil samples from HWMU-5, any organic constituents other than 4,4-DDD detected in groundwater at HWMU-5 would have to be derived from an alternate source, and would fall under the jurisdiction of Radford AAP's USEPA Region III Corrective Action Program. Radford AAP proposes that groundwater monitoring at HWMU-5 would cease in the event that 4,4-DDD is not detected for three (3) consecutive years, and in the event that the inorganic constituents are not detected at concentrations exceeding their respective USEPA Maximum Contaminant Levels (MCLs) or VDEQ Alternate Concentration Limits (ACLs) for three (3) consecutive years. Radford AAP is

an industrial facility with no users of groundwater; therefore, the USEPA MCLs and VDEQ ACLs, which are residential drinking water standards, provide conservative standards with which to compare the inorganic constituent concentrations detected at the Unit.

Radford AAP will follow this groundwater monitoring protocol as well as the compliance groundwater monitoring protocol specified in the Final Hazardous Waste Post-Closure Care Permit until the VDEQ approves Radford AAP's petition for the cessation of groundwater monitoring and certifications for clean closure of soil and groundwater have been issued for HWMU-5. In accordance with Permit Condition I.J.1, Radford AAP will request a reduction in the post-closure period for HWMU-5 upon receipt of certification of clean closure from the VDEQ. Radford AAP assumes that certifications for clean closure of soil and groundwater will trigger the termination of the post-closure period and signify the completion of post-closure care at HWMU-5.

### 4.1.2 HWMU-7

Radford AAP proposes to monitor the groundwater at HWMU-7 for those inorganic constituents detected in the November 1, 2002 soil samples that are also listed in Appendix VIII (Hazardous Constituents) of 40 CFR Part 261, as well as for the three organic constituents (4,4-DDD, 4,4-DDE, and n-nitrosodiphenylamine) detected in the November 1, 2002 soil samples. Radford AAP will monitor for these constituents in addition to the constituents listed in the compliance groundwater monitoring list for HWMU-7 specified in the Final Hazardous Waste Post-Closure Care Permit, as appropriate. Due to the fact that no other organic constituents were detected in the soil samples from HWMU-7, any organic constituents other than 4,4-DDD, 4,4-DDE, and n-nitrosodiphenylamine detected in groundwater at HWMU-7 would have to be derived from an alternate source, and would fall under the jurisdiction of Radford AAP's USEPA Region III Corrective Action Program. Radford AAP proposes that groundwater monitoring at HWMU-7 would cease in the event that 4,4-DDD, 4,4-DDE, and n-nitrosodiphenylamine are not detected for three (3) consecutive years, and in the event that the inorganic constituents are not detected at concentrations exceeding their respective USEPA MCLs or VDEO ACLs for three (3) consecutive years. Radford AAP is an industrial facility with no users of groundwater; therefore, the USEPA MCLs and VDEQ ACLs, which are residential drinking water standards, provide conservative standards with which to compare the inorganic constituent concentrations detected at the Unit.

Radford AAP will follow this groundwater monitoring protocol as well as the compliance groundwater monitoring protocol specified in the Final Hazardous Waste Post-Closure Care Permit until the VDEQ approves Radford AAP's petition for the cessation of groundwater monitoring and certifications for clean closure of soil and groundwater have been issued for HWMU-7. In accordance with Permit Condition I.J.1, Radford AAP will request a reduction in the post-closure period for HWMU-7 upon receipt of certification of clean closure from the VDEQ. Radford AAP assumes that certifications for clean closure of soil and groundwater will trigger the termination of the post-closure period and signify the completion of post-closure care at HWMU-7.

#### 4.2 TRICHLOROETHENE IN GROUNDWATER AT HWMU-5

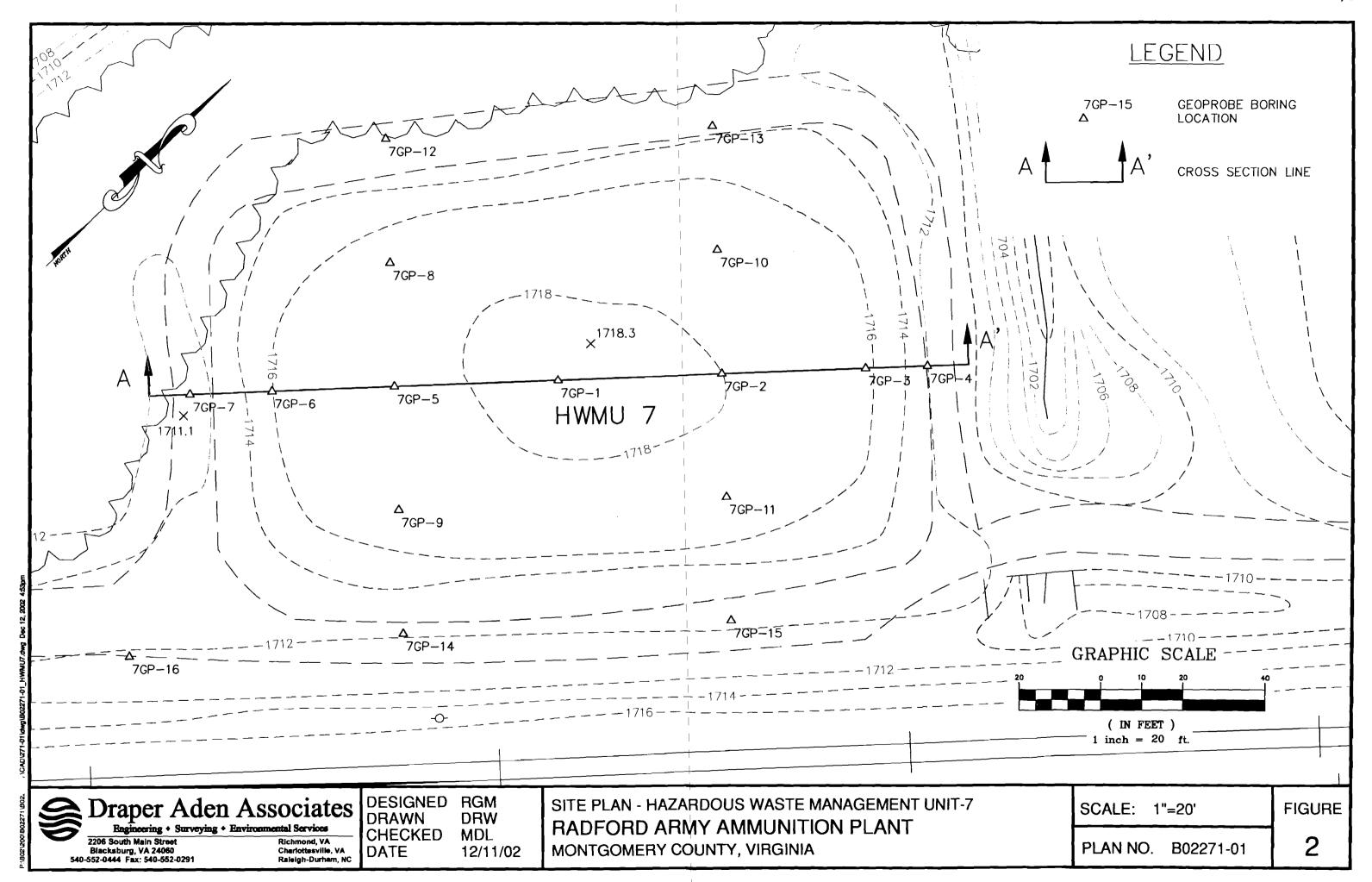
Trichloroethene (TCE) has been detected repeatedly at concentrations exceeding the USEPA Maximum Contaminant Level (MCL) of 5 µg/l in four groundwater monitoring wells within the monitoring network for HWMU-5. In correspondence to Radford AAP dated September 27, 2000, the VDEQ requested that Radford AAP implement a Corrective Action Program at HWMU-5 to address the TCE concentrations in groundwater which exceeded the USEPA MCL. During a teleconference between the VDEQ and Radford AAP on October 31, 2000, AAPC stated that, based on historical information for HWMU-5, it was believed that the wastes handled at the Unit prior to closure did not contain TCE or other organic compounds. Furthermore, TCE concentrations below the USEPA MCL had been detected in the upgradient monitoring well for the Unit during previous monitoring events. Therefore, it was believed that HWMU-5 was not the source of the TCE detected in the groundwater. In accordance with VDEQ guidance and pursuant to 40 CFR 264.99(i), AAPC chose to demonstrate that TCE was derived from a source other than HWMU-5. A copy of the Alternate Source Demonstration for Trichloroethene for HWMU-5 is included in Appendix E.

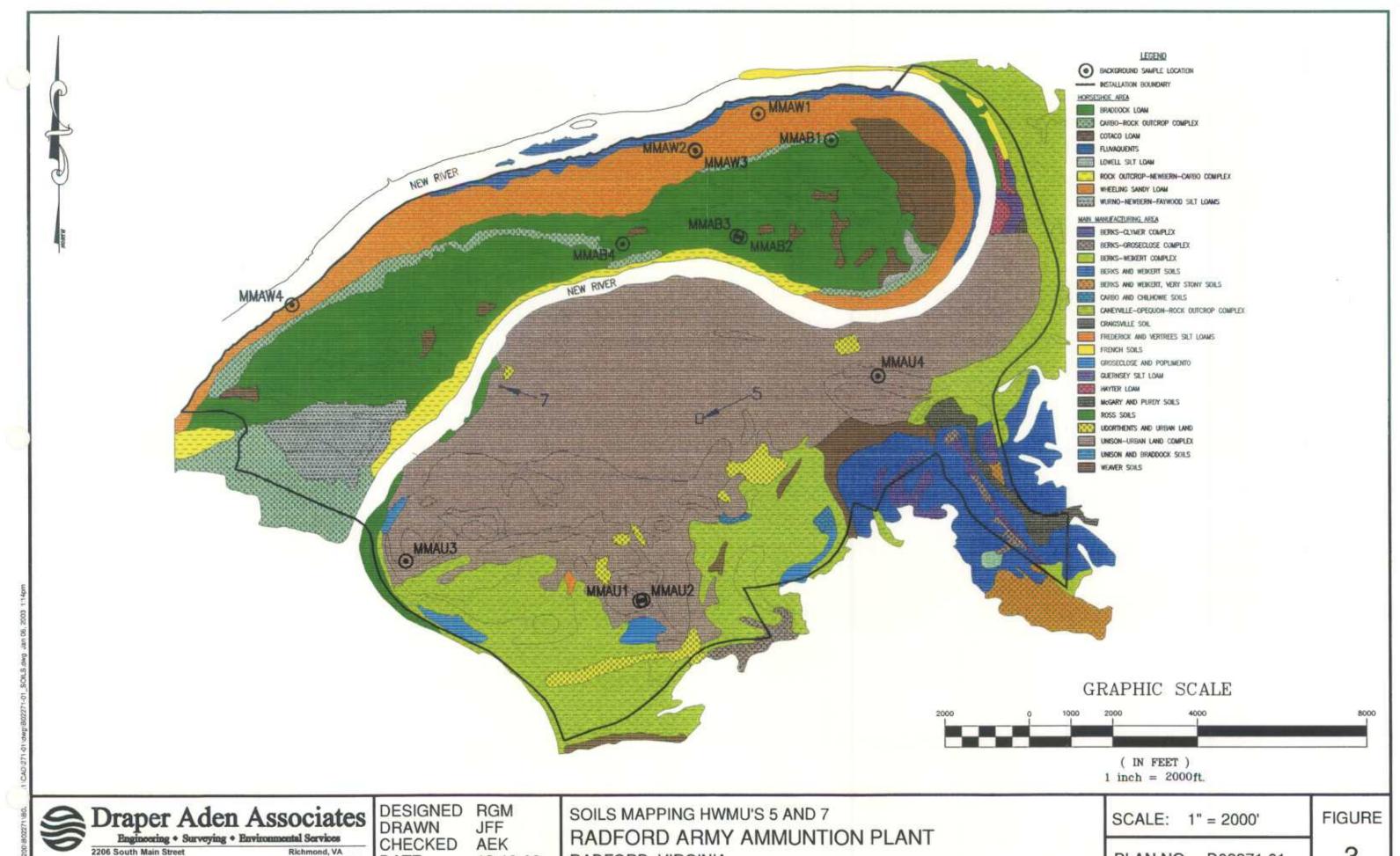
Historic information regarding operations at HWMU-5 prior to closure indicated that the wastes processed through the Unit did not contain TCE. A review of Radford AAP cleaning and maintenance practices in the vicinity of HWMU-5 identified areas in which chlorinated solvents had been used. An evaluation of historic waste disposal practices in these areas indicated the potential for groundwater impact from these operations. Hydrogeologic features such as fracture traces and sinkholes in this area would facilitate the transport of impacted groundwater from these potential source areas to certain monitoring wells (5W5B [shallow residuum] and nested wells 5WC21 [shallow residuum], 5WC22 [mid-depth residuum], and 5WC23 [deep residuum]) within the groundwater monitoring network for HWMU-5. Only these certain monitoring wells consistently exhibit TCE concentrations in exceedance of the USEPA MCL of 5 µg/l. In addition, TCE was detected in upgradient monitoring well 5W8B at a concentration exceeding the USEPA MCL during First Quarter 2002.

TCE was not detected in any of the soil samples collected within and around HWMU-5 during the October 31, 2002 field investigation. Based on the findings of the 2001 ASD as well as the October 31, 2002 field investigation and Year 2002 quarterly groundwater monitoring, it is Radford AAP's conclusion that the detected TCE concentrations in groundwater are derived from a source other than HWMU-5. Radford AAP assumes that remediation of TCE in groundwater in this area will fall under the jurisdiction of Radford AAP's USEPA Region III Corrective Action Program, and that TCE concentrations derived from an alternate source will not prevent HWMU-5 from receiving certification for clean closure of groundwater based on the protocol described in Section 4.1.1 of this report.

# 5.0 REFERENCES

Draper Aden Associates, Alternate Source Demonstration for Trichloroethene – Hazardous Waste Management Unit 5, Radford Army Ammunition Plant, Radford, Virginia, February 2001.


IT Corporation, Radford Army Ammunition Plant Facility-Wide Background Study, December 2001.


USDA, Soil Survey of Montgomery County, Virginia, 1985.

USEPA, Soil Screening Guidance, July 1996.

# **FIGURES**







RADFORD, VIRGINIA

DATE

Charlottesville, VA

Raleigh-Durham, NC

Blacksburg, VA 24060 540-552-0444 Fax: 540-552-0291 12-19-02

032A

PLAN NO. B02271-01

Draper Aden
Engineering • Surveying • E

Associates

E MANAGEMENT UNITS 5 & 7
Y AMMUNITION PLANT

CROSS SECTION A - A HAZARDOUS WASTE RADFORD ARMY

REVISIONS

DESIGNED BY:

DRAWN BY:
DRW
CHECKED BY:
Initials

SCALE: 1" = 10' DATE: 11/26/2002

B02271-01

**TABLES** 

TABLE 1

#### HAZARDOUS WASTE MANAGEMENT UNIT 5 SUMMARY OF TAL INORGANIC CONSTITUENTS AND TCL ORGANIC CONSTITUENTS DETECTED IN SOIL SAMPLES RADFORD ARMY AMMUNITION PLANT, RADFORD, VIRGINIA

|                                       |          | Concentrations in mg/kg |        |           |         |          |        |        |      |       |           |           |        |           |          |      |              |        |
|---------------------------------------|----------|-------------------------|--------|-----------|---------|----------|--------|--------|------|-------|-----------|-----------|--------|-----------|----------|------|--------------|--------|
| Ar                                    | Aluminum | Arsenic                 | Barium | Beryllium | Calcium | Chromium | Cobalt | Copper | Iron | Lead  | Magnesium | Manganese | Nickel | Potassium | Vanadium | Zinc | 4,4-DDD      |        |
| Sample Location Date                  |          |                         |        |           |         |          |        |        |      |       |           |           |        |           |          |      |              |        |
| 5GP-16 (3-4')<br>(background)         | 10/31/02 | 17000                   | 4      | 51.2      | ~       | 1020     | 24.4   | 8.2    | 10.6 | 28200 | 11.4      | 812       | 393    | 6.3       |          | 55.4 | 20.2         | ~      |
| 5GP-1 (1-2')<br>(cap)                 | 10/31/02 | 19200                   | 2.2    | 85.1      | ~       | 1060     | 22.4   | 9      | 13.9 | 30700 | 12.9      | 1530      | 337    | 9.4       | 1580     | 64.9 | 35.3         | 1      |
| 5GP-1 (9-10')<br>(residual material)  | 10/31/02 | 12100                   | 3.9    | 47.3      | 1.1     | ~        | 31.7   | 17.6   | 19.8 | 26700 | 9.8       | 1730      | 360    | 19        | 851      | 32   | 20.7         | 0.019  |
| 5GP-3 (9-10')<br>(residual material)  | 10/31/02 | 14800                   | 2.6    | 37.2      | ~       | 866      | 22.8   | ~      | 9.5  | 24400 | 9.7       | ~         | 90.8   | 5.3       | ~        | 54.3 | 18.6         | 1      |
| 5GP-6 (10-11')<br>(base sand)         | 10/31/02 | 19400                   | 1.6    | 56.9      | ~       | 9930     | 17.9   | ~      | 11.6 | 22400 | 11.3      | 1220      | 154    | 7.9       | 1120     | 57.5 | 26.4         | 0.0067 |
| 5GP-8 (7-8')<br>(residual material)   | 10/31/02 | 14200                   | 4.1    | 46.1      | 1.3     | ~        | 21.6   | 11.6   | 16.8 | 28400 | 9.6       | 1410      | 242    | 10.7      | 1090     | 26.7 | 23.9         | 0.051  |
| 5GP-8 (11-12')<br>(residual material) | 10/31/02 | 19600                   | 3.4    | 61.4      | 0.81    | ~        | 26.9   | 10     | 14.8 | 29000 | 9.6       | 1560      | 372    | 11        | 1420     | 55.2 | 33.8         | ~      |
| 5GP-12 (3-4')<br>(adjacent soil)      | 10/31/02 | 19600                   | 2.7    | 56.2      | ~       | 3200     | 27     | 9.1    | 13.6 | 33400 | 12.6      | 2200      | 457    | 8.2       | 915      | 61.8 | <b>3</b> 2.1 | ~      |

## NOTES:

<sup>~:</sup> Not detected above the Limit of Quantitation (LOQ).

TABLE 2

### HAZARDOUS WASTE MANAGEMENT UNIT 7 SUMMARY OF TAL INORGANIC CONSTITUENTS AND TCL ORGANIC CONSTITUENTS DETECTED IN SOIL SAMPLES RADFORD ARMY AMMUNITION PLANT, RADFORD, VIRGINIA Concentrations in mg/kg Analyte ် Sample Location Date 7GP-16 (3-4') 11/01/02 6650 106 1230 11.5 5.1 10800 5.4 1890 422 7.7 809 15.4 39.7 (background) 7GP-1 (1-3') 11/01/02 11100 3.8 0.7 7490 24.1 11.5 22.8 19400 8.1 4290 662 13.5 774 28 17.4 66.9 (cap) 7GP-2 (8-12') 11/01/02 8790 2.7 40.9 1.2 22 12.5 22 23300 2.8 3140 274 21.6 1070 21.1 15 (residual material) 7GP-2 (13.5-14.5') 11/01/02 19700 3.1 70.9 0.84 22.5 16.2 14.2 29300 13.6 2000 407 11.4 1390 57.7 32.6 0.0035 (base clay) 7GP-3 (10-11') 11/01/02 11700 26.1 229 1.5 28100 32.8 8.1 23.2 15900 35.1 2440 145 15.9 2970 3.5 42.1 33.8 0.69 0.0025 0.75 (native soil) 7GP-4 (3-4') 11/01/02 5290 69.2 749 10.1 5.1 9860 5.8 1590 292 729 35 (adjacent soil) 7GP-5 (6-11') 11/01/02 20000 3.5 55.6 22.8 787 7.2 732 60.6 24.2 10 23600 11 187 (residual material) 7GP-8 (5-8') 11/01/02 22400 2.4 55 1570 20.1 12.7 23200 10.3 1090 1040 61.8 28.1 280 8.5 (residual material)

NOTES:

<sup>-:</sup> Not detected above the Limit of Quantitation (LOQ).

TABLE 3

### SUMMARY OF WASTE CHARACTERIZATION ANALYTICAL RESULTS HAZARDOUS WASTE MANAGEMENT UNITS 5 AND 7 RADFORD ARMY AMMUNITION PLANT, RADFORD, VIRGINIA

| Sample ID Regulatory             |                                         |             |             |       |  |  |  |  |  |  |
|----------------------------------|-----------------------------------------|-------------|-------------|-------|--|--|--|--|--|--|
| Analyte                          | Unit-5-TCLP                             | Unit-7-TCLP | Thresholds  | Units |  |  |  |  |  |  |
| 1,1-Dichloroethene               | U                                       | U           | 0.7         | mg/l  |  |  |  |  |  |  |
| 1,2-Dichloroethane               | U                                       | U           | 0.5         | mg/l  |  |  |  |  |  |  |
| 1,4-Dichlorobenzene              | U                                       | U           | 7.5         | mg/l  |  |  |  |  |  |  |
| 2,4,5-TP                         | U                                       | U           | 1           | mg/l  |  |  |  |  |  |  |
| 2,4,5-Trichlorophenol            | U                                       | U           | 400         | mg/l  |  |  |  |  |  |  |
| 2,4,6-Trichlorophenol            | U                                       | υ           | 2           | mg/l  |  |  |  |  |  |  |
| 2,4-D                            | U                                       | U           | 10          | mg/l  |  |  |  |  |  |  |
| 2,4-Dinitrotoluene               | U                                       | U           | 0.1         | mg/l  |  |  |  |  |  |  |
| 2-Butanone (methyl ethyl ketone) | U                                       | U           | 200         | mg/l  |  |  |  |  |  |  |
| 2-Methylphenol                   | U                                       | U           | 200         | mg/l  |  |  |  |  |  |  |
| 4-Methylphenol                   | U                                       | U           | 200         | mg/l  |  |  |  |  |  |  |
| Arsenic                          | U                                       | U           | 5           | mg/l  |  |  |  |  |  |  |
| Barium                           | 0.714                                   | 0.521       | 100         | mg/l  |  |  |  |  |  |  |
| Benzene                          | U                                       | U           | 0.5         | mg/l  |  |  |  |  |  |  |
| Cadmium                          | U                                       | U           | 1           | mg/l  |  |  |  |  |  |  |
| Carbon Tetrachloride             | U                                       | U           | 0.5         | mg/l  |  |  |  |  |  |  |
| Chlordane                        | U                                       | U           | 0.03        | mg/l  |  |  |  |  |  |  |
| Chlorobenzene                    | U                                       | U           | 100         | mg/l  |  |  |  |  |  |  |
| Chloroform                       | υ                                       | U           | 6           | mg/l  |  |  |  |  |  |  |
| Chromium                         | U                                       | υ           | 5           | mg/l  |  |  |  |  |  |  |
| Cyanide (Reactivity)             | U                                       | U           | 250         | mg/kg |  |  |  |  |  |  |
| Endrin                           | U                                       | U           | 0.02        | mg/l  |  |  |  |  |  |  |
| gamma-BHC (lindane)              | U                                       | U           | 0.4         | mg/l  |  |  |  |  |  |  |
| Heptachlor                       | U                                       | U           | 0.008       | mg/l  |  |  |  |  |  |  |
| Heptachlor epoxide               | U                                       | U           | 0.008       | mg/l  |  |  |  |  |  |  |
| Hexachlorobenzene                | U                                       | U           | 0.1         | mg/l  |  |  |  |  |  |  |
| Hexachlorobutadiene              | U                                       | U           | 0.5         | mg/l  |  |  |  |  |  |  |
| Hexachloroethane                 | U                                       | U           | 3           | mg/l  |  |  |  |  |  |  |
| Lead                             | U                                       | υ           | 5           | mg/l  |  |  |  |  |  |  |
| Mercury                          | U                                       | υ           | 0.2         | mg/l  |  |  |  |  |  |  |
| Methoxychlor                     | U                                       | U           | 10          | mg/l  |  |  |  |  |  |  |
| Moisture                         | 15.3                                    | 15.5        | -           | %     |  |  |  |  |  |  |
| Nitrobenzene                     | U                                       | U           | 2           | mg/l  |  |  |  |  |  |  |
| Pentachlorophenol                | U                                       | U           | 100         | mg/l  |  |  |  |  |  |  |
| pH                               | 7.38                                    | 7.15        | <2 or >12.5 | s.u.  |  |  |  |  |  |  |
| Pyridine                         | U                                       | U           | 5           | mg/l  |  |  |  |  |  |  |
| Selenium                         | U                                       | U           | 1           | mg/l  |  |  |  |  |  |  |
| Silver                           | U                                       | U           | 5           | mg/l  |  |  |  |  |  |  |
| Sulfide (Reactivity)             | U                                       | U           | 500         | mg/kg |  |  |  |  |  |  |
| Tetrachloroethene                | U                                       | U           | 0.7         | mg/l  |  |  |  |  |  |  |
| Toxaphene                        | U                                       | U           | 0.5         | mg/l  |  |  |  |  |  |  |
| Trichloroethene                  | U                                       | U           | 0.5         | mg/l  |  |  |  |  |  |  |
| Vinyl Chloride                   | - 1 · · · · · · · · · · · · · · · · · · | U           | 0.2         | mg/l  |  |  |  |  |  |  |

TABLE 4

### FACILITY-WIDE BACKGROUND CONCENTRATIONS SUBSURFACE SOIL - MAIN MANUFACTURING AREA RADFORD ARMY AMMUNITION PLANT, RADFORD, VIRGINIA

|             | Frequency |               |               |                 |                |              | 95% UTL |
|-------------|-----------|---------------|---------------|-----------------|----------------|--------------|---------|
|             | of        | Minimum       | Maximum       | Arithmetic Mean | Coefficient of |              | of the  |
| CONSTITUENT | Detection | Concentration | Concentration | Concentration   | Variation      | Distribution | Mean    |
| Aluminum    | 22/22     | 8,710         | 47,900        | 21,223          | 0.517          | Lognormal    | 56,307  |
| Arsenic     | 20/22     | 1.2           | 35.9          | 7.73            | 1.16           | Lognormal    | 64.5    |
| Barium      | 19/22     | 25.2          | 155           | 71.5            | 0.623          | Normal       | 176     |
| Beryllium   | 11/22     | 0.79          | 5.3           | 1.01            | 1.16           | Neither      | 1.3     |
| Cadmium     | 12/22     | 0.57          | 2.5           | 0.778           | 0.805          | Lognormal    | 3.33    |
| Chromium    | 22/22     | 10.8          | 75.8          | 32.3            | 0.427          | Lognormal    | 82.8    |
| Cobalt      | 16/22     | 6.8           | 94.3          | 18.3            | 1.33           | Lognormal    | 118     |
| Copper      | 22/22     | 3.3           | 34.4          | 17              | 0.611          | Normal       | 41.4    |
| Iron        | 22/22     | 14,300        | 67,700        | 32,595          | 0.352          | Normal       | 59,560  |
| Lead        | 22/22     | 5.6           | 256           | 31.3            | 1.84           | Neither      | 256     |
| Manganese   | 22/22     | 39.4          | 1,760         | 428             | 0.939          | Lognormal    | 3,143   |
| Mercury     | 10/22     | 0.038         | 0.27          | 0.0729          | 0.865          | Neither      | 0.154   |
| Nickel      | 22/22     | 4.8           | 94.2          | 20.4            | 1.01           | Lognormal    | 93.2    |
| Thallium    | 12/22     | 1.4           | 5             | 1.76            | 0.729          | Neither      | 2.61    |
| Vanadium    | 22/22     | 27            | 114           | 61.9            | 0.329          | Normal       | 110     |
| Zinc        | 22/22     | 14.7          | 598           | 112             | 1.28           | Lognormal    | 674     |

NOTES:

Source: Radford Army Ammunition Plant Facility-Wide Background Study, IT Corporation, December 2001.

TABLE 5

## HAZARDOUS WASTE MANAGEMENT UNIT 5 COMPARISON OF INORGANIC CONSTITUENT CONCENTRATIONS TO BACKGROUND CONCENTRATIONS RADFORD ARMY AMMUNITION PLANT, RADFORD, VIRGNIA

|              | Facility-Wide              | Unit-Specific   | Maximum       | Constituent |
|--------------|----------------------------|-----------------|---------------|-------------|
| INORGANIC    | Background                 | Background      | Unit-Specific | Of          |
| CONSTITUENTS | Concentration <sup>1</sup> | Concentration   | Soil          | Potential   |
| CONSTITUENTS | Concentration              | [5GP-16 (3-4')] | Concentration | Concern?    |
|              | (mg/kg)                    | (mg/kg)         | (mg/kg)       | Concerns    |
|              |                            |                 |               |             |
| Aluminum     | 56307                      | 17000           | 19600         | no          |
| Antimony     | na                         | ~               | ~             | no          |
| Arsenic      | 64.5                       | 44              | 4.1           | no          |
| Barium       | 176                        | 51.2            | 85.1          | no          |
| Beryllium    | 1.3                        | ~               | 1.3           | no          |
| Cadmium      | 3.33                       | ~               | ~             | <u>no</u> * |
| Calcium      | na                         | 1020            | 9930          | no          |
| Chromium     | 82.8                       | 24.4            | 31.7          | no          |
| Cobalt       | 118                        | 8.2             | 17.6          | no          |
| Copper       | 41.4                       | 10.6            | 19.8          | no          |
| Iron         | 59560                      | 28200           | 33400         | no          |
| Lead         | 256                        | 11.4            | 12.9          | no          |
| Magnesium    | na                         | 812             | 2200          | no*         |
| Manganese    | 3143                       | 393             | 457           | no          |
| Mercury      | 0.154                      | ` ~             | ~             | no          |
| Nickel       | 93.2                       | 6.3             | 19            | no          |
| Potassium    | na                         | ~               | 1580          | no*         |
| Selenium     | na                         | ~               | ~             | no          |
| Silver       | na                         | ~               | ~             | no          |
| Sodium       | na                         | ~               | 1             | no          |
| Thallium     | 2.61                       | 1               | ~             | no          |
| Vanadium     | 110                        | 55.4            | 64.9          | no          |
| Zinc         | 674                        | 20.2            | 35.3          | no          |

### NOTES:

- <sup>1</sup> Facility-Wide Background Concentrations obtained from the Radford Army Ammunition Plant Facility-Wide Background Study Report prepared by IT Corporation, December 2001
- na: Not applicable. A Facility-Wide Background Concentration was not calculated for this constituent.
- ~: Not detected above the Limit of Quantitation (LOQ).
- Although the maximum concentrations for calcium, magnesium, and potassium are greater than their respective background concentrations, they are not considered constituents of potential concern because they are not hazardous constituents as listed in Appendix VIII of 40 CFR Part 261.

### TABLE 6

### · HAZARDOUS WASTE MANAGEMENT UNIT 5 COMPARISON OF DETECTED ORGANIC CONSTITUENT CONCENTRATIONS TO USEPA REGION III SOIL-TO-GROUNDWATER SOIL SCREENING LEVELS RADFORD ARMY AMMUNITION PLANT, RADFORD, VIRGINIA

|              |         | Risk-Based               | USEPA       | Maximum       | Constituent |
|--------------|---------|--------------------------|-------------|---------------|-------------|
|              |         | Concentration            | Region III  | Unit-Specific | Of          |
| CONSTITUENTS | CAS No. | (RBC)                    | Groundwater | Soil          | Potential   |
|              |         | Residential <sup>1</sup> | DAF 20      | Concentration | Concern?    |
|              |         | (mg/kg)                  | (mg/kg)     | (mg/kg)       |             |
| Pesticides*  |         | 1000                     |             |               |             |
| 4,4-DDD      | 72-54-8 | 2.7                      | _11         | 0.051         | _ no _      |

### NOTES:

DAF 20: Dilution Attenuation Factor of 20 for constituent migration from soil to groundwater. Obtained from USEPA Region III Risk-Based Concentration Table, October 9, 2002.

<sup>&</sup>lt;sup>1</sup> USEPA Region III Risk-Based Concentration Table, October 9, 2002.

TABLE 7

### HAZARDOUS WASTE MANAGEMENT UNIT 7 COMPARISON OF INORGANIC CONSTITUENT CONCENTRATIONS TO BACKGROUND CONCENTRATIONS RADFORD ARMY AMMUNITION PLANT, RADFORD, VIRGNIA

|              | Facility-Wide              | Unit-Specific   | Maximum       | Constituent |
|--------------|----------------------------|-----------------|---------------|-------------|
| INORGANIC    | Background                 | Background      | Unit-Specific | Of          |
| CONSTITUENTS | Concentration <sup>1</sup> | Concentration   | Soil          | Potential   |
|              |                            | [7GP-16 (3-4')] | Concentration | Concern?    |
|              | (mg/kg)                    | (mg/kg)         | (mg/kg)       |             |
| Aluminum     | 56307                      | 6650            | 22400         | no          |
| Antimony     | na                         | ~               | ~             | no          |
| Arsenic      | 64.5                       | ~               | 26.1          | no          |
| Barium       | 176                        | 106             | 229           | no          |
| Beryllium    | 1.3                        | ~               | 1.5           | yes         |
| Cadmium      | 3.33                       | ~               | ~             | no          |
| Calcium      | na                         | 1230            | 28100         | no*         |
| Chromium     | 82.8                       | 11.5            | 32.8          | no          |
| Cobalt       | 118                        | ~               | 16.2          | no          |
| Copper       | 41.4                       | 5.1             | 23.2          | no          |
| Iron         | 59560                      | 10800           | 29300         | no          |
| Lead         | 256                        | 5.4             | 35.1          | no          |
| Magnesium    | na                         | 1890            | 4290          | no*         |
| Manganese    | 3143                       | 422             | 662           | no          |
| Mercury      | 0.154                      | ?               | 1             | no          |
| Nickel       | 93.2                       | 7.7             | 21.6          | no          |
| Potassium    | na                         | 809             | 2970          | no*         |
| Selenium     | na                         | 1               | 3.5           | yes         |
| Silver       | na                         | ~               | 1             | no          |
| Sodium       | na                         | 2               | ~             | no          |
| Thallium     | 2.61                       | 2               | 1             | no          |
| Vanadium     | 110                        | 15.4            | 61.8          | no          |
| Zinc         | 674                        | 39.7            | 33.8          | no          |

### NOTES:

na: Not applicable. A Facility-Wide Background Concentration was not calculated for this constituent.

<sup>&</sup>lt;sup>1</sup> Facility-Wide Background Concentrations obtained from the Radford Army Ammunition Plant Facility-Wide Background Study Report prepared by IT Corporation, December 2001

<sup>~:</sup> Not detected above the Limit of Quantitation (LOQ).

<sup>\*</sup> Although the maximum concentrations for calcium, magnesium, and potassium are greater than their respective background concentrations, they are not considered constituents of potential concern because they are not hazardous constituents as listed in Appendix VIII of 40 CFR Part 261.

### TABLE 8

# HAZARDOUS WASTE MANAGEMENT UNIT 7 COMPARISON OF INORGANIC CONSTITUENTS OF POTENTIAL CONCERN AND DETECTED ORGANIC CONSTITUENT CONCENTRATIONS TO USEPA REGION III SOIL-TO-GROUNDWATER SOIL SCREENING LEVELS RADFORD ARMY AMMUNITION PLANT, RADFORD, VIRGINIA

| <u> </u>                             |           |                          |             |               |             |
|--------------------------------------|-----------|--------------------------|-------------|---------------|-------------|
|                                      |           | Risk-Based               | USEPA       | Maximum       | Constituent |
| Į.                                   |           | Concentration            | Region III  | Unit-Specific | Of          |
| CONSTITUENTS                         | CAS No.   | (RBC)                    | Groundwater | Soil          | Potential   |
| <b>(</b>                             |           | Residential <sup>1</sup> | DAF 20      | Concentration | Concern?    |
|                                      |           | (mg/kg)                  | (mg/kg)     | (mg/kg)       |             |
| Inorganics                           |           |                          |             |               |             |
| Beryllium                            | 7440-41-7 | 160                      | 1200        | 1.5           | no          |
| Cyanide                              | 57-12-5   | 1600                     | 150         | 0.69          | no          |
| Selenium                             | 7782-49-2 | 390                      | 19          | 3.5           | no          |
| Semivolatile Organic Compounds (SVOC | is)       |                          |             |               |             |
| N-Nitrosodiphenylamine               | 86-30-6   | 130                      | 0.76        | 0.75          | no          |
| Pesticides                           |           |                          |             |               |             |
| 4,4-DDD                              | 72-54-8   | 2.7                      | 11          | 0.0035        | no          |
| 4,4-DDE                              | 72-55-9   | 1.9                      | 35          | 0.0025        | no          |

### NOTES:

DAF 20: Dilution Attenuation Factor of 20 for constituent migration from soil to groundwater. Obtained from USEPA Region III Risk-Based Concentration Table, October 9, 2002.

<sup>&</sup>lt;sup>1</sup> USEPA Region III Risk-Based Concentration Table, October 9, 2002.

APPENDIX A

**BORING LOGS** 

WELL\_LOG ALLIAN

B02271-01 Project Number: Drilling Vironex Alliant Ammunition and Powder Co. Client: Company: **Danny Horsting** HWMUs 5 & 7 Subsurface Investigation Driller: Project: Boring Method: Geoprobe Location: Radford, Virginia R. Miller East: Logged by: North: Total October 31, 2002 **Ground Surface** Completion Date: 10.5' Reference: Elev GS: Depth WELL LOG PID (ppm) Stratum Elev Depth Samp Blow N H2O **DESCRIPTION (USC)** REMARKS ID, Counts Value Scale Boring backfilled with Fill. Dark brown fine silty sand with plant matter, S-1 moist (topsoil).
CL. Red-brown micaceous sandy clay, moist. bentonite. Soil sample 5-GP-1 (1-2) submitted for analysis. Perched water. SP. Light gray fine to coarse sand, wet. 30 mil. PVC. CL. Light gray and yellow-brown mottled clay, dry. S-2 5. SM. Red-brown micaceous silty sand, dry. Residual material. S-3 1.8 SM. Yellow-brown, fine to coarse silty sand with little green gravel (compacted residual material), dry. Soil sample 5-GP-1 (9-10) submitted for analysis. 10-SC. Light gray fine to coarse sand, trace clay, damp. Boring terminated at 10.5 feet. 15 20

| Client:         |                |            |                | tion and Powder Co.                                                     | -                   | Orilling<br>Company:          |              | ronex       | notina    | - <u>-</u> -                         |
|-----------------|----------------|------------|----------------|-------------------------------------------------------------------------|---------------------|-------------------------------|--------------|-------------|-----------|--------------------------------------|
| Project:        |                |            | -              | Subsurface Investigation                                                |                     | Oriller:<br>Boring<br>Method: |              | nny Ho      | i Still 8 |                                      |
| Location        | n: Kac         | liord,     | Virgin         |                                                                         |                     |                               |              | oprobe      |           |                                      |
| North:<br>Total |                |            |                | East:                                                                   | I                   | ogged by                      | : <b>R.</b>  | Miller      |           |                                      |
| Depth           | 10.0'          | Elev       |                | Reference: Ground Surface                                               | (                   | Completio                     |              | Octob       |           |                                      |
|                 | Blow<br>Counts | N<br>Value | Depth<br>Scale | DESCRIPTION (USC)                                                       |                     | Stratum<br>Elev               | PID<br>(ppm) | WELL<br>LOG | H2O       |                                      |
| S-1             |                |            |                | Fill. Dark brown fine silty sand with plant matter, moist (topsoil).    | $\overset{\sim}{m}$ |                               |              |             |           | Boring backfilled with<br>bentonite. |
|                 |                |            | + +            | N moist (topsoil). CL. Red-brown micaceous sandy clay, moist.           |                     |                               |              |             |           |                                      |
|                 |                |            |                |                                                                         |                     |                               |              |             | ĺ         |                                      |
|                 |                |            |                | SP. Light gray fine to coarse sand, wet                                 |                     |                               |              |             |           | Perched water.                       |
|                 |                |            | f 1            |                                                                         |                     |                               |              |             |           |                                      |
| S-2             |                |            |                | CL. Light gray and yellow-brown mottled clay, dry.                      |                     |                               |              |             |           | 30 mil. PVC.                         |
| 3-2             |                |            | _              |                                                                         |                     |                               |              |             |           |                                      |
|                 | Ì              |            | - 5-           |                                                                         |                     |                               |              |             |           |                                      |
|                 |                |            | -              | SM. Red-brown micaceous silty sand, dry.                                | 44                  |                               |              |             |           | Residual material.                   |
|                 |                |            |                | . , ,                                                                   |                     |                               |              |             |           |                                      |
|                 |                |            |                |                                                                         |                     |                               |              |             |           |                                      |
| S-3             |                |            | -              | SM. Yellow-brown fine to coarse silty sand with                         |                     |                               |              |             |           |                                      |
|                 |                |            |                | trace green gravel (compacted residual material) and little clay, damp. |                     |                               |              |             |           |                                      |
| 1               |                |            |                |                                                                         |                     |                               |              |             |           |                                      |
|                 |                |            | 10-            | Boring terminated at 10 feet.                                           | <u>:L:L</u>         |                               |              |             | †         |                                      |
|                 |                |            |                |                                                                         |                     |                               |              |             | Ì         |                                      |
|                 |                |            |                |                                                                         |                     |                               |              |             |           |                                      |
|                 |                |            |                |                                                                         |                     |                               |              |             |           |                                      |
|                 |                |            |                |                                                                         |                     |                               |              |             |           |                                      |
|                 |                |            |                |                                                                         |                     |                               |              |             |           |                                      |
|                 |                |            |                |                                                                         |                     |                               |              |             |           |                                      |
|                 |                |            | - 15-          |                                                                         |                     |                               |              |             |           |                                      |
|                 |                |            |                |                                                                         |                     |                               |              |             |           |                                      |
|                 |                |            |                |                                                                         |                     |                               |              |             |           |                                      |
|                 |                |            |                |                                                                         |                     |                               |              |             |           |                                      |
|                 |                |            | } -            |                                                                         |                     |                               |              |             |           |                                      |
| ľ               |                |            |                |                                                                         |                     |                               |              |             |           |                                      |
|                 |                |            |                |                                                                         |                     |                               |              |             |           |                                      |
|                 |                |            | - 20-          |                                                                         |                     |                               |              |             |           |                                      |
|                 |                |            |                |                                                                         |                     |                               |              |             |           |                                      |
|                 |                |            |                |                                                                         |                     |                               |              |             |           |                                      |
|                 |                |            | † 1            |                                                                         |                     |                               |              |             |           |                                      |
|                 |                |            | + +            |                                                                         |                     |                               |              |             |           |                                      |
|                 |                |            |                |                                                                         |                     |                               |              |             |           |                                      |
|                 |                |            |                |                                                                         |                     |                               |              |             |           |                                      |

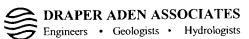
WELL LOG ALLIAN

LOG OF:

Project Number: B02271-01 Drilling Company: Alliant Ammunition and Powder Co. Vironex Client: HWMUs 5 & 7 Subsurface Investigation **Danny Horsting** Driller: Project: Boring Method: Geoprobe Radford, Virginia Location: R. Miller East: Logged by: North: **Total** October 31, 2002 **Ground Surface** Completion Date: 10.0' Elev GS: Reference: Depth Stratum Elev PID (ppm) WELL LOG Samp Blow N Depth H2O DESCRIPTION (USC) REMARKS Value ID Counts Scale Boring backfilled with S-1 Fill. Dark brown fine silty sand with plant matter, moist (topsoil).
CL. Red-brown micaceous sandy clay, moist. bentonite. SP. Light gray fine to coarse sand, wet. Perched water. CL. Light gray and yellow-brown mottled clay, dry. 30 mil. PVC. S-2 5-SM. Red-brown micaceous silty sand, dry. Residual material S-3 2" granite gravel. Soil sample 5-GP-3 (9-10) SM. Yellow-brown fine to coarse silty sand with trace green gravel (compacted residual material) and submitted for analysis. little clay, damp. Boring terminated at 10 feet. 15 20

WELL\_LOG ALLIAN

LOG OF:


B02271-01 Project Number: Drilling Company: Alliant Ammunition and Powder Co. Vironex Client: **Danny Horsting** HWMUs 5 & 7 Subsurface Investigation Driller: Project: Boring Method: Geoprobe Radford, Virginia Location: R. Miller Logged by: East: North: Total Depth October 31, 2002 **Ground Surface** Completion Date: 4.0' Elev GS: Reference: Stratum PID (ppm) WELL LOG Samp Blow N Depth H2O REMARKS **DESCRIPTION (USC)** ID Î Counts Value Boring backfilled with Fill. Dark brown fine silty sand with plant matter, S-1 bentonite. moist (topsoil). \_\_\_\_\_ GP. Granite gravel. CL. Red-brown to brown clay with trace gravel, Boring terminated at 4 feet. No residual material encountered. 5. 10 15 20

5-GP-5

B02271-01 Project Number: Drilling Company: Alliant Ammunition and Powder Co. Vironex Client: HWMUs 5 & 7 Subsurface Investigation **Danny Horsting** Driller: Project: Boring Method: Geoprobe Location: Radford, Virginia R. Miller Logged by: East: North: Total Depth Completion Date: October 31, 2002 **Ground Surface** 10.0' Reference: Elev GS: Stratum Elev Blow Counts Depth Scale PID WELL LOG Samp N DESCRIPTION (USC) H<sub>2</sub>O REMARKS Value (ppm)  $\mathbf{D}$ Boring backfilled with Fill. Dark brown fine silty sand with plant matter, S-1 moist (topsoil).
CL. Red-brown micaceous sandy clay, moist. bentonite. SP. Light gray sand, wet. Perched water. 30 mil. PVC. CL. Light gray and yellow-brown mottled clay, dry. S-2 5-SM. Red-brown micaceous silty sand, dry to damp. Residual material. SM. Yellow-brown micaceous fine to coarse silty S-3 sand, trace gravel, moist. 10 Boring terminated at 10 feet. 15 .AP.GPJ DRAPER.GDT 3/3/03 20 WELL LOG ALLIAN

Project Number: B02271-01 Drilling Company: Vironex Alliant Ammunition and Powder Co. Client: HWMUs 5 & 7 Subsurface Investigation **Danny Horsting** Driller: Project: Boring Method: Geoprobe Radford, Virginia Location: Logged by: R. Miller East: North: Total Completion Date: October 31, 2002 **Ground Surface** 11.0' Elev GS: Depth Reference: Stratum Elev Samp Blow Ν Depth DESCRIPTION (USC) H<sub>2</sub>O REMARKS Scale ID (ppm) Counts Value Boring backfilled with Fill. Dark brown, fine silty sand with plant matter, S-1 moist (topsoil).
CL. Red-brown micaceous sandy clay, moist. bentonite. SP. Light gray fine to coarse sand, wet. CL. Light gray and yellow-brown mottled clay, dry. Perched water. 30 mil. PVC. S-2 5 SM. Yellow-brown micaceous silty sand, moist. Residual material. S-3 Soil sample 5-GP-6 (10-11) submitted for analysis. SC. Light gray fine to coarse sand and brown clay, damp. Boring terminated at 11 feet. 15 20

B02271-01 Project Number: Drilling Company: Alliant Ammunition and Powder Co. Vironex Client: **Danny Horsting** HWMUs 5 & 7 Subsurface Investigation Driller: Project: Boring Method: Geoprobe Radford, Virginia Location: R. Miller Logged by: East: North: Total Depth October 31, 2002 Completion Date: **Ground Surface** 4.0' Elev GS: Reference: Stratum Elev PID (ppm) WELL LOG Blow Counts Depth Scale Samp N H2O **REMARKS DESCRIPTION (USC)**  $\mathbf{D}$ Boring backfilled with Fill. Asphalt. S-1 bentonite GC. Brown clay with gray gravel, moist. Boring terminated at 4 feet. No residual material encountered. 5 10 15 WELL\_LOG ALLIAN ... AP.GPJ DRAPER.GDT 3/3/03 20-



5-GP-8



B02271-01 Project Number: Drilling Company: Alliant Ammunition and Powder Co. Vironex Client: **Danny Horsting** Driller: HWMUs 5 & 7 Subsurface Investigation Project: Boring Method: Geoprobe Radford, Virginia Location: R. Miller Logged by: East: North: Total October 31, 2002 **Ground Surface** Completion Date: 12.0' Elev GS: Reference: Depth Stratum Elev WELL LOG Blow Counts Depth Scale PID Samp Ν H2O REMARKS **DESCRIPTION (USC)** (ppm) Value ID. Boring backfilled with Fill. Dark brown fine silty sand with plant matter S-1 bentonite. (topsoil).
CL. Red-brown micaceous sandy clay, moist. SP. Light gray fine to coarse sand, wet. Perched water CL. Light gray and yellow-brown mottled clay, dry. 30 mil. PVC. S-2 5-Residual material. SC. Red-brown, micaceous clayey sand, dry. SM. Yellow-brown, fine to coarse silty sand with little green gravel (compacted residual material), dry. Soil sample 5-GP-8 (7-8) submitted for analysis. S-3 2" quartz gravel. 10-CL. Red-brown to dark gray clay, damp. Soil sample 5-GP-8 (11-12) submitted for analysis. Boring terminated at 12 feet. 15 AP.GPJ DRAPER.GDT 3/3/03 20-WELL\_LOG ALLIAN



5-GP-9

51

Project Number: B02271-01 Drilling Company: Alliant Ammunition and Powder Co. Vironex Client: HWMUs 5 & 7 Subsurface Investigation **Danny Horsting** Project: Driller: Boring Method: Radford, Virginia Geoprobe Location: R. Miller North: East: Logged by: Total Depth October 31, 2002 10.0' Elev GS: Reference: **Ground Surface** Completion Date: Depth Scale WELL LOG Samp Blow N Stratum Elev PID DESCRIPTION (USC) H2O REMARKS (ppm) ID Counts Value S-1 Fill. Dark brown fine silty sand with plant matter, Boring backfilled with moist (topsoil).
CL. Red-brown micaceous sandy clay, moist. bentonite. SP. Light gray fine to coarse sand, wet. Perched water. CL. Light gray yellow-brown mottled clay, dry. 30 mil. PVC. S-2 5 SM. Yellow-brown, fine to coarse silty sand, trace Residual material. green gravel (compacted residual material) with little clay, damp. S-3 Becoming moist. SC. Red-brown micaceous sandy clay, moist. 10 Boring terminated at 10 feet. 15 AP.GPJ DRAPER.GDT 3/3/03 20 WELL\_LOG ALLIAN

Project Number: B02271-01

|                |        |            |          |            |                                                       | I        | Project Nu<br>Drilling<br>Company: | 17           | B0227       | _      |                        |
|----------------|--------|------------|----------|------------|-------------------------------------------------------|----------|------------------------------------|--------------|-------------|--------|------------------------|
| Client:        |        | _          |          |            | and Powder Co.                                        |          |                                    |              | ironex      |        |                        |
| Project:       | HW     | MUs        | 5 & 7 5  | Subs       | urface Investigation                                  |          | Oriller:                           |              | anny Ho     | rsting |                        |
| ocation        | n: Rad | ford,      | Virgin   | ia         |                                                       | 1        | Boring<br>Method:                  | G            | eoprobe     |        |                        |
| North:         |        |            |          |            | East:                                                 | I        | logged by                          | : R          | . Miller    |        | <u> </u>               |
| Fotal<br>Depth | 10.0'  | Elev       | GS:      |            | Reference: Ground Surface                             | (        | Completio                          | n Date:      | Octobe      | er 31, | 2002                   |
| Samp           | Blow   | N<br>Value | Depth    |            | DESCRIPTION (USC)                                     |          | Stratum<br>Elev                    | PID<br>(ppm) | WELL<br>LOG | H2O    | REMARKS                |
| S-1            | Counts | value      | Scale    | 7 Fill.    | Dark brown fine silty sand with plant matter,         | <i>}</i> |                                    | (PP)         |             |        | Boring backfilled with |
|                |        |            |          | moi<br>CL. | st (topsoil).  Red-brown micaceous sandy clay, moist. |          |                                    |              |             |        | bentonite.             |
|                | ļ      |            |          |            |                                                       |          |                                    |              |             | l      |                        |
|                |        |            |          | - SP.      | Light gray fine to coarse sand, wet.                  | ши       |                                    |              |             |        | Perched water.         |
|                |        |            |          | - ĈL.      | Light gray yellow-brown mottled clay, dry.            |          |                                    |              |             | 1      | 30 mil. PVC.           |
|                |        |            |          |            |                                                       |          |                                    |              |             |        | JO HIII. T VC.         |
| S-2            |        |            | -        |            |                                                       |          |                                    |              |             |        |                        |
|                |        |            | - 5-     |            |                                                       |          |                                    |              |             | 1      |                        |
|                |        |            |          |            |                                                       |          |                                    |              |             |        |                        |
|                |        |            | -        | SM         | Red-brown micaceous silty sand with black             | 44       |                                    | -            |             |        | Residual material.     |
|                |        |            | -        | mot        | tles, dry.                                            |          |                                    |              |             |        |                        |
|                |        |            |          |            |                                                       |          |                                    |              |             |        |                        |
| S-3            |        |            | -        | Tra        | ce gravel.                                            |          |                                    |              |             |        |                        |
|                |        |            | -        |            |                                                       |          |                                    |              |             |        |                        |
|                |        |            |          |            |                                                       |          |                                    |              |             |        |                        |
| Ì              |        |            | - 10-    | Bor        | ing terminated at 10 feet.                            | ![       |                                    |              |             | †      |                        |
|                |        |            |          |            |                                                       |          |                                    |              |             |        |                        |
|                | ,      |            |          |            |                                                       |          |                                    |              |             |        |                        |
|                |        |            | <u> </u> |            |                                                       |          |                                    |              |             |        |                        |
|                |        |            |          |            |                                                       |          |                                    |              |             |        |                        |
|                |        |            |          |            |                                                       |          |                                    |              |             |        |                        |
|                |        |            | -        |            |                                                       |          |                                    |              |             |        |                        |
|                |        |            | - 15-    |            |                                                       |          |                                    |              |             |        |                        |
|                | •      |            |          |            |                                                       |          |                                    |              |             |        |                        |
|                |        |            |          |            |                                                       |          |                                    |              |             |        |                        |
|                |        |            | -        |            |                                                       |          |                                    |              |             |        |                        |
|                |        |            |          |            |                                                       |          |                                    |              |             |        |                        |
|                |        |            | _        |            |                                                       |          |                                    |              |             |        |                        |
|                |        |            | -        |            |                                                       |          |                                    |              |             |        |                        |
|                |        |            | - 20-    |            |                                                       |          |                                    |              |             |        |                        |
|                |        |            | 20-      |            |                                                       |          |                                    |              |             |        |                        |
|                |        |            | -        |            |                                                       |          |                                    | •            |             |        |                        |
|                |        |            | _        |            |                                                       |          |                                    |              |             |        |                        |
|                |        |            |          |            |                                                       |          |                                    |              |             |        |                        |
|                |        |            | -        | l          |                                                       |          |                                    |              |             |        |                        |
|                |        |            | _        |            |                                                       |          |                                    |              |             |        |                        |
|                |        |            |          |            |                                                       |          |                                    |              |             |        |                        |



5-GP-11

5-3

B02271-01 Project Number: Drilling Alliant Ammunition and Powder Co. Vironex Client: Company: **Danny Horsting** HWMUs 5 & 7 Subsurface Investigation Driller: Project: Boring Method: Geoprobe Radford, Virginia Location: R. Miller Logged by: East: North: Total Depth October 31, 2002 Completion Date: **Ground Surface** 12.0' Reference: Elev GS: Stratum Elev WELL LOG Depth Scale Samp Blow PID N H2O REMARKS DESCRIPTION (USC) (ppm) Counts Value ID Boring backfilled with Fill. Dark brown fine silty sand with plant matter, S-1 bentonite. moist (topsoil). CL. Red-brown micaceous sandy clay. Perched water. SP. Light gray fine to coarse sand, wet. CL. Light gray and yellow-brown mottled clay, dry. 30 mil. PVC. S-2 5-SC. Red-brown micaceous clayey sand, dry. Residual material. SM. Yellow-brown fine to coarse silty sand with S-3 little gravel and compacted residual material fragments, dry. 10-CL. Gray clay, dry. Boring terminated at 12 feet. 15 WELL\_LOG ALLIAN .AP.GPJ DRAPER.GDT 3/3/03 20



5-GP-12

SU

B02271-01 Project Number: Drilling Company: Alliant Ammunition and Powder Co. Vironex Client: **Danny Horsting** HWMUs 5 & 7 Subsurface Investigation Driller: Project: Boring Method: Radford, Virginia Geoprobe Location: R. Miller East: Logged by: North: Total Depth October 31, 2002 Completion Date: 4.0' **Ground Surface** Elev GS: Reference: Blow Counts Depth Scale Stratum Elev PID (ppm) WELL LOG Samp ID N H2O REMARKS **DESCRIPTION (USC)** Value Fill. Asphalt. CL. Brown clay. S-1 Boring backfilled with bentonite. GC. Gray gravel and brown clay. CL. Brown clay. Soil sample 5-GP-12 (3-4) submitted. Boring terminated at 4 feet. No residual material encountered. 5-10-15 20 WELL LOG ALLIAN



5-GP-13



B02271-01 Project Number: Drilling Company: Vironex Alliant Ammunition and Powder Co. Client: **Danny Horsting** HWMUs 5 & 7 Subsurface Investigation Driller: Project: Boring Method: Geoprobe Location: Radford, Virginia R. Miller Logged by: North: East: Total Depth Completion Date: October 31, 2002 **Ground Surface** 4.0' Reference: Elev GS: Stratum Elev PID (ppm) WELL LOG Blow Counts Depth Scale Samp N DESCRIPTION (USC) H<sub>2</sub>O REMARKS Value D. Boring backfilled with Fill. Asphalt. SC. Red-brown fine to coarse clayey sand with brown mottles, damp to moist. S-1 bentonite. Not waste material. Boring terminated at 4 feet. No residual material encountered. 5 10-- 15 20-



5-GP-14

56

B02271-01 Project Number: Drilling Company: Vironex Alliant Ammunition and Powder Co. Client: **Danny Horsting** Driller: **HWMUs 5 & 7 Subsurface Investigation** Project: Boring Method: Geoprobe Location: Radford, Virginia R. Miller Logged by: East: North: Total Depth Completion Date: October 31, 2002 **Ground Surface** 4.0' Elev GS: Reference: Stratum PID (ppm Blow Counts N Value WELL LOG Depth Scale Samp H2O REMARKS **DESCRIPTION (USC)** (ppm) ID Boring backfilled with Fill. Dark brown fine silty sand with plant matter, S-1 moist (topsoil).
CL. Brown sandy clay, moist. bentonite. Boring terminated at 4 feet. No residual material encountered. 5 10-15 20-

WELL LOG ALLIAN

LOG OF:

5-GP-15

57

Project Number: B02271-01 Drilling Company: Client: Alliant Ammunition and Powder Co. Vironex HWMUs 5 & 7 Subsurface Investigation **Danny Horsting** Project: Driller: Boring Method: Radford, Virginia Geoprobe Location: North: East: Logged by: R. Miller Total 4.0' Elev GS: **Ground Surface** Completion Date: October 31, 2002 Reference: Depth Samp Blow N Depth Stratum PID Elev (ppm) WELL LOG DESCRIPTION (USC) H2O REMARKS Value ID Counts Scale S-1 Fill. Dark brown fine silty sand with plant matter, Boring backfilled with moist (topsoil).
GC. Brown clay with gray gravel, moist. bentonite. Boring terminated at 4 feet. No residual material encountered. 5. 10-15 20



5-GP-16

J.F

B02271-01 Project Number: Drilling Company: Alliant Ammunition and Powder Co. Vironex Client: **Danny Horsting** Project: HWMUs 5 & 7 Subsurface Investigation Driller: Boring Method: Geoprobe Radford, Virginia Location: R. Miller Logged by: North: East: Total Completion Date: October 31, 2002 **Ground Surface** 4.0' Elev GS: Reference: Depth Blow Counts Depth Scale Stratum PID Elev (ppm) WELL LOG Samp H2O REMARKS DESCRIPTION (USC) Value ID. Fill. Dark brown fine silty sand with plant matter, Boring backfilled with S-1 moist (topsoil).

CL. Brown clay with trace gray gravel.

CL. Red-brown fine sandy clay, moist. bentinite. Soil sample 5-GP-16 (3-4) submitted for analysis. Boring terminated at 4 feet. No residual material encountered. 5 10-15-AP.GPJ DRAPER.GDT 3/3/03 20 WELL LOG ALLIAN.

WELL\_LOG ALLIAN

B02271-01 Project Number: Drilling Company: Alliant Ammunition and Powder Co. Vironex Client: HWMUs 5 & 7 Subsurface Investigation Driller: **Danny Horsting** Project: Boring Method: Radford, Virginia Geoprobe Location: East: Logged by: R. Miller North: Total November 1, 2002 16.0' **Ground Surface** Completion Date: Elev GS: Reference: Depth Depth Scale Stratum Elev Samp Blow PID N WELL LOG DESCRIPTION (USC) H2O REMARKS Counts Value (ppm) ID S-1 Boring backfilled with Fill. Brown fine silty sand, moist. bentonite. CL. Yellow-brown fine to coarse sandy clay, damp. Soil sample 7-GP-1 (1-3) submitted for analysis. SP. Light gray fine to coarse sand, wet. Perched water. SM. Yellow-brown micaceous fine silty sand, dry. 30 mil. PVC. SM. Yellow-brown fine silty sand with trace gravel, S-2 Residual material. green compacted residual material fragments, dry. S-3 Some gravel. 10 CL. Yellow-brown micaceous fine sandy clay with little gravel, damp. S-4 Clay liner. SM. Dark gray fine sand and silt with trace round Aquatic odor. gravel, dry. 15 Boring terminated at 16 feet. 20



WELL LOG ALLIAN

Project Number: B02271-01 Drilling Alliant Ammunition and Powder Co. Vironex Client: Company: HWMUs 5 & 7 Subsurface Investigation **Danny Horsting** Driller: Project: Boring Method: Radford, Virginia Geoprobe Location: R. Miller North: East: Logged by: Total November 1, 2002 20.0' Elev GS: Reference: **Ground Surface** Completion Date: Depth WELL LOG Samp Blow N Depth Stratum Elev PID **DESCRIPTION (USC)** H<sub>2</sub>O REMARKS Counts Value (ppm) ID Scale S-1 Fill. Brown fine silty sand, moist. Boring backfilled with bentonite. CL. Yellow-brown fine to coarse sandy clay, damp. Perched water. SP. Light gray fine to coarse sand, wet. 30 mil. PVC. S-2 SM. Yellow-brown fine micaceous silty sand with Residual material. trace gravel, green compacted residual material fragments, dry. S-3 Soil sample 7-GP-2 (8-12) Some gravel. submitted for analysis. 10 S-4 CL. Red-brown micaceous fine sandy clay, damp. Clay liner. Soil sample 7-GP-2 (13.5-14.5) submitted for analysis. 15-SM. Dark gray fine sandy and silt with trace round Aquatic odor. gravel, dry. S-5 20 Boring terminated at 20 feet.

WELL LOG ALLIAN

LOG OF:

B02271-01 Project Number: Drilling Vironex Alliant Ammunition and Powder Co. Company: Client: **Danny Horsting** Driller: HWMUs 5 & 7 Subsurface Investigation Project: Boring Method: Geoprobe Radford, Virginia Location: R. Miller Logged by: North: Total Completion Date: November 1, 2002 **Ground Surface** 12.0' Reference: Elev GS: Depth Stratum PID Elev (ppm) WELL LOG Blow Counts Depth Scale Samp H<sub>2</sub>O REMARKS DESCRIPTION (USC) Value ID Boring backfilled with Fill. Brown fine silty sand, moist. S-1 bentonite. CL. Yellow-brown fine to coarse sandy clay, damp. Perched water. SP. Light gray fine to coarse sand, wet. 30 mil. PVC. SM. Yellow-brown, micaceous fine silty sand, moist. SM. Yellow-brown micaceous fine silty sand with Residual material. S-2 trace to little gravel, green compacted residual material fragments, dry. S-3 SM. Dark gray fine sand and silt with trace round Aquatic odor. 10 gravel, dry. Soil sample 7-GP-3 (10-11) submitted for analysis. Boring terminated at 12 feet. 15 20

B02271-01 Project Number: Drilling Company: Vironex Alliant Ammunition and Powder Co. Client: **Danny Horsting** HWMUs 5 & 7 Subsurface Investigation Driller: Project: Boring Method: Geoprobe Radford, Virginia Location: R. Miller Logged by: East: North: Total November 1, 2002 Completion Date: 4.0' **Ground Surface** Elev GS: Reference: Depth PID (ppm) WELL LOG Stratum Elev Blow Counts Depth Samp H2O REMARKS **DESCRIPTION (USC)** ID, Boring backfilled with Fill. Asphalt and gravel. S-1 bentonite. SW. Brown fine sand, moist to wet. Soil sample 7-GP-4 (3-4) submitted for analysis. S-2 5 SM. Dark gray fine sand and silt, wet. Boring terminated at 8 feet. No residual material encountered. Aquatic odor. 10-15 WELL LOG ALLIAN. JAP.GPJ DRAPER.GDT 3/3/03 20

 $\frac{7 - GP - 5}{(1 \text{ of } 1)}$ 

Project Number: B02271-01 Drilling Vironex Alliant Ammunition and Powder Co. Client: Company: **Danny Horsting** HWMUs 5 & 7 Subsurface Investigation Driller: Project: Boring Method: Geoprobe Radford, Virginia Location: Logged by: R. Miller East: North: Total November 1, 2002 Completion Date: **Ground Surface** 12.0' Reference: Depth Elev GS: Stratum Elev PID (ppm) Blow Counts Depth Scale WELL LOG N Samp H<sub>2</sub>O REMARKS DESCRIPTION (USC) Value ID Boring backfilled with Fill. Brown fine silty sand, moist. S-1 bentonite. CL. Yellow-brown fine to coarse sandy clay, damp. SP. Light gray fine to coarse sand, wet. Perched water. SM. Yellow-brown micaceous fine silty sand, moist. SM. Yellow-brown fine silty sand with trace gravel 30 mil. PVC. S-2 Residual material. 5 and green compacted residual material fragments, Soil sample 7-GP-5 (6-11) submitted for analysis. S-3 10-CL. Red-brown micaceous fine sandy clay, moist. Clay liner. Boring terminated at 12 feet. - 15 AP.GPJ DRAPER.GDT 3/3/03 20

WELL\_LOG ALLIAN. JAP.GPJ DRAPER,GDT 3/3/03

B02271-01 Project Number: Drilling Company: Client: Alliant Ammunition and Powder Co. Vironex HWMUs 5 & 7 Subsurface Investigation Project: Driller: **Danny Horsting** Boring Method: Radford, Virginia Geoprobe Location: R. Miller East: North: Logged by: Total 12.0' November 1, 2002 Elev GS: Reference: **Ground Surface** Completion Date: Depth Depth Scale Stratum Elev PID (ppm) WELL LOG Samp Blow N DESCRIPTION (USC) H<sub>2</sub>O REMARKS Value Counts Fill. Brown fine silty sand, moist. Boring backfilled with bentonite. CL. Yellow-brown fine to coarse sandy clay, damp. Perched water. SP. Light gray fine to coarse sand, wet. 30 mil. PVC. SM. Yellow-brown micaceous fine silty sand, moist. SM. Yellow-brown fine silty sand with trace gravel and green compacted residual material fragments, Residual material. 5 dry. CL. Red-brown micaceous fine sandy clay, moist. Clay liner. 10 Boring terminated at 12 feet. 15 20

DRAPER ADEN ASSOCIATES
Engineers • Geologists • Hydrologists

LOG OF:

 $\frac{7 - GP - 7}{(1 \text{ of } 1)}$ 

B02271-01 Project Number: Drilling Company: Vironex Alliant Ammunition and Powder Co. Client: HWMUs 5 & 7 Subsurface Investigation Driller: **Danny Horsting** Project: Boring Method: Geoprobe Radford, Virginia Location: R. Miller East: Logged by: North: Total Depth November 1, 2002 Completion Date: 4.0' **Ground Surface** Elev GS: Reference: PID (ppm) WELL LOG Stratum Elev Blow Counts Depth Scale Samp H2O REMARKS DESCRIPTION (USC) Value ID' Boring backfilled with bentonite. Fill. Gravel.

SW. Brown fine sand, moist to wet. S-1 Boring terminated at 4 feet. No residual material encountered. 5 10 15 AP.GPJ DRAPER.GDT 3/3/03 20

7-GP-8

B02271-01 Project Number: Drilling Company: Alliant Ammunition and Powder Co. Vironex Client: **Danny Horsting** HWMUs 5 & 7 Subsurface Investigation Driller: Project: Boring Method: Location: Radford, Virginia Geoprobe R. Miller North: East: Logged by: Total Depth November 1, 2002 12.0 **Ground Surface** Completion Date: Elev GS: Reference: Samp Depth Scale Stratum Elev PID (ppm) WELL LOG Blow N **DESCRIPTION (USC)** H<sub>2</sub>O REMARKS Counts Value  $\mathbf{ID}$ Boring backfilled with S-1 Fill. Brown fine silty sand, moist. bentonite. CL. Yellow-brown fine to coarse sandy clay, damp. SP. Light gray fine to coarse sand, wet. Perched water. 30 mil. PVC. SM. Yellow-brown fine silty sand with trace gravel and green compacted residual material fragments, S-2 Residual material. 5. Soil sample 7-GP-8 (5-8) submitted for analysis. S-3 10-CL. Red-brown micaceous fine sandy clay, moist. Clay liner. Boring terminated at 12 feet. - 15 AP.GPJ DRAPER.GDT 3/3/03 20 WELL\_LOG ALLIAN

7-GP-9 (1 of 1)

Project Number: B02271-01 Drilling Vironex Alliant Ammunition and Powder Co. Client: Company: **Danny Horsting** HWMUs 5 & 7 Subsurface Investigation Driller: Project: Boring Method: Geoprobe Location: Radford, Virginia R. Miller Logged by: East: North: Total November 1, 2002 **Ground Surface** Completion Date: 12.0' Elev GS: Depth Reference: WELL LOG Samp ID Depth Scale Stratum Elev PID Blow N DESCRIPTION (USC) H<sub>2</sub>O REMARKS Counts Value (ppm) Boring backfilled with Fill. Brown fine silty sand, moist. S-1 bentonite. CL. Yellow-brown fine to coarse sandy clay, damp. Perched water. SP. Light gray fine to coarse sand, wet. 30 mil. PVC. SM. Yellow-brown fine silty sand with trace gravel S-2 and green compacted residual material fragments, Residual material. dry. 5-S-3 CL. Red-brown micaceous fine sandy clay, moist. Clay liner 10-SM. Dark gray fine sand and silt with trace round Aquatic odor. gravel, dry. Boring terminated at 12 feet. 15 . AP.GPJ DRAPER.GDT 3/3/03 20 WELL\_LOG ALLIAN

WELL\_LOG

LOG OF:

B02271-01 Project Number: Drilling Vironex Alliant Ammunition and Powder Co. Client: Company: **Danny Horsting HWMUs 5 & 7 Subsurface Investigation** Driller: Project: Boring Method: Geoprobe Radford, Virginia Location: R. Miller Logged by: East: North: Total November 1, 2002 12.0' **Ground Surface** Completion Date: Elev GS: Reference: Depth PID (ppm) WELL LOG Stratum Elev Samp Blow Depth H2O DESCRIPTION (USC) REMARKS Counts Value Scale ID. Boring backfilled with S-1 Fill. Brown fine silty sand, moist. bentonite. CL. Yellow-brown fine to coarse sandy clay, damp. SP. Light gray fine to coarse sand, wet. Perched water. 30 mil. PVC. SM. Yellow-brown micaceous fine silty sand, moist. SM. Yellow-brown fine silty sand with trace gravel S-2 and green compacted residual material fragments, Residual material. 5dry. S-3 10-CL. Red-brown micaceous fine sandy clay, moist. Clay liner. Boring terminated at 12 feet. - 15 AP.GPJ DRAPER.GDT 3/3/03 20DRAPER ADEN ASSOCIATES

Engineers · Geologists · Hydrologists

B02271-01 Project Number:

LOG OF:

|                |       |            |                |                                                                                                                                                              |     | Project Nu<br>Drilling                           | mber:        | B0227       | 1-01  |                                                      |
|----------------|-------|------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------|--------------|-------------|-------|------------------------------------------------------|
| Client:        |       |            |                | tion and Powder Co.                                                                                                                                          |     | Drilling<br>Company:                             |              | ronex       |       |                                                      |
| Project:       | HW    | MUs        | 5 & 7 S        | subsurface Investigation                                                                                                                                     |     | Driller: Danny Horsting  Boring Method: Geoprobe |              |             |       |                                                      |
| Location:      | : Rad | lford,     | Virgin         | <u>a</u>                                                                                                                                                     |     | Boring<br>Method:                                |              |             |       |                                                      |
| North:         |       | _          |                | East:                                                                                                                                                        |     | Logged by                                        | : R.         | Miller      |       |                                                      |
| Total<br>Depth | 12.0' | Elev       | GS:            | Reference: Ground Surface                                                                                                                                    |     | Completio                                        | n Date:      | Novem       | ber 1 | 1, 2002                                              |
| Samp           | Blow  | N<br>Value | Depth<br>Scale | DESCRIPTION (USC)                                                                                                                                            |     | Stratum<br>Elev                                  | PID<br>(ppm) | WELL<br>LOG | H2O   | REMARKS                                              |
| S-1            |       |            |                | Fill. Brown fine silty sand, moist.  CL. Yellow-brown fine to coarse sandy clay, damp.                                                                       |     |                                                  |              |             |       | Boring backfilled with bentonite.                    |
| S-2            |       |            | - 5-           | SP. Light gray fine to coarse sand, wet.  SP-GP. Yellow-brown fine silty sand with trace to little gravel, green compacted residual material fragments, dry. | 0 0 |                                                  |              |             |       | Perched water.<br>30 mil. PVC.<br>Residual material. |
| S-3            |       |            | - 10-          | CL. Red-brown micaceous fine sandy clay, damp.                                                                                                               | 0   |                                                  |              |             |       | Clay liner.                                          |
|                |       |            | - 15-          | Boring terminated at 12 feet.                                                                                                                                |     |                                                  |              |             |       |                                                      |
|                |       |            | - 20-          |                                                                                                                                                              |     |                                                  |              |             |       |                                                      |



7-GP-12

Project Number: B02271-01 Drilling Company: Alliant Ammunition and Powder Co. Vironex Client: HWMUs 5 & 7 Subsurface Investigation **Danny Horsting** Driller: Project: Boring Method: Radford, Virginia Geoprobe Location: R. Miller North: East: Logged by: Total Depth November 1, 2002 4.0' Elev GS: Reference: **Ground Surface** Completion Date: Blow Counts Depth Scale Stratum PID (ppm) WELL LOG Samp N **DESCRIPTION (USC)** H<sub>2</sub>O REMARKS Value Boring backfilled with bentonite. S-1 Fill. Asphalt and gravel. SW. Brown fine sand, moist to wet. Boring terminated at 4 feet. No residual material encountered. 5 10-- 15-AP GPJ DRAPER.GDT 3/3/03 20-WELL\_LOG ALLIA!

LOG OF:

7-GP-13

B02271-01 Project Number: Drilling Company: Alliant Ammunition and Powder Co. Vironex Client: **Danny Horsting** HWMUs 5 & 7 Subsurface Investigation Driller: Project: Boring Method: Geoprobe Location: Radford, Virginia R. Miller East: Logged by: North: Total November 1, 2002 **Ground Surface** Completion Date: 4.0' Elev GS: Reference: Depth Stratum PID Elev (ppm) WELL LOG Blow Counts Depth N Samp H2O REMARKS DESCRIPTION (USC) Value Scale Boring backfilled with Fill. Asphalt and gravel. S-1 bentonite. SW. Brown fine sand, moist to wet. Boring terminated at 4 feet. No residual material encountered. 5 10 15-WELL\_LOG ALLIAN. AP.GPJ DRAPER.GDT 3/3/03 20-

B02271-01 Project Number: Drilling Company: Vironex Alliant Ammunition and Powder Co. Client: **Danny Horsting** HWMUs 5 & 7 Subsurface Investigation Driller: Project: Boring Method: Geoprobe Radford, Virginia Location: Logged by: R. Miller East: North: Total Depth November 1, 2002 Completion Date: **Ground Surface** 4.0' Elev GS: Reference: Blow Counts Depth Scale Stratum Elev PID (ppm) WELL LOG Samp H2O REMARKS DESCRIPTION (USC) Value ID Boring backfilled with Fill. Asphalt and gravel. S-1 bentonite. SW. Brown fine sand, moist to wet. Boring terminated at 4 feet. No residual material encountered. 5 10-15-AP.GPJ DRAPER.GDT 3/3/03 20

LOG OF:

7-GP-15

B02271-01 Project Number: Drilling Company: Alliant Ammunition and Powder Co. Vironex Client: **Danny Horsting** HWMUs 5 & 7 Subsurface Investigation Driller: Project: Boring Method: Geoprobe Radford, Virginia Location: R. Miller Logged by: North: East: Total Depth November 1, 2002 **Ground Surface** Completion Date: 4.0' Elev GS: Reference: Depth Scale Stratum PID (ppm) WELL LOG Samp Blow N H2O REMARKS DESCRIPTION (USC) Value ID Counts Boring backfilled with Fill. Asphalt and gravel. S-1 bentonite. SW. Brown fine sand, moist to wet. Boring terminated at 4 feet. No residual material encountered. 5. 10-15 WELL\_LOG ALLIAN AP.GPJ DRAPER.GDT 3/3/03 20

LOG OF:

7-GP-16 (1 of 1)

Project Number: B02271-01 Drilling Company: Alliant Ammunition and Powder Co. Vironex Client: **HWMUs 5 & 7 Subsurface Investigation Danny Horsting** Driller: Project: Boring Method: Geoprobe Location: Radford, Virginia R. Miller North: East: Logged by: Total Depth November 1, 2002 4.0' **Ground Surface** Elev GS: Reference: Completion Date: Samp ID Depth Scale Stratum Elev PID (ppm) WELL LOG Blow REMARKS DESCRIPTION (USC) H<sub>2</sub>O Counts Value Fill. Asphalt and gravel. Boring backfilled with S-I bentonite. SW. Brown fine sand, moist to wet. Soil sample 7-GP-16 (3-4) submitted for analysis. Boring terminated at 4 feet. No residual material encountered. 5 10-15 20-

#### APPENDIX B

# DATA VALIDATION REPORTS AND LABORATORY ANALYTICAL RESULTS

Page 1 of 10

#### SW-846 INORGANIC DATA REVIEW SUMMARY

Draper Aden Associates (DAA) performed a limited review of the analytical results for the October 31-November 1, 2002 soil sampling event at hazardous waste management units 5 and 7, Radford Army Ammunition Plant (RAAP)/Alliant Ammunition and Powder Company, Montgomery County, Virginia. Soil samples were collected from locations 5GP-1 (1-2'), 5GP-1 (9-10'), 5GP-3 (9-10'), 5GP-6 (10-11'), 5GP-8 (7-8'), 5GP-8 (11-12'), 5 GP-12 (3-4'), 5GP-16 (3-4'), 7GP-1 (1-3'), 7GP-2 (8-12'), 7GP-2 (13.5-14.5'), 7GP-3 (10-11'), 7GP-4 (3-4'), 7GP-5 (6-11'), 7GP-8 (5-8') and 7 GP-16 (3-4').

DAA performed a limited review of the analytical results for twenty-two metal target analytes analyzed per SW-846 Method 6010B, one metal target analyte analyzed per SW-846 7471A and one metal target analyte analyzed per SW-846 9012A. Inductively coupled plasma (ICP), cold vapor atomic absorption (CVAA) and colorimetric were the techniques on which the individual analytical methods for each of the inorganics were based.

Soil samples were collected and submitted to the laboratory for analysis of the following metals: ICP Method 6010B (aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, selenium, silver, sodium, thallium, vanadium and zinc), Method 7471A (mercury) and Method 9012A (total cyanide).

Severn Trent Laboratories (STL) of North Canton, Ohio performed the inorganic analyses. On behalf of RAAP, STL submitted results to Draper Aden Associates in a final certificate of analysis which included sample analytical results as well as relevant documentation to verify and validate the results.

The evaluation of STL's compliance with inorganic analytical methods and validation of results presented here are based upon a limited review of QA/QC information including chain of custody, case narrative, holding time, preservation procedures, standards, spike analysis on sample matrix (S), blank samples analyses (method, calibration and other blanks), and duplicate analyses (SD) results. Review was limited to summary sheets provided by the laboratory, unless a notable discrepancy in the data package required review of the raw data. Additionally, sample results were recalculated and verified for arsenic and cyanide, sample 7GP-3(10-11'). A summary of data review results and any observed deviations is provided below.

STL received the samples on ice and in good condition. All technical holding time criteria were met.

#### Method 6010B

The original certificate of analysis appeared complete in its presentation and the data were of acceptable quality. The data set exhibited the laboratory's ability to achieve the reported limit of quantitation (LOQ) for each target parameter, as outlined by the method detection limit study.

All instrument calibration and calibration verification criteria were met. Blank samples, calibration standards, pre-digestion spikes and duplicates were analyzed as required. All laboratory control samples, pre-digestion spikes and duplicates were recovered within control limits, except where noted below. Duplicate sample results exhibited acceptable precision, where applicable. All LOQ standards exhibited acceptable recovery. Deviations from specific quality control criteria that were identified and noted during the data review process are summarized below.

The associated blanks were not interference free, however, data qualification was necessary for only antimony. Antimony was reported in all samples less than the LOQ, however, all antimony results were attributed to laboratory contamination.

Antimony, chromium, vanadium, recovered low in the matrix spike sample and all results for these target parameters were qualified as estimated and should be considered biased low.

The laboratory presented all results in mg/kg and on a dry weight basis. Except where noted above, all sample results remain as reported by the laboratory. All results unaffected by the data validation process and/or detected less than their corresponding LOQs were validated and reported as "U." Refer to the attached table titled "Data Validation Report" for a summary of results which required data validation.

#### Methods 7471A (CVAA/ 9012A(Colorimetric)

The original certificate of analysis appeared complete in its presentation and the data were of acceptable quality. The data set exhibited the laboratory's ability to achieve the reported limit of quantitation for mercury and cyanide, as outlined by the method detection limit study.

All instrument calibration and calibration verification criteria were met. Blank samples, LCS samples, pre-digestion spikes and spike duplicates were analyzed as required. All blank criteria were met, except where noted below. Laboratory duplicate sample results exhibited acceptable precision, where applicable. All laboratory control samples, pre-digestion spikes and duplicates were recovered within control limits. Deviations from specific quality control criteria that were identified and noted during the data review process are summarized below.

Page 3 of 10

The associated blanks were not interference free, however, data qualification was necessary for only cyanide. Cyanide was reported less than the LOQ in 5 GP-1(9-10') and 5-GP-6(10-11') and results were attributed to laboratory contamination. Cyanide reported above the LOQ in 7GP-3(10-11') was not influence by the observed laboratory blank contamination and no data qualification was required.

The laboratory presented all results in mg/kg and on a dry weight basis. Except where noted above, all sample results remain as reported by the laboratory. All results unaffected by the data validation process and/or detected less than their corresponding LOQs were validated and reported as "U." Refer to the attached table titled "Data Validation Report" for a summary of results which required data validation.

Page 4 of 10

#### INORGANIC DATA EVALUATION FOR ICP SW-846 METHOD 6010B-SOILS

|               |                 | TORTEL ST. GIG MENTOD GOLDS SCIES                                                                                                                                                                                          |
|---------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample ID:    | 8 (11-          | (1-2'), 5GP-1 (9-10'), 5GP-3 (9-10'), 5GP-6 (10-11'), 5GP-8 (7-8'), 5GP-12'), 5 GP-12 (3-4'), 5GP-16 (3-4'), 7GP-1 (1-3'), 7GP-2 (8-12'), 7GP-2 (4.5'), 7GP-3 (10-11'), 7GP-4 (3-4'), 7GP-5 (6-11'), 7GP-8 (5-8'), 7 GP-16 |
| QC Samples:   |                 | Lab blanks, Pre-digestion spikes, Duplicates, ICS, LCS, etc.  • Matrix spike/duplicate-7GP5(6-11')                                                                                                                         |
| Laboratory:   |                 | STL, North Canton, OH; SDG A2K040189                                                                                                                                                                                       |
| Does Laborato | ory anal        | yte list correspond to analyte list requested by DAA?                                                                                                                                                                      |
| "☑" denotes i | tems re         | viewed. See Data Validation Summary for additional comments.                                                                                                                                                               |
| <b>A.</b>     | QC D            | OCUMENTATION CRITERIA                                                                                                                                                                                                      |
|               | <b>I</b>        | Specific LODs for all target analytes<br>Specific LOQs for all target analytes                                                                                                                                             |
| В.            |                 | NICAL HOLDING TIMES AND PRESERVATION UREMENTS:                                                                                                                                                                             |
|               | Ø               | 6 month holding time                                                                                                                                                                                                       |
| C.            | INSTI           | RUMENT CALIBRATION CRITERIA:                                                                                                                                                                                               |
|               | ☑               | 1 calibration blank and at least 1 standard                                                                                                                                                                                |
| D.            | INITI.<br>CRITI | AL AND CONTINUING CALIBRATION VERIFICATION ERIA:                                                                                                                                                                           |
|               | M               | 10 sample frequency                                                                                                                                                                                                        |

Use of calibration blank and check standard

%R within 90-110% range

abla

Page 5 of 10

| T | DIANIZ | OT IGMAS | ANALYSES | CDITEDIA. |
|---|--------|----------|----------|-----------|
| P | DLAIN  | SAMELES  | ANALISES | CRITCRIA: |

- Method/Other Lab Blanks (check only if analyzed)
- ☑ Interference free
- ☑ CCB 10 sample frequency

#### F. INTERFERENCE CHECK SAMPLES (ICS) CRITERIA:

☑ ICS (80-120%)

#### G. DUPLICATE ANALYSES CRITERIA:

- ☑ One spike/sample duplicate per batch of samples
- $\square$  %RPD ± 20% for spike/ sample values greater than 5 X LOQ
- $\square$  {spike/sample  $\pm$  LOQ} when spike/sample values are less than 5 X LOQ

#### H. SPIKED SAMPLES ANALYSES /LCS CRITERIA:

☑ %R within 75-125% range/ 80-120%

#### I. SAMPLE RESULTS CRITERIA:

☑ Samples fall within ICP linear concentration ranges

Revisions: No revisions were required. Prep method 3050B

DAA conducted a limited data validation of the above noted data set using the data package provided by the analyzing laboratory. Data evaluation was conducted using SW-846 (Test Methods for Evaluating Solid Waste-Physical/Chemical Methods, USEPA, SW-846, 3rd Edition-Final Update I, II/IIA and III) method requirements and CLP data validation guidelines (USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994). Validation of this data set is limited to review of items detailed in this data review report.

Validated by:

Date:

Janet C. Frazier
Senior Environmental Scientist
Draper Aden Associates
2206 South Main Street
Blacksburg, Virginia 24060
540-552-0444, jfrazier@daa.com

#### INORGANIC DATA EVALUATION FOR MERCURY-BY COLD VAPOR AA METHOD 7471A

|               |           | BY COLD VAPOR AA METHOD 7471A                                                                                                                                                                                               |
|---------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample ID:    | 8 (11-    | (1-2'), 5GP-1 (9-10'), 5GP-3 (9-10'), 5GP-6 (10-11'), 5GP-8 (7-8'), 5GP-12'), 5 GP-12 (3-4'), 5GP-16 (3-4'), 7GP-1 (1-3'), 7GP-2 (8-12'), 7GP-2 (14.5'), 7GP-3 (10-11'), 7GP-4 (3-4'), 7GP-5 (6-11'), 7GP-8 (5-8'), 7 GP-16 |
| QC Samples:   |           | Lab blanks, Pre-digestion spikes, Duplicates, LCS, Matrix spike/duplicate-7GP5(6-11')                                                                                                                                       |
| Laboratory:   |           | STL, North Canton, OH; SDG A2K040189                                                                                                                                                                                        |
| Does Laborato | ory anal  | yte list correspond to analyte list requested by DAA?                                                                                                                                                                       |
| "☑" denotes i | tems re   | viewed. See Data Validation Summary for additional comments.                                                                                                                                                                |
| <b>A.</b>     | QC D      | OCUMENTATION CRITERIA                                                                                                                                                                                                       |
|               | <b></b> ✓ | Specific LODs for all target analytes Specific LOQs for all target analytes                                                                                                                                                 |
| В.            | METI      | HOD INFORMATION DOCUMENTATION                                                                                                                                                                                               |
|               | Ø         | All target parameters analyzed by requested methods?                                                                                                                                                                        |
| C.            |           | INICAL HOLDING TIMES AND PRESERVATION JIREMENTS:                                                                                                                                                                            |
|               | <b>☑</b>  | 28 Day holding time<br>Cool 4°C                                                                                                                                                                                             |
| D.            | INSTI     | RUMENT CALIBRATION CRITERIA:                                                                                                                                                                                                |

1 calibration blank and 5 standards

Instrument calibrated for every analytical sequence for every method

 $\overline{\mathbf{A}}$ 

 $\checkmark$ 

Page 7 of 10

# E. INITIAL AND CONTINUING CALIBRATION VERIFICATION CRITERIA:

- **☑** 10 sample frequency for CCV
- ☑ %R within 90-110% range

#### F. BLANK SAMPLES ANALYSES CRITERIA:

- NA Trip Blank (check only if analyzed)
- NA Equipment Blank (check only if analyzed)
- Method/other laboratory blanks (check only if analyzed)
- ☑ Interference free
- ☑ CCB 10 sample frequency

#### G. DUPLICATE ANALYSES CRITERIA:

- ☑ One spike/sample duplicate per batch of samples
- $\square$  %RPD ± 20% for spike/sample values greater than 5 X LOQ
- $\square$  {spike/sample  $\pm$  LOQ} when spike/sample values are less than 5 X LOQ

#### H. SPIKED SAMPLES ANALYSES/LCS CRITERIA:

- ☑ Pre-digestion matrix spikes for all analytes
- ☑ %R within 75-125% range/80-120%

#### I. SAMPLE RESULTS CRITERIA:

- Samples fall within calibration concentration range
- J. Revisions: No revisions were required.

Page 8 of 10

DAA conducted a limited data validation of the above noted data set using the data package provided by the analyzing laboratory. Data evaluation was conducted using SW-846 (Test Methods for Evaluating Solid Waste-Physical/Chemical Methods, USEPA, SW-846, 3rd Edition-Final Update I, II/IIA and III) method requirements and CLP data validation guidelines (USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994). Validation of this data set is limited to review of items detailed in this data review report.

Validated by:

Date:

1211/02

Janet C. Frazier

Senior Environmental Scientist

**Draper Aden Associates** 

2206 South Main Street

Blacksburg, Virginia 24060

540-552-0444

jfrazier@daa.com

#### INORGANIC DATA EVALUATION FOR CYANIDE BY METHOD 9012A

Sample ID: 5GP-1 (1-2'), 5GP-1 (9-10'), 5GP-3 (9-10'), 5GP-6 (10-11'), 5GP-8 (7-8'), 5GP-8 (11-12'), 5 GP-12 (3-4'), 5GP-16 (3-4'), 7GP-1 (1-3'), 7GP-2 (8-12'), 7GP-2 (13.5-14.5'), 7GP-3 (10-11'), 7GP-4 (3-4'), 7GP-5 (6-11'), 7GP-8 (5-8'), 7 GP-16 (3-4')

**QC Samples:** 

Lab blanks, Pre-digestion spikes, Duplicates, ICS, LCS, etc.

• Matrix spike/duplicate-7GP5(6-11')

Laboratory:

STL, North Canton, OH; SDG A2K040189

Does Laboratory analyte list correspond to analyte list requested by DAA?

X yes no

"" denotes items reviewed. See Data Validation Summary for additional comments.

#### A. QC DOCUMENTATION CRITERIA

- ☑ Specific LODs for all target analytes
- ☑ Specific LOQs for all target analytes

# B. TECHNICAL HOLDING TIMES AND PRESERVATION REQUIREMENTS CRITERIA:

- ☑ 14 days holding time
- ☑ Cool 4° C

#### C. INSTRUMENT CALIBRATION CRITERIA:

☐ 6 levels plus blank

# D. INITIAL AND CONTINUING CALIBRATION VALIDATION CRITERIA:

- ☑ 20 sample frequency
- ☑ Use of check standard with every batch of samples
- ☑ %R within 85-115% range (+ 15%)

#### E. BLANK SAMPLES ANALYSES CRITERIA:

☑ Interference free

81

### Radford Army Ammunition Plant (RAAP)-Alliant Techsystems Hazardous Waste Management Units 5 and 7 October 31-November 1, 2002 Soil Sampling Event DAA JN: B02271-01

Page 10 of 10

 $\checkmark$ Verification Blank analysis every 20 samples

#### F. **DUPLICATE SAMPLE ANALYSES CRITERIA:**

- ablaOne duplicate for every 20 samples
- %RPD + 20% for sample values greater than 5 times LOQ  $\square$
- abla(Sample  $\pm$  LOO) when values are less than 5 times LOO

#### G. SPIKED SAMPLE ANALYSES CRITERIA:

- One spike for every 20 samples  $\overline{\mathbf{Q}}$
- $\square$ Spikes fall within 85-115% range

#### H. LCS CRITERIA:

abla80-120%

#### SAMPLE RESULTS CRITERIA: I.

Samples fall within calibration concentration range 

DAA conducted a limited data validation of the above noted data set using the data package provided by the analyzing laboratory. Data evaluation was conducted using SW-846 (Test Methods for Evaluating Solid Waste-Physical/Chemical Methods, USEPA, SW-846, 3rd Edition-Final Update I, II/IIA, and III) method requirements and CLP data validation guidelines (USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994). Validation of this data set is limited to review of items detailed in this data review report.

Validated by:

Date: JUR 12-17-02

Janet C. Frazier Senior Environmental Scientist **Draper Aden Associates** 2202 South Main Street Blacksburg, Virginia 24060 540-552-0444 jfrazier@daa.com

Page 1 of 8

#### SW-846 METHODS 8081A VOLATILE DATA REVIEW SUMMARY

Draper Aden Associates (DAA) performed a limited review of the analytical results for the October 31-November 1, 2002 soil sampling event at hazardous waste management units 5 and 7, Radford Army Ammunition Plant (RAAP)/Alliant Techsystems. Soils samples were collected from sixteen sample locations (see page 3 for specific sample identifications). All soil samples were analyzed for twenty-eight (28) pesticides and polychlorinated biphenyls (PCBs) per USEPA Methods 8081A.

Lancaster Laboratories (Lancaster) of Lancaster, Pennsylvania performed the analyses. On behalf of RAAP, Lancaster submitted results to DAA in a final certificate of analysis, which included sample analytical results as well as relevant documentation to validate and verify the results.

The evaluation of laboratories' compliance with Method 8081A and validation of the results was based on a limited review of the following items: quality control (QC) deliverables package, QC history documentation, case narrative, technical holding time and preservation requirements, extraction procedures, instrument calibrations, blank analysis, surrogate spike recoveries, retention time, matrix spike (MS/MSD) analyses, laboratory control samples (LCS), and internal standards requirements, where applicable. A review of all transcriptions from instrument data to sample summary sheets was performed. Specific representative calculations were performed. The following information is intended to summarize data review results and any observed significant deviations from method and/or contractual requirements.

The laboratory received the samples on ice and in good condition with custody seals intact. All technical holding time criteria were met. All sample extraction and analysis holding time criteria were met. All preservation criteria were met.

#### Method 8081A

The original certificate of analysis for Method 8081A was complete in its presentation and the data were of acceptable quality. The data set exhibited the laboratory's ability to achieve the reported limit of quantitation (LOQ) for each target parameter, as outlined by the method detection limit study.

All QC history documentation and QC check sample criteria were met. All initial calibration, calibration verification, breakdown check, blank, surrogate, retention time, MS/MSD and LCS criteria were met.

DAA JN: B02271-01
Page 2 of 8

Sample results were reviewed for transcription errors from the instrument data to the laboratory report and no errors were noted. Deviations from specific quality assurance and quality control criteria that were identified during the review process are summarized below.

Sample analysis by Method 8081A included PCBs. However, since the LCS and MS/MSD samples were not spiked with PCBs, all PCB results were qualified as estimated due to limited availability of quality control data.

All sample results were reported on a dry-weight basis. All samples were florisil cleaned. To obtain a final result within the instrument calibration range, sample dilutions were required, where appropriate.

Target parameters reported above the LOQ remain as reported by the laboratory. All sample results unaffected by the data validation process and/or detected less than their corresponding LOQs were validated and reported as "U" (i.e., not detected above the LOQ). Refer to the attached table titled "Data Validation Report" for a summary of results which required data validation.

DAA JN: B02271-01 Page 3 of 8

# SW-846 METHOD 8081A (ORGANOCHLORINE PESTICIDES/PCBs) GC DATA VALIDATION FOR SOILS

Sample ID: 5GP-1(1-2'), 5GP-1(9-10'), 5GP-6(10-11'), 5GP-3(9-10'), 5GP-8(7-8'), 5GP-8(11-12'), 5GP-16(3-4'), 5GP-12(3-4'), 7GP-1(1-3'), 7GP-2(8-12'), 7GP-2(13.5-14.5'), 7GP-3(10-11'), 7GP-8(5-8'), 7GP-5(6-11'), 7GP-16(3-4'), 7GP-4(3-4')

QC Samples: 7GP-5(6-11') Matrix spike/Matrix spike duplicate, Extraction Blank, LCS

Laboratory: Lancaster Laboratories, Lancaster, PA, SDG RAR01-01

Comments: Method 8081A involves the extraction of samples using SW-846 Method 3550B-ultrasonic extraction. Target parameters are separated and quantified by GC using electron capture detection (ECD). All samples were florisil cleaned.

#### A. QC DELIVERABLES PACKAGE:

| 1. | Was case narrative present and signed by a laboratory        |       |      |
|----|--------------------------------------------------------------|-------|------|
|    | representative?                                              | ☑ YES | □ NO |
| 2. | Was the Chain of Custody present and signed by a laboratory  |       |      |
|    | representative?                                              | ☑ YES | □ NO |
| 3. | Were sample results included for all sample locations?       | ☑ YES | □ NO |
| 4. | Did the laboratory parameter list correspond to project      |       |      |
|    | specific parameter list?                                     | ☑ YES | □ NO |
| 5. | Were the LOQs reported on sample summary sheets supported by |       |      |
|    | the MDL study?                                               | ☑ YES | □ NO |
| 6. | Did the electronic deliverable list the correct LOQs?        | ☑ YES | □ NO |
|    |                                                              |       |      |

Comments: All QC deliverables requirements were met.

#### B. INSTRUMENT QC HISTORY DOCUMENTATION CRITERIA:

| 1. | Was the specific extraction method specified?                   | ☑ YES   |      |
|----|-----------------------------------------------------------------|---------|------|
| 2. | Was documentation of DDT/Endrin breakdown study provided?       | ☑ YES   | □ NO |
| 3. | Were instrument specific LODs for the target parameters provide | d?☑ YES |      |
| 4. | Were instrument specific LOQs for the target parameters provide | d?⊠ YES | □NO  |
| 5. | Were instrument specific working ranges for target              |         |      |
|    | parameters specified?                                           | ☑ YES   | □ NO |
| 6. | Were sample analysis log sheets provided?                       | ☑ YES   | ■ NO |

DAA JN: B02271-01

|    |     |                                                                                                             | Page 4 of 8      |
|----|-----|-------------------------------------------------------------------------------------------------------------|------------------|
|    | 7.  | Were chromatograms and integration reports provided?                                                        | ☑ YES □ NO       |
|    | Com | nments: All instrument QC history criteria were met.                                                        |                  |
| C. |     | ECK SAMPLE CRITERIA: tial Demonstration of Capability)                                                      |                  |
|    | 1.  | Was the check sample data obtained from the instrument that was                                             |                  |
|    |     | used for analysis?                                                                                          | ☑YES □ NO        |
|    | 2.  | Did the check sample contain all required target parameters?                                                | ☑ YES □ NO       |
|    | 3.  | Were the check samples analyzed in quadruplicate?                                                           | ☑ YES □ NO       |
|    | 4.  | Were the average recoveries of the target parameters                                                        |                  |
|    |     | in the check samples reported?                                                                              | ☑ YES ☐ NO       |
|    | 5.  | Were the standard deviations for the recoveries of target                                                   |                  |
|    |     | parameters quadruplicated and reported?                                                                     | ☑ YES □ NO       |
|    | Com | nments: All check sample criteria were met.                                                                 |                  |
| D. | TEC | CHNICAL HOLDING TIME AND PRESERVATION CRITERIA                                                              | <b>A</b> :       |
|    | 1.  | Was the 7-day sample collection to extraction holding time met?                                             | ☑ YES □ NO       |
|    | 2.  | Was the 40-day extraction to analysis holding time met?                                                     | ☑ YES □ NO       |
|    | 3.  | Were the samples received at 4°C (± 2°C)?                                                                   | ☑ YES □ NO       |
|    |     | aments: All preservation criteria were met. All sample extraction and criteria were met.                    | analysis holding |
| E. | INI | TIAL GC CALIBRATION CRITERIA:                                                                               |                  |
|    | 1.  | Were all target parameters included in the ICAL?                                                            | ☑ YES □ NO       |
|    | 2.  | Was a minimum five-point calibration analyzed prior to analysis?                                            | ☑YES □ NO        |
|    | 3.  | Calibration type used by laboratory: External.                                                              |                  |
|    | 4.  | Was the % Relative Standard Deviation (%RSD) for all target                                                 |                  |
|    |     | parameter CFs <20% over the established working range?                                                      | ☑ YES □ NO       |
|    | 5.  | State the Quantitation Method used by the laboratory: Calibration                                           | n Factor.        |
|    | 6.  | List target parameters with a % RSD >20% over the established                                               |                  |
|    |     | working range: <i>None</i> .  Note: Up to 2 target parameters may exceed the 20% criteria, but must be <30% | /                |
|    |     | 1400c. Op to 2 target parameters may exceed the 20% efficial, but must be <30%                              | 0.               |

DAA JN: B02271-01
Page 5 of 8

|    | 7.<br>8.       | Was the lowest concentration calibration standard at or below the LOQ, MCL, regulatory compliance or action limit?   ☐ YES ☐ NO  Were calibration standards dropped to meet calibration criteria? ☐NA☐YES☐ NO |
|----|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | 4,4-I          | ments: All initial calibration criteria were met. The lowest calibration standard for DDD was manually calculated to verify the calibration standard concentration was han the LOQ.                           |
| F. | DDT            | / ENDRIN BREAKDOWN CHECK CRITERIA:                                                                                                                                                                            |
|    | 1.<br>2.       | Was a 4,4'-DDT and Endrin standard analyzed every 12-hours? ☐ YES ☐ NO For every 12-hours, was 4,4'-DDE, 4,4'-DDD, Endrin Ketone or Endrin Aldehyde present which indicated breakdown? ☐ YES ☐ NO             |
|    | 3.             | Was the calculated % breakdown less than 15%? $\square$ NA $\square$ YES $\square$ NO If no, corrective action must be taken before proceeding with analysis.                                                 |
|    | Com            | ments: All DDT/Endrin breakdown criteria were met.                                                                                                                                                            |
| G. | CAL            | IBRATION VERIFICATION CRITERIA:                                                                                                                                                                               |
|    | 1.             | Was a calibration verification (CV) standard performed once every 12-hours?   ☑ YES □ NO                                                                                                                      |
|    | 2.             | Did target parameter responses have a % Difference (%D) within ± 15%? (For chlordane and toxaphene, qualify only 3 peaks).   ✓ YES ☐ NO If no, was a new calibration curve prepared? No.                      |
|    | 3.             | Was a mid-concentration standard analyzed after each group of 20 samples (10 recommended) and at the end of the analytical sequence?   ☑YES □ NO                                                              |
|    | 4.             | Were all target parameters and surrogates included in the CV? ✓ YES ☐ NO                                                                                                                                      |
|    | Com            | ments: All calibration verification criteria were met.                                                                                                                                                        |
| н. | BLA            | NK CRITERIA:                                                                                                                                                                                                  |
|    | 1.<br>2.<br>3. | Was a blank analyzed prior to the batch samples?  Was a blank analyzed after 20 batch samples?  Was an extraction blank analyzed with the batch samples?  □ NA □ YES □ NO  □ YES □ NO                         |

DAA JN: B02271-01

|  |  |  | P | aa | 10 | 6 | Ω | f | R |
|--|--|--|---|----|----|---|---|---|---|
|  |  |  |   | 45 |    | v | v | , | v |

|    | 4<br>5.               | Was a trip blank analyzed per analytical batch? List target parameters identified in the blanks: None.                                                                                              | ☑ YES ☐ NO          |
|----|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|    | Con                   | nments: All blank criteria were met.                                                                                                                                                                |                     |
| I. | SUR                   | RROGATE CRITERIA:                                                                                                                                                                                   |                     |
|    | 1.                    | Were all samples, standards, blanks, and checks spiked with                                                                                                                                         |                     |
|    |                       | at least 2 surrogate parameters for dual column analysis?                                                                                                                                           | Ø YES □ NO          |
|    | 2.                    | List surrogate used and laboratory's surrogate % recovery range criteria: tetrachloro-xylene (TCMX): 40%-130% decachlorobiphenyl (DCBP): 40%-130% 4-chloro-3-nitrobenzotrifluoride (CNBT): 40%-130% |                     |
|    | 3.                    | List samples whose surrogate % recoveries were not within the laboratory range: <i>None</i>                                                                                                         |                     |
|    | Com                   | nments: All surrogate recovery criteria were met.                                                                                                                                                   |                     |
| J. | RET                   | TENTION TIME CRITERIA:                                                                                                                                                                              |                     |
|    | 1.                    | Were the daily Retention Time (RT) windows reported?                                                                                                                                                | ☑ YES □ NO          |
|    | Con                   | aments: All retention time criteria were met.                                                                                                                                                       |                     |
| K. | MA'                   | TRIX SPIKE/ MATRIX SPIKE DUPLICATE CRITERIA:                                                                                                                                                        | :                   |
|    | 1.                    | Was a MS/MSD analyzed per sample                                                                                                                                                                    |                     |
|    | 2.                    | batch or every 20 samples, whichever may occur first?                                                                                                                                               | ☑ YES □ NO          |
|    | 2.<br>3.              | Did the MS/MSD contain required target parameters?                                                                                                                                                  | See comment section |
|    | <i>3</i> . <b>4</b> . | Was the MS/MSD analyzed on the specific project matrix?<br>List laboratory's matrix spike % recovery                                                                                                | ☑ YES □ NO          |
|    |                       | range criteria: 40%-130%, select analytes                                                                                                                                                           |                     |
|    | 5.                    | List matrix spike target parameters not within the recovery range criteria: None                                                                                                                    |                     |
|    | 6.                    | Was a LCS analyzed to address failed matrix spike criteria?                                                                                                                                         | ☑ NA □ YES □ NO     |
|    | 7.                    | Did the LCS for the failed matrix spike                                                                                                                                                             | E MALIES LINO       |

DAA JN: B02271-01

Page 7 of 8

| =      |                                                                                        |                          |
|--------|----------------------------------------------------------------------------------------|--------------------------|
|        | parameter(s) fall within the recovery range criteria                                   |                          |
|        | and was the problem identified as matrix interference?                                 | ☑ NA □ YES □ NO          |
| 8.     | Were any parameters flagged as estimated concentrations?                               |                          |
| 9.     | List parameters flagged as estimated concentrations:                                   |                          |
|        |                                                                                        |                          |
|        | ments: The QC samples were not spiked with PCBs.                                       | All PCB results were     |
| -      | fied as estimated due to insufficient quality control data.                            | All other matrix spike   |
| criter | ia were met.                                                                           |                          |
|        |                                                                                        |                          |
| LAB    | ORATORY CONTROL SAMPLE (LCS) CRITERIA:                                                 |                          |
|        | W. 100: 111: 1                                                                         | E res esta               |
| 1.     | Was a LCS included in the sample analysis?                                             | ☑ YES □ NO               |
| 2.     | Did the LCS contain all required target parameters? select of                          | _                        |
| 3.     | List the LCS parameters and the laboratory's recovery ran See certificate of analysis. | ge criteria.             |
| 4.     | List the LCS parameters not within the recovery range crite                            | eria Nona                |
| 7.     | List the Des parameters not within the recovery range enti-                            | Cila. Ivone.             |
| Com    | ments: The LCS was not spiked with PCBs. All PCB re                                    | esults were qualified as |
|        | ated due to insufficient quality control data. All other LCS d                         | _                        |
|        |                                                                                        |                          |
|        |                                                                                        |                          |
| TAR    | GET PARAMETER IDENTIFICATION:                                                          |                          |
| 1.     | Were the reported parameters within the retention                                      |                          |
|        | time windows?                                                                          | ☑ NA ☐ YES ☐ NO          |
| 2.     | Were retention time shifts observed when compared with                                 |                          |
|        | the last calibration verification?                                                     | ☐ YES ☑ NO               |
| 3.     | Were all reported parameters confirmed?                                                | ☑ YES □ NO               |
| 4.     | Did the initial analysis of any sample have a                                          |                          |
|        | concentration of a target parameter which exceeded                                     |                          |
|        | the instrument calibration range?                                                      | ☑ NA □ YES □ NO          |
| 5.     | Were sample dilutions required?                                                        | ☑ YES ☐ NO               |
| 6.     | Were all parameter concentrations that were recorded                                   |                          |
|        | on the sample quantitation reports accurately transferred                              |                          |
|        | to the sample summary sheets?                                                          | M VES II NO              |

Comments: All target parameter identification criteria were met. The 4,4"-DDD sample result for 7GP-2(8-12") was manually verified and no calculation discrepancy was observed. All results above the LOQ were verified against the instrument data, primary

L.

M.

DAA JN: B02271-01

Page 8 of 8

and confirmation data. For results above the LOQ, the disparity between the results from both columns was acceptable (<40RPD).

#### N. DAA CORRECTIVE ACTION TAKEN AND GENERAL COMMENTS:

**Comments:** No corrective action was taken.

#### LIMITATIONS AND REFERENCES:

Draper Aden Associates conducted a limited data validation for the above noted data set using summary tables and raw data provided by the analyzing laboratory. Data evaluation was conducted in general accordance with SW-846 Method requirements (Test Methods for Evaluating Solid Wastes - Physical and Chemical Methods, USEPA SW-846, 3rd edition - Final Update I, II/IIA and III) and CLP data validation guidelines (USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999). Validation of this data set is limited to the items detailed in this report.

Validated by:

Date:

12-17-02

Janet C. Frazier Senior Environmental Scientist 2206 South Main Street Blacksburg, Virginia 24060 540-552-0444 jfrazier@daa.com

DAA JN: B02271-01

Page 1 of 21

#### METHODS 8260B AND 8270C ORGANIC DATA REVIEW SUMMARY

Draper Aden Associates (DAA) performed a limited review of the analytical results for the October 31-November 1, 2002 soil sampling event at hazardous waste management units 5 and 7, Radford Army Ammunition Plant (RAAP)/Alliant Techsystems, Montgomery County, Virginia. Soil samples were collected from locations 5GP-1 (1-2'), 5GP-1 (9-10'), 5GP-3 (9-10'), 5GP-6 (10-11'), 5GP-8 (7-8'), 5GP-8 (11-12'), 5GP-12 (3-4'), 5GP-16 (3-4'), 7GP-1 (1-3'), 7GP-2 (8-12'), 7GP-2 (13.5-14.5'), 7GP-3 (10-11'), 7GP-4 (3-4'), 7GP-5 (6-11'), 7GP-8 (5-8'), and 7 GP-16 (3-4'). Soil samples were analyzed for the 33 (thirty-three) volatile parameters by Method 8260B and 64 (sixty-four) semivolatile parameters according to Method 8270C.

Lancaster Laboratories (Lancaster) of Lancaster, Pennsylvania performed the GC/MS analysis. Lancaster Laboratories submitted results to DAA in a final certificate of analysis, which included sample analytical results as well as relevant documentation to validate and verify the results.

The evaluation of Lancaster's compliance with Methods 8260B and 8270C and validation of the results was based on a limited review of the following items: QC deliverables package, QC history documentation, case narrative, technical holding time and preservation requirements, instrument performance (tune) check, instrument calibrations, blank analysis, surrogate spike recoveries, matrix spike and matrix spike duplicate (MS/MSD) analyses, laboratory control sample (LCS) data, and internal standard requirements. A review of all transcriptions from instrument data to sample summary sheets was performed. Specific representative calculations were not performed. The following information is intended to summarize data review results and any observed significant deviations from method and/or contractual requirements.

#### Method 8260B

The revised certificate of analysis for Method 8260B appeared complete in its presentation and the data were of acceptable quality. The data set demonstrated the laboratory's ability to achieve the reported LOQ, as outlined by the initial calibration data and the method detection limit study data. The first calibration level was less than the reported LOQ in all cases.

All sample holding time criteria, QC history documentation, instrument performance check (tuning) criteria, initial calibration, blank, and internal standard requirements were met. All sample results were reviewed for transcription errors from the instrument data to the laboratory report and no errors were noted. Deviations from specific quality assurance/quality control (QA/QC) criteria that were identified during the data review process are discussed below.

Samples collected from HWMU 5 on October 31, 2002 were shipped on ice and under chain of custody for overnight delivery to the laboratory. Although samples were packed in ice

DAA JN: B02271-01 Page 2 of 21

for shipment, the Lancaster Laboratories Sample Administration Receipt Documentation Log noted that only bagged ice was present the morning of November 1, 2002. As well, the cooler temperature bottle/blank was recorded as 7°C, which is 1 degree higher than method guidelines of 4°C (± 2°C). Sample results for HWMU-5 may be biased slightly low due to elevated sample storage temperature.

All calibration verification criteria were met except acetone, 2-butanone, 2-hexanone and 1,1,2,2-tetrachloroethane (associated with HWMU-5) and 1,1-dichloroethane (associated with HWMU-7) exceeded validation guidelines for percent drift / difference. Results for these parameter, where appropriate, were qualified as estimated

All surrogate criteria were met except for one slightly low surrogate recovery in sample 5GP-1 (1-2'). Insufficient sample was available for reanalysis. However, the matrix spike analysis for this sample had compliant surrogate recoveries. As per validation guidelines all results were qualified as estimated for this sample.

A MS, LCS and LCS duplicate were performed. Due to limited sample volume a MSD was not performed. All quality control samples were spiked with all parameters of interest. All recoveries and %RPD results, where applicable, were acceptable for all target parameters.

All target parameter identification and quantitation requirements were met. No target parameters were reported above the LOQ in any sample.

All results were reported on a dry weight basis. All sample results unaffected by the data validation process and less than their corresponding LOQs were validated and reported as "U." Refer to the attached table titled "Data Validation Report" for a summary of results which required data validation.

#### Method 8270C

The original certificate of analysis for Method 8270C was complete and the data were of acceptable quality. The data set demonstrated the laboratory's ability to achieve the reported LOQ, as outlined by the initial calibration data as well as the method detection limit study data.

QC history documentation were provided. Sample preservation, instrument performance check (tuning), initial calibration, calibration verification, blank, surrogate, MS/MSD, LCS and internal standard requirements were met. All sample results were reviewed for transcription errors from the instrument data to the laboratory report and no errors were noted. No deviations from specific QA/QC criteria were identified during the data review process.

DAA JN: B02271-01 Page 1 of 21

#### METHODS 8260B AND 8270C ORGANIC DATA REVIEW SUMMARY

Draper Aden Associates (DAA) performed a limited review of the analytical results for the October 31-November 1, 2002 soil sampling event at hazardous waste management units 5 and 7, Radford Army Ammunition Plant (RAAP)/Alliant Techsystems, Montgomery County, Virginia. Soil samples were collected from locations 5GP-1 (1-2'), 5GP-1 (9-10'), 5GP-3 (9-10'), 5GP-6 (10-11'), 5GP-8 (7-8'), 5GP-8 (11-12'), 5 GP-12 (3-4'), 5GP-16 (3-4'), 7GP-1 (1-3'), 7GP-2 (8-12'), 7GP-2 (13.5-14.5'), 7GP-3 (10-11'), 7GP-4 (3-4'), 7GP-5 (6-11'), 7GP-8 (5-8'), and 7 GP-16 (3-4'). Soil samples were analyzed for the 33 (thirty-three) volatile parameters by Method 8260B and 64 (sixty-four) semivolatile parameters according to Method 8270C.

Lancaster Laboratories (Lancaster) of Lancaster, Pennsylvania performed the GC/MS analysis. Lancaster Laboratories submitted results to DAA in a final certificate of analysis, which included sample analytical results as well as relevant documentation to validate and verify the results.

The evaluation of Lancaster's compliance with Methods 8260B and 8270C and validation of the results was based on a limited review of the following items: QC deliverables package, QC history documentation, case narrative, technical holding time and preservation requirements, instrument performance (tune) check, instrument calibrations, blank analysis, surrogate spike recoveries, matrix spike and matrix spike duplicate (MS/MSD) analyses, laboratory control sample (LCS) data, and internal standard requirements. A review of all transcriptions from instrument data to sample summary sheets was performed. Specific representative calculations were not performed. The following information is intended to summarize data review results and any observed significant deviations from method and/or contractual requirements.

#### Method 8260B

The revised certificate of analysis for Method 8260B appeared complete in its presentation and the data were of acceptable quality. The data set demonstrated the laboratory's ability to achieve the reported LOQ, as outlined by the initial calibration data and the method detection limit study data. The first calibration level was less than the reported LOQ in all cases.

All sample holding time criteria, QC history documentation, instrument performance check (tuning) criteria, initial calibration, blank, and internal standard requirements were met. All sample results were reviewed for transcription errors from the instrument data to the laboratory report and no errors were noted. Deviations from specific quality assurance/quality control (QA/QC) criteria that were identified during the data review process are discussed below.

Samples collected from HWMU 5 on October 31, 2002 were shipped on ice and under chain of custody for overnight delivery to the laboratory. Although samples were packed in ice

DAA JN: B02271-01 Page 2 of 21

for shipment, the Lancaster Laboratories Sample Administration Receipt Documentation Log noted that only bagged ice was present the morning of November 1, 2002. As well, the cooler temperature bottle/blank was recorded as 7°C, which is 1 degree higher than method guidelines of 4°C (± 2°C). Sample results for HWMU-5 may be biased slightly low due to elevated sample storage temperature. All other sample preservation criteria were met.

All calibration verification criteria were met except acetone, 2-butanone, 2-hexanone and 1,1,2,2-tetrachloroethane (associated with HWMU-5) and 1,1-dichloroethane (associated with HWMU-7) exceeded validation guidelines for percent drift / difference. Results for these parameters, where appropriate, were qualified as estimated

All surrogate criteria were met except for one slightly low surrogate recovery in sample 5GP-1(1-2'). Insufficient sample was available for reanalysis. However, the matrix spike analysis for this sample had compliant surrogate recoveries. As per validation guidelines, all results were qualified as estimated for this sample.

A MS, LCS and LCS duplicate were performed. Due to limited sample volume a MSD was not performed. All quality control samples were spiked with all parameters of interest. All recoveries and %RPD results, where applicable, were acceptable for all target parameters.

All target parameter identification and quantitation requirements were met. No target parameters were reported above the LOQ in any sample.

All results were reported on a dry weight basis. All sample results unaffected by the data validation process and less than their corresponding LOQs were validated and reported as "U." Refer to the attached table titled "Data Validation Report" for a summary of results which required data validation.

#### Method 8270C

The original certificate of analysis for Method 8270C was complete and the data were of acceptable quality. The data set demonstrated the laboratory's ability to achieve the reported LOQ, as outlined by the initial calibration data as well as the method detection limit study data.

QC history documentation were provided. Sample preservation, instrument performance check (tuning), initial calibration, calibration verification, blank, surrogate, MS/MSD, LCS and internal standard requirements were met. All sample results were reviewed for transcription errors from the instrument data to the laboratory report and no errors were noted. No deviations from specific QA/QC criteria were identified during the data review process.

All target parameter identification and quantitation requirements were met. All results were reported on a dry weight basis. All sample results unaffected by the data validation process and greater than their corresponding LOQs remain as reported by Lancaster Laboratories. All sample results less than their corresponding LOQs were validated and reported as "U." Refer to the attached table titled "Data Validation Report" for a summary of results which required data validation.

Page 4 of 21

#### SW-846 METHOD 8260B (GC/MS) VOLATILE ORGANIC DATA VALIDATION

| HWMU-5<br>Sample ID:        | 5GP-1 (1-2'),<br>5GP-8 (7-8'), | 5GP-1 (9-10'),<br>5GP-8 (11-12'), | 5GP-3 (9-10'),<br>5 GP-12 (3-4'), | 5GP-6 (10-11'),<br>5GP-16 (3-4') |
|-----------------------------|--------------------------------|-----------------------------------|-----------------------------------|----------------------------------|
| <i>HWMU-7</i><br>Sample ID: | 7GP-1 (1-3'),                  | 7GP-2 (8-12'),                    | 7GP-2 (13.5-14.5°),               | 7GP-3 (10-                       |
|                             | 7GP-4 (3-4'),                  | 7GP-5 (6-11'),                    | 7GP-8 (5-8'),                     | 11'),<br>7 GP-16 (3-4')          |

QC Samples:

5GP-1 (1-2')MS, LCS, LCS DUP, Method Blank

7GP-5 (6-11')MS, 7GP-5 (6-11')MSD, LCS, Method Blank

Laboratory:

Lancaster Laboratories, Lancaster PA; SDG RAR01-01

**Comment:** Method 8260B uses a purge and trap system to remove volatile organic target analytes from a 5 gram soil sample (SW-846 5035). Parameters are separated and quantified using a capillary column GC/MS.

#### A. QC DELIVERABLES PACKAGE:

| 1. | Was the case narrative present and signed by a laboratory   |      |              |      |
|----|-------------------------------------------------------------|------|--------------|------|
|    | representative?                                             |      | ☑ YES        |      |
| 2. | Was the Chain of Custody present and signed by a laborator  | ry   |              |      |
|    | representative?                                             |      | <b>☑</b> YES | □ NO |
| 3. | Were the sample results included for all sample locations?  |      | <b>☑</b> YES | □ NO |
| 4. | Did the laboratory parameter list correspond to the project |      |              |      |
|    | specific parameter list?                                    |      | ☑ YES        | □ NO |
| 5. | Did the laboratory parameter list include methylene         |      |              |      |
|    | chloride and vinyl chloride for confirmational analysis?    | ☑ NA | ☐ YES        | □ NO |
| 6. | Were all parameter LOQs reported on sample summary          |      |              |      |
|    | sheets in agreement with the instrument specific MDL study? | ✓NA  | ☐ YES        | ☐ NO |
|    |                                                             |      |              |      |

Comments: All QC deliverables package requirements were met. The MDL study does not list the LOQ. However, all LOQs are supported by an acceptable MDL study. A 1 ppb standard was also analyzed and reported to support limit of detection (LOD) values.

DAA JN: B02271-01
Page 5 of 21

| В. | QC                                                   | HISTORY DOCUMENTATION CRITERIA:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |  |  |  |
|----|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|
|    | 1.                                                   | d<br>☑ YES □ NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |  |  |  |
|    | 2.                                                   | Was the instrument specific working range for each target parameter specified?                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ☑ YES □ NO                                                                             |  |  |  |
|    | 3.                                                   | Was initial demonstration of capability data provided for each target parameter?                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ☑ YES □ NO                                                                             |  |  |  |
|    | Con<br>spec                                          | nments: QC history documentation criteria were met. MDL studific.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | y is laboratory                                                                        |  |  |  |
| C. | TEC                                                  | CHNICAL HOLDING TIME AND PRESERVATION CRITER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IA:                                                                                    |  |  |  |
|    | 1.<br>2.<br>3.                                       | Was the 14-day sample collection to analysis holding time met? Were the samples received at $4^{\circ}C$ ( $\pm 2^{\circ}C$ )? Was the pH of each sample adjusted to $< 2$ with HCl?                                                                                                                                                                                                                                                                                                                                                           | ☑ YES □ NO<br>□ YES ☑ NO<br>NA □ YES □ NO                                              |  |  |  |
|    | Comments: All sample holding time criteria were met. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |  |  |  |
|    | pack<br>Docu<br>2002<br>degree<br>be b               | ples collected from HWMU 5 on October 31, 2002 were shipped of of custody for overnight delivery to the laboratory. Although in ice for shipment, the Lancaster Laboratories Sample Admit amentation Log noted that only bagged ice was present the morning. As well, the cooler temperature bottle/blank was recorded as the energy of the property of the cooler temperature bottle/blank was recorded as the higher than method guidelines of 4°C (± 2°C). Sample results is assed slightly low due to elevated sample storage temperature. | igh samples were inistration Receipt g of November 1, s 7°C, which is 1 for HWMU-5 may |  |  |  |
| D. | GC/                                                  | MS INSTRUMENT PERFORMANCE (TUNING) CHECK CF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RITERIA:                                                                               |  |  |  |
|    | 1.                                                   | Was analysis of the instrument performance check solution performed at the beginning of each 12-hour period during which standards or samples were analyzed?                                                                                                                                                                                                                                                                                                                                                                                   | ☑ YES □ NO                                                                             |  |  |  |
|    | 2.                                                   | Was there documentation of the injection of 5-50 ng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                        |  |  |  |
|    | 3.                                                   | bromofluorobenzene (BFB)? Were all ion abundance criteria met?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ☑ YES □ NO<br>☑ YES □ NO                                                               |  |  |  |
|    | 4.                                                   | Were calibration, blank, and sample analyses performed within 12 hours of tuning?                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ☑ YES □ NO                                                                             |  |  |  |

DAA JN: B02271-01
Page 6 of 21

Comments: All instrument performance check criteria were met.

#### E. INITIAL GC/MS CALIBRATION CRITERIA:

| CHZ           | 0.46 Chitamin                                                                             |                 |
|---------------|-------------------------------------------------------------------------------------------|-----------------|
| 3 <i>w-</i> 0 | Was the internal standard (IS) which was selected for target                              |                 |
|               | parameter RF calculation the IS which had the                                             |                 |
| 2             | closest retention time?                                                                   | ☑ YES □ NO      |
| 2.            | Were all target parameters included in the ICAL?                                          | ☑ YES □ NO      |
| 3.            | Did all ICALs consist of a minimum of 5 calibration levels                                |                 |
| 4.            | Was the lowest concentration calibration standard at or belo                              |                 |
|               | the associated MCL, regulatory compliance, or action limit                                |                 |
| 4.            | Was the calibration curve developed using the same purge v                                |                 |
| _             | used for sample analysis?                                                                 | ☑ YES □ NO      |
| 6.            | Were 8260B SPCC criteria met?                                                             | ☑ YES □ NO      |
|               | - chloromethane (0.100)                                                                   |                 |
|               | - 1,1-dichloroethane (0.100)<br>- bromoform (0.100)                                       |                 |
|               | - 1,1,2,2-tetrachloroethane (0.300)                                                       |                 |
|               | - chlorobenzene (0.300)                                                                   |                 |
| 7.            | Were 8260B CCC criteria met? (%RSD ≤ 30%)                                                 | ☑ YES □ NO      |
|               | - 1,1-dichloroethene                                                                      |                 |
|               | - chloroform                                                                              |                 |
|               | - 1,2-dichloropropane                                                                     |                 |
|               | - toluene                                                                                 |                 |
|               | <ul><li>ethylbenzene</li><li>vinyl chloride</li></ul>                                     |                 |
|               |                                                                                           |                 |
| 8.            | Was each target parameter %RSD ≤ 15%?                                                     | ☐ YES ☑ NO      |
| 9.            | Was the correlation coefficient >0.99 for target parameters                               |                 |
|               | with ≥15 % RSD?                                                                           | □ NA ☑ YES □ NO |
| Meth          | nod Validation Performance Criteria:                                                      |                 |
| 1.            | Did target parameters and surrogates have % RSDs ≤ 15% and >0.99 correlation coefficient? | □NA ☑ YES □ NO  |
|               | (Evaluate RRFs < 0.05 for potential problems.)                                            |                 |

Comments: All initial calibration criteria were met.

Page 7 of 21

#### F. CALIBRATION VERIFICATION CRITERIA:

| •    | T T 7 | 0//  | ~ . |        |
|------|-------|------|-----|--------|
| 20.1 | W-,   | 84 O | Cri | teria: |

| 1. | Was a calibration verification analyzed at the beginning of each 12-hour period following the analysis of the instrument performance check and prior to analysis of the method blank and samples? The calibration verification may be part of the ICAL or analyzed independently during another 12-hour analysis period. | ☑ YES □ NO |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 2. | Were 8260B SPCC criteria met?  - chloromethane (0.100)  - 1,1-dichloroethane (0.100)  - bromoform (0.100)  - 1,1,2,2-tetrachloroethane (0.300)  - chlorobenzene (0.300)                                                                                                                                                  | ☑ YES □ NO |
| 3. | Were 8260B CCC criteria met?  (%Drift or % Difference (%D) within ± 20%)  - 1,1-dichloroethene - chloroform - 1,2-dichloropropane - toluene - ethylbenzene - vinyl chloride                                                                                                                                              | ☑ YES □ NO |

#### Method Validation Performance Criteria:

Did all target parameters and system monitoring parameters
 (surrogates) have the % D within ± 25.0%?
 (Evaluate RRFs < 0.05 for potential problems.)</li>

If "NO", list parameters that exceed these criteria:

HWMU-5

acetone %D = 26% 2- butanone %D = 41% 2-hexanone %D = 35% 1,1,2,2-tetrachloroethane %D = 28%

HWMU-7

1, 1-dichloroethane %D = 26%

DAA JN: B02271-01

Page 8 of 21

| DAA | Contractual | Requirements |  |
|-----|-------------|--------------|--|
|-----|-------------|--------------|--|

- 1. Did all target parameters and system monitoring parameters (surrogates) have % Ds within ± 25.0%? not applicable for this project
- Three parameters may fail to meet maximum % D as long as the % D is within ± 40.0%
   Did the calibration verification meet this criteria? not applicable for this project

Comments: All calibration verification criteria were met except acetone, 2-butanone, 2-hexanone and 1,1,2,2-tetrachloroethane (associated with HWMU-5) and 1,1-dichloroethane (associated with HWMU-7) exceeded validation guidelines for percent drift / difference. Results for these parameter, where appropriate, were qualified as estimated.

#### G. BLANK CRITERIA:

| 1.  | Was a method blank analyzed after the calibration standard  | *             |      |
|-----|-------------------------------------------------------------|---------------|------|
|     | prior to sample analysis, and once for every 12-hour period |               |      |
|     | beginning with the injection of BFB?                        | ☑ YES         |      |
| 2.  | Was a trip blank analyzed with this sample batch?           | $\square$ YES | ☑ NO |
| 3.  | Were the trip blanks and method blanks interference free?   | ☑ YES         | □ NO |
| 4.  | List target parameters detected in the blanks: none         |               |      |
| 5.  | Was the level of blank contamination less than 5% of the M  | ICL           |      |
|     | associated with the analyte?                                | ☑ NA ☐ YES    | □ NO |
| 6.  | Did any samples contain high concentrations of VOCs in ex   | ccess         |      |
|     | of the linear range of the calibration curve?               | ☐ YES         | ☑ NO |
| 7.  | Were one or more blanks analyzed following the high conc    | entration     |      |
|     | sample to prevent cross contamination?                      | ☑ NA□YES      | □ NO |
| Com | smantus. All blonds oritorio vecas mest                     |               |      |
| Com | ments: All blank criteria were met.                         |               |      |
|     |                                                             |               |      |
|     |                                                             |               |      |

#### H. SURROGATE CRITERIA:

| SW-8 | SW-846 Criteria:                    |            |  |  |  |  |  |
|------|-------------------------------------|------------|--|--|--|--|--|
| 1.   | Were the following surrogates used? | ☑ YES □ NO |  |  |  |  |  |
|      | - dibromofluoromethane (80%-120%)   |            |  |  |  |  |  |
|      | - 4-bromofluorobenzene (74%-121%)   |            |  |  |  |  |  |
|      | - toluene-d <sub>8</sub> (81%-117%) |            |  |  |  |  |  |

Page 9 of 21

1,2-dichloroethane-d<sub>4</sub> (80%-120%)

- 2. Were recoveries within the specified ranges? ☐ YES ☑ NO If "NO", corrective action is required. Flagging of the data as estimated is not acceptable until corrective action has been attempted.
- 3. Were samples with surrogates outside the QC window reanalyzed as required?

See comment

Comments: All surrogate criteria were met except for one slightly low surrogate recovery in sample 5GP-1 (1-2'). Insufficient sample was available for reanalysis. However, the matrix spike for this sample had compliant surrogate recoveries. As per validation guidelines, all results were qualified as estimated for this sample. All other surrogate criteria were met.

#### I. MATRIX SPIKE, MATRIX SPIKE DUPLICATE CRITERIA:

(MS/MSD Requirements - CLP Guidelines)

| Parameter          | % R Water | RPD Water |  |
|--------------------|-----------|-----------|--|
| 1,1-dichloroethene | 61-145    | 14        |  |
| trichloroethene    | 71-120    | 14        |  |
| benzene            | 76-127    | 11        |  |
| toluene            | 76-125    | 13        |  |
| chlorobenzene      | 75-130    | 13        |  |

| 1. | Was a matrix spike and matrix spike duplicate (MS/MSD)      | analyzed per sample |
|----|-------------------------------------------------------------|---------------------|
|    | batch or every 20 samples, whichever may occur first?       | See comment         |
| 2. | Did the MS/MSD contain additional target parameters?        | See comment         |
| 3. | Was the MS/MSD analyzed on the specific project matrix?     | See comment         |
| 4. | List matrix spike target parameters not within              |                     |
|    | laboratory recovery ranges: none                            |                     |
| 5. | Was a LCS analyzed to address failed matrix                 |                     |
|    | spike criteria?                                             | See comment         |
| 6. | Did the LCS for the failed matrix spike                     |                     |
|    | parameter(s) fall within the acceptable recovery ranges and |                     |
|    | was the problem identified as matrix interference?          | NA.                 |
| 7. | Were any parameters flagged as estimated concentrations?    | □ NA □ YES ☑ NO     |
| 8. | List parameters flagged as estimated concentrations: none   |                     |

Page 10 of 21

| C | n  | m | m | ρ | n | te |   |
|---|----|---|---|---|---|----|---|
| • | v. |   |   | L | ш | 13 | ٠ |

HWMU-5: Due to limited sample volume, a MSD was not performed. A MS, LCS and LCS Duplicate were performed. These QC samples were spiked with all parameters of interest. All recoveries and %RPD results, where applicable, were acceptable for all target parameters.

|    | _   | et parameters. MU-7: All MS/MSD criteria were met. QC was performed                 | on 7 GP-5(6-11').            |
|----|-----|-------------------------------------------------------------------------------------|------------------------------|
| J. | LAI | BORATORY CONTROL SAMPLE (LCS) CRITERIA:                                             |                              |
|    | 1.  | Was a LCS included in the sample analysis?                                          | ☑ YES □ NO                   |
|    | 2.  | Did the LCS contain all required target parameters?                                 | ☑ YES □ NO                   |
|    | 3.  | List the LCS parameters and the laboratory's acceptable                             |                              |
|    |     | recovery range. See page 37-38 and 137-138 of the volati                            | ile certificate of analysis. |
|    | 4.  | List the LCS parameters that exceeded the acceptable reco                           | overy range. None.           |
|    | Con | nments: All LCS criteria were met.                                                  |                              |
| K. | INT | ERNAL STANDARDS CRITERIA:                                                           |                              |
|    | 1.  | Were the following internal standards used?                                         | 🗹 YES 🗖 NO                   |
|    |     | - fluorobenzene                                                                     |                              |
|    |     | - chlorobenzene-d <sub>5</sub>                                                      |                              |
|    |     | - 1,4-dichlorobenzene-d <sub>4</sub>                                                |                              |
|    | 2.  | Were internal standard areas within - 50% to + 100%                                 |                              |
|    |     | of the last calibration verification?                                               | 🗹 YES 🗖 NO                   |
|    | 3.  | Were internal standard retention times within $\pm 30$                              |                              |
|    | 4.  | seconds of the last calibration verification?                                       | ☑ YES □ NO                   |
|    | 4.  | Were samples failing items 2. and/or 3. above reanalyzed as required by the method? | ☑ NA ☐ YES ☐ NO              |
|    | Con | nments: All internal standard criteria were met.                                    |                              |
| L. | TAI | RGET PARAMETER IDENTIFICATION:                                                      |                              |
|    | 1.  | Were the RRTs of the reported parameters within                                     |                              |
|    |     | ± 0.06 RRT units of the standard RRT?                                               | □ NA ☑ YES □ NO              |
|    | 2.  | Check the sample spectra against the laboratory standard                            | 111 = 120 = 110              |
|    |     | spectra to see that the following criteria were met:                                |                              |

DAA JN: B02271-01 Page 11 of 21

|                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Did characteristic ions maximize in the same scan or we one scan of each other?</li> <li>Were all characteristic ions present in the standard spec present in the sample spectra for</li> </ul>      |                          | ☑ YES          | □ NO  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|-------|--|
|                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>parameters detected above the LOQ?</li> <li>Were the relative intensities of the ions between the standard and sample spectra within ± 30 %?</li> </ul>                                              |                          | ☐ YES<br>☑ YES |       |  |
| 3.                                                                                                                                                                                                                                                                                                                                                                                            | • •                                                                                                                                                                                                           |                          | ✓ YES          |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                               | Were all reported parameters confirmed?                                                                                                                                                                       | ⊔ NA                     | E IES          | LI NO |  |
| Comments: HWMU-5: All target parameter identification criteria were met. Acetone was reported below the LOQ in several samples. No target parameters were reported above the LOQ in any sample. HWMU-7: All target parameter identification criteria were met. 1,1-Dichloroethene was reported below the LOQ in 7GP-16(3-4'). No target parameters were reported above the LOQ in any sample. |                                                                                                                                                                                                               |                          |                |       |  |
| TARG                                                                                                                                                                                                                                                                                                                                                                                          | ET PARAMETER QUANTITATION:                                                                                                                                                                                    |                          |                |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                               | • If the %RSD of a parameter was 15% or less, then the a response factor should have been used for quantitation.                                                                                              | iverage                  | relative       |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                               | • If the %RSD of a parameter was greater than 15%, then should be based on a calibration curve using the first or regression fit of the five calibration points (6 calibration                                | higher                   | order          |       |  |
| 1.                                                                                                                                                                                                                                                                                                                                                                                            | List the detected parameters whose %RSD was >15%: nona. Was the subsequent quantitation based on a linear regression fit?                                                                                     |                          | □ YES          |       |  |
| 2.                                                                                                                                                                                                                                                                                                                                                                                            | b. Was the curve forced through the origin? Did the initial analysis of any sample have a target paramet that exceeded the initial calibration range? -If so, was the sample reanalyzed at a higher dilution? | ☑ NA<br>er conce<br>□ NA | ☐ YES          | □ NO  |  |
| 3.                                                                                                                                                                                                                                                                                                                                                                                            | Were the parameter concentrations that were recorded<br>on the raw sample quantitation reports accurately transferre<br>to the sample summary sheets?                                                         | d                        | ☑ YES          | □ NO  |  |
|                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                               |                          |                |       |  |

Comments: All target parameter quantitation criteria were met.

M.

#### Radford Army Ammunition Plant (RAAP)-Alliant Techsystems Hazardous Waste Management Units (HWMU) 5 and 7 October 31-November 1, 2002 Soil Sampling Event

DAA JN: B02271-01 Page 12 of 21

#### N. LIBRARY SEARCHES:

Comments: Library searches were not requested with this data set.

#### O. DAA CORRECTIVE ACTION TAKEN AND GENERAL COMMENTS:

Comments: DAA requested, and Lancaster Laboratories provided, method detection limit study and initial demonstration of proficiency documentation.

Sample results for HWMU-5 were originally reported on an "as received" basis without dry weight factors. Lancaster Laboratories provided revised sample results including the dry weight factors.

## Radford Army Ammunition Plant (RAAP)-Alliant Techsystems Hazardous Waste Management Units (HWMU) 5 and 7 October 31-November 1, 2002 Soil Sampling Event DAA JN: B02271-01

Page 13 of 21

#### SW-846 METHOD 8270C (GC/MS) SEMIVOLATILE ORGANIC DATA VALIDATION

| Sample ID: | 5GP-1 (1-2'), | 5GP-1 (9-10'),          | 5GP-3 (9-10'),      | 5GP-6 (10-11'), |
|------------|---------------|-------------------------|---------------------|-----------------|
|            | 5GP-8 (7-8'), | 5GP-8 (11-12'),         | 5 GP-12 (3-4'),     | 5GP-16 (3-4')   |
|            | 7GP-1 (1-3'), | 7GP <b>-</b> 2 (8-12'), | 7GP-2 (13.5-14.5'), | 7GP-3 (10-11'), |
|            | 7GP-4 (3-4'). | 7GP-5 (6-11').          | 7GP-8 (5-8'),       | 7 GP-16 (3-4')  |

QC Samples:

7GP-5 (6-11') MS/MSD, LCS, Extraction Blank

Laboratory:

Lancaster Laboratories, Lancaster PA, SDG RAR01-01

Comment: Semivolatile (a.k.a, base/neutral and acid extractables) analysis involves sample preparation using SW-846 Method 3550B-ultrasonic extraction. The semivolatile extracts are concentrated through evaporation. Target analytes are separated and quantified using capillary column GC/MS.

#### A. QC DELIVERABLES PACKAGE:

| 1. | Was the case narrative present and signed by a laboratory representative? | ☑YES □ NO   |
|----|---------------------------------------------------------------------------|-------------|
| 2. | Was the Chain of Custody present and signed by a laboratory               |             |
|    | representative?                                                           | ☑ YES □ NO  |
| 3. | Were the sample results included for all sample locations?                | ☑ YES □ NO  |
| 4. | Did the laboratory parameter list correspond to the project               |             |
|    | specific parameter list?                                                  | ☑ YES □ NO  |
| 5. | Were all parameter LOQs reported on sample summary                        |             |
|    | sheets in agreement with the instrument specific MDL study?               | NA□ YES □NO |

Comments: All QC deliverables package criteria were met. All LOQs were supported by an acceptable MDL study. Additionally, Lancaster Laboratories provided a calibration standard at 1 ppm to verify instrument sensitivity at the LOD level.

#### B. QC HISTORY DOCUMENTATION CRITERIA:

| 1. | Were the instrument specific LODs for target parameters provided? | ☑ YES |     |
|----|-------------------------------------------------------------------|-------|-----|
| 2. | Were the instrument specific LOQs for target parameters provided? | ☑ YES |     |
| 3. | Was the instrument specific calibration range for each target     |       |     |
|    | parameter specified?                                              | ☑ YES | □NO |
| 4. | Was initial demonstration of capability data provided for all     |       |     |

#### Radford Army Ammunition Plant (RAAP)-Alliant Techsystems Hazardous Waste Management Units (HWMU) 5 and 7 October 31-November 1, 2002 Soil Sampling Event

DAA JN: B02271-01 Page 14 of 21

|    |                | target parameters?                                                                                                                                                                                                                                                                                                                                                                                                                      | ☑ YES □ NO                                                                               |
|----|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|    | Com            | aments: All QC history documentation criteria were met.                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                          |
| C. | TEC            | THNICAL HOLDING TIME AND PRESERVATION CRIT                                                                                                                                                                                                                                                                                                                                                                                              | ERIA:                                                                                    |
|    | 1.<br>2.<br>3. | Was the 7-day sample collection to extraction holding time m<br>Was the 40-day extraction to analysis holding time met?<br>Were the samples received at 4°C (± 2°C)?                                                                                                                                                                                                                                                                    | net? ☑ YES □ NO<br>☑ YES □ NO<br>☑ YES □ NO                                              |
|    |                | ments: The sample collection to extraction and extraction to a met. All preservation criteria were met.                                                                                                                                                                                                                                                                                                                                 | nalysis holding times                                                                    |
| Э. |                | MS INSTRUMENT PERFORMANCE CHECK CRITERIA ing, Injection Port And Column Performance)                                                                                                                                                                                                                                                                                                                                                    | <b>:</b>                                                                                 |
|    | 1.             | Was analysis of the instrument performance check solution performed at the beginning of each 12-hour period of                                                                                                                                                                                                                                                                                                                          |                                                                                          |
|    | _              | standard and/or sample analysis?                                                                                                                                                                                                                                                                                                                                                                                                        | ☑ YES □ NO                                                                               |
|    | 2              | Was there documentation of the injection of 50 ng of DFTPP                                                                                                                                                                                                                                                                                                                                                                              | ? MYES □ NO                                                                              |
|    | 2.<br>3.       | Was there documentation of the injection of 50 ng of DFTPP Were all ion abundance criteria met?                                                                                                                                                                                                                                                                                                                                         | ?                                                                                        |
|    |                | Were all ion abundance criteria met? Was the injection port inertness verified by analysis of                                                                                                                                                                                                                                                                                                                                           | ☑ YES □ NO                                                                               |
|    | 3.             | Were all ion abundance criteria met? Was the injection port inertness verified by analysis of 4,4'-DDT?                                                                                                                                                                                                                                                                                                                                 | ☑ YES □ NO<br>☑ YES □ NO                                                                 |
|    | 3.             | Were all ion abundance criteria met?  Was the injection port inertness verified by analysis of 4,4'-DDT?  If no, does associated data require qualification?                                                                                                                                                                                                                                                                            | ☑ YES □ NO                                                                               |
|    | 3.             | Were all ion abundance criteria met?  Was the injection port inertness verified by analysis of 4,4'-DDT?  If no, does associated data require qualification?                                                                                                                                                                                                                                                                            | ☑ YES □ NO ☑ YES □ NO ☑ NA □ YES □ NO □ NA ☑ YES □ NO                                    |
|    | 3.<br>4.       | <ul> <li>Were all ion abundance criteria met?</li> <li>Was the injection port inertness verified by analysis of 4,4'-DDT?</li> <li>If no, does associated data require qualification?</li> <li>Was the injection port inertness check acceptable?</li> <li>Was column performance checked through the analysis of pertailing of pentachlorophenol and benzidine?</li> </ul>                                                             | ☑ YES □ NO ☑ YES □ NO ☑ NA □ YES □ NO □ NA ☑ YES □ NO ak ☑ YES □ NO                      |
|    | 3.<br>4.       | <ul> <li>Were all ion abundance criteria met?</li> <li>Was the injection port inertness verified by analysis of 4,4'-DDT?</li> <li>If no, does associated data require qualification?</li> <li>Was the injection port inertness check acceptable?</li> <li>Was column performance checked through the analysis of pertailing of pentachlorophenol and benzidine?</li> <li>If no, does associated data require qualification?</li> </ul> | ☑ YES □ NO  ☑ YES □ NO  ☑ NA □ YES □ NO □ NA ☑ YES □ NO  ak   ☑ YES □ NO ☑ NA □ YES □ NO |
|    | 3.<br>4.       | <ul> <li>Were all ion abundance criteria met?</li> <li>Was the injection port inertness verified by analysis of 4,4'-DDT?</li> <li>If no, does associated data require qualification?</li> <li>Was the injection port inertness check acceptable?</li> <li>Was column performance checked through the analysis of petailing of pentachlorophenol and benzidine?</li> <li>If no, does associated data require qualification?</li> </ul>  | ☑ YES □ NO ☑ YES □ NO ☑ NA □ YES □ NO □ NA ☑ YES □ NO ak ☑ YES □ NO                      |

#### E. INITIAL GC/MS CALIBRATION CRITERIA:

#### SW-846 Criteria:

1. Were the initial calibrations (ICAL) and any directly associated

#### Radford Army Ammunition Plant (RAAP)-Alliant Techsystems Hazardous Waste Management Units (HWMU) 5 and 7 October 31-November 1, 2002 Soil Sampling Event DAA JN: B02271-01

Page 15 of 21

|     | blanks and samples analyzed within 12-hours of the associate instrument performance (tune) check? | ed ☑ YES □ NO   |
|-----|---------------------------------------------------------------------------------------------------|-----------------|
| 2.  | Were quantitation ions, used and listed on data, randomly                                         |                 |
|     | checked against primary quantitation ions as required by                                          |                 |
|     | Method 8270C and the RFP?                                                                         |                 |
| 3.  | Were all target parameters included in the ICAL?                                                  | ☑ YES □ NO      |
| 4.  | Did the ICAL consist of a minimum of 5 calibration levels?                                        | ☑ YES □ NO      |
| 5.  | Was the lowest concentration calibration standard at or below                                     | W               |
|     | the associated MCL, regulatory compliance, or action limit?                                       | ☑ YES □ NO      |
| 6.  | Were calibration levels removed from the curve that would                                         |                 |
|     | negatively impact the data integrity?                                                             | ☐ YES ☑ NO      |
| 7.  | Were 8270C SPCC criteria met?                                                                     |                 |
|     | (Relative Response Factor-average(RRF) $\geq 0.050$ )                                             | □ NA ☑ YES □ NO |
|     | - N-nitroso-di-n-propylamine                                                                      |                 |
|     | - Hexachlorocyclopentadiene                                                                       |                 |
|     | - 2,4-Dinitrophenol<br>- 4-nitrophenol                                                            |                 |
|     | - 4-muophenoi                                                                                     |                 |
| 8.  | Were 8270C B/N Fraction parameter criteria met?                                                   |                 |
|     | •                                                                                                 | □ NA ☑ YES □ NO |
|     | - acenaphthene                                                                                    |                 |
|     | - 1,4-dichlorobenzene                                                                             |                 |
|     | - hexachlorobutadiene                                                                             |                 |
|     | - N-nitrosodiphenylamine                                                                          |                 |
|     | <ul> <li>Di-n-octyl phthalate</li> <li>fluoranthene</li> </ul>                                    |                 |
|     | - benzo(a)pyrene                                                                                  |                 |
|     | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                            |                 |
| 9.  | Were 8270C Acid Fraction parameter criteria met?                                                  |                 |
|     | (% Relative Standard Deviation (%RSD) ≤ 30%)                                                      | □ NA ☑ YES □ NO |
|     | - 4-chloro-3-methylphenol                                                                         | •               |
|     | - 2,4-dichlorophenol                                                                              |                 |
|     | - 2-nitrophenol                                                                                   |                 |
|     | - phenol - pentachlorophenol                                                                      |                 |
|     | - 2,4,6-trichlorophenol                                                                           |                 |
|     |                                                                                                   |                 |
| 10. | Was each target parameter %RSD ≤ 15%?                                                             |                 |
|     |                                                                                                   | □ NA ☑ YES □ NO |
| 11. | Was the correlation coefficient or coefficient of determination                                   | n               |
|     | >0.99 for target parameters with $\geq$ 15 % RSD                                                  |                 |
|     | (with the exception of SPCC/CCC compounds)?                                                       | ☑ NA ☐ YES ☐ NO |

#### Radford Army Ammunition Plant (RAAP)-Alliant Techsystems Hazardous Waste Management Units (HWMU) 5 and 7 October 31-November 1, 2002 Soil Sampling Event

DAA JN: B02271-01
Page 16 of 21

not applicable for this project

#### Method Validation Performance Criteria:

F.

|      | •                                                                                                                                                                                                                                                   |                         |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 1.   | Did target parameters and surrogates (with the exception of SI CCC compounds)that have % RSDs $\geq$ 15% have >0.99 correlation coefficient or coefficient of determination? (Evaluate RRFs < 0.05 for potential problems.)                         | PCC/<br>□ NA ☑ YES □ NO |
| Comi | ments: All initial calibration criteria were met.                                                                                                                                                                                                   |                         |
|      | performed on October 15, 2002 - Instrument ID HP06754.                                                                                                                                                                                              |                         |
|      |                                                                                                                                                                                                                                                     |                         |
|      | IBRATION VERIFICATION CRITERIA:<br>46 Criteria:                                                                                                                                                                                                     |                         |
| 1.   | Was a calibration verification analyzed at the beginning of each 12-hour period following the analysis of the instrumer performance check and prior to analysis of the method blank a samples? The calibration verification may be part of the ICAL | and                     |
| ^    | or run independently on another 12-hour analysis period.                                                                                                                                                                                            | ☑ YES ☐ NO              |
| 2.   | Were 8270C SPCC criteria met?                                                                                                                                                                                                                       |                         |
| 3.   | (Relative Response Factor (RRF) $\geq 0.050$ )<br>Were all 13 8270C CCC criteria met?                                                                                                                                                               | ☑ YES □ NO              |
| 3.   | (%D within ± 20%)                                                                                                                                                                                                                                   | ☑ YES □ NO              |
|      | Method Validation Performance Criteria:                                                                                                                                                                                                             |                         |
| 1.   | Did all target parameters and system monitoring parameters (surrogates) have % Ds within ± 25.0%? (Evaluate RRFs < 0.05 for potential problems.) If "NO", list parameters that exceed this criterion:                                               | ☑ YES □ NO              |
|      | DAA Contractual Requirements:                                                                                                                                                                                                                       |                         |
| 1.   | Did all target parameters and system monitoring parameters                                                                                                                                                                                          |                         |

2. Five parameters, in each standard mix, may fail to meet maximum % D as long the % D is within ± 40.0%

Did calibration verification meet this criteria? not applicable for this project If "NO", explain.

(surrogates) have % Ds within  $\pm 25.0$ %?

#### Radford Army Ammunition Plant (RAAP)-Alliant Techsystems Hazardous Waste Management Units (HWMU) 5 and 7 October 31-November 1, 2002 Soil Sampling Event

DAA JN: B02271-01
Page 17 of 21

Comments: All calibration verification criteria were met.

| G. | BLA | NK CRITERIA:                                                                |   |
|----|-----|-----------------------------------------------------------------------------|---|
|    | 1.  | Was a method/extraction blank analyzed on each GC/MS system                 |   |
|    |     | used for sample analysis? ☐ YES ☐ NC                                        | ) |
|    | 2.  | Was a trip blank analyzed with this sample batch? ☐ YES ☐ NO                | ) |
|    | 3.  | Were the blank samples interference free?   ✓ YES □ NC                      | ) |
|    | 4.  | Was the level of blank contamination less than                              |   |
|    |     | 5% of the MCL? $\square$ NA $\square$ YES $\square$ NC                      | ) |
|    | 5.  | List target parameters detected in the blanks:                              |   |
|    |     | none                                                                        |   |
|    | Com | nments: All blank criteria were met.                                        |   |
| н. | SUR | ROGATE CRITERIA:                                                            |   |
|    | 1.  | Were the following surrogates used?  ☑ YES □ NO                             | ) |
|    |     | - phenol - d <sub>6</sub> (24%-113%)                                        |   |
|    |     | - 2-fluorophenol (25%-121%)                                                 |   |
|    |     | - 2,4,6-tribromophenol (19%-122%)                                           |   |
|    |     | - nitrobenzene - d <sub>8</sub> (23%-120%)<br>- 2-fluorobiphenyl (25%-121%) |   |
|    |     | - p-terphenyl - $d_{14}$ (18%-137%)                                         |   |
|    | 2.  | Were recoveries within the specified ranges?  ☑ YES ☐ NO                    | ) |
|    | 3.  | Were any two base/neutral or acid surrogates out of                         |   |
|    |     | specification or did any one base/neutral or acid extractable               |   |
|    |     | surrogate have a recovery of less than 10%? □YES ☑ NO                       | ) |
|    |     | If yes, was a reextraction and reanalysis performed to confirm              |   |
|    |     | that the non-compliance was due to sample matrix effects rather             |   |
|    |     | than laboratory deficiencies?                                               | ) |
|    | Com | ments: All surrogate requirements were met. (Lancaster Laboratories used    | 1 |

laboratory derived surrogate limits as suggested by SW-846.)

## Radford Army Ammunition Plant (RAAP)-Alliant Techsystems Hazardous Waste Management Units (HWMU) 5 and 7 October 31-November 1, 2002 Soil Sampling Event DAA JN: B02271-01 Page 18 of 21

#### I. MATRIX SPIKE/ MATRIX SPIKE DUPLICATE CRITERIA:

(MS/MSD Requirements - CLP Guidelines)

| Parameter                  | % R Water | % RPD Water |
|----------------------------|-----------|-------------|
| Phenol                     | 12-110    | 42          |
| 2-Chlorophenol             | 27-123    | 40          |
| N-Nitroso-di-n-propylamine | 41-116    | 38          |
| 4-Chloro-3-methylphenol    | 23-97     | 42          |
| Acenaphthene               | 46-118    | 31          |
| 4-Nitrophenol              | 10-80     | 50          |
| 2,4-Dinitrotoluene         | 24-96     | 38          |
| Pyrene                     | 26-127    | 31          |

| 1.      | Was a matrix spike and matrix spike duplicate (MS/MSD)                  | analyze  | ed per sar | nple   |
|---------|-------------------------------------------------------------------------|----------|------------|--------|
|         | batch or every 20 samples, whichever may occur first?                   |          | ☑ YES      | □ NO   |
| 2.      | Did the MS/MSD spike contain additional target parameters               | ?        | ☐ YES      | ☑ NO   |
| 3.      | Was the MS/MSD analyzed on the specific project matrix?                 |          | ☑ YES      | □ NO   |
| 4.      | List MS/MSD target parameters not within acceptable                     |          |            |        |
|         | laboratory recovery ranges: none                                        |          |            |        |
| 5.      | Was a LCS analyzed to address failed matrix                             |          |            |        |
|         | spike criteria?                                                         | ☑ NA     | ☐ YES      | □NO    |
| 6.      | Did the LCS for the failed matrix spike                                 |          |            |        |
|         | parameter(s) fall within the acceptable recovery ranges and             |          |            |        |
|         | was the problem identified as matrix interference?                      | ☑ NA     | ☐ YES      | □ NO   |
| 7.      | Were any parameters flagged as estimated concentrations?                |          | ☐ YES      | ☑ NO   |
| 8.      | List parameters flagged as estimated concentrations: none               |          |            |        |
| require | nents: MS/MSD analyses were performed on sample 7GP-50 ements were met. | (6-11')  | and all 1  | nethod |
| LABO    | RATORY CONTROL SAMPLE (LCS) CRITERIA:                                   |          |            |        |
| 1.      | Was a LCS included in the sample analysis?                              |          | ☑ YES      | □ NO   |
| 2.      | Did the LCS contain all required target parameters?                     |          | ☑ YES      | □ NO   |
| 3.      | List the LCS target parameters and laboratory recovery rang             | e.       |            |        |
|         | See page 402-403 of the semivolatile certificate of analysis.           |          |            |        |
| 4.      | List the LCS parameters which exceeded the acceptable reco              | overy ra | ange: no   | ne     |
|         | <u>-</u>                                                                | •        | _          |        |

J.

#### Radford Army Ammunition Plant (RAAP)-Alliant Techsystems Hazardous Waste Management Units (HWMU) 5 and 7 October 31-November 1, 2002 Soil Sampling Event

DAA JN: B02271-01
Page 19 of 21

|            | 1. Were the following intern                                                                                                                                                                                                                                                                            | al standards used?                                                                                                                                                                                                           | ☑ YES □ 1                                               |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
|            | <ul> <li>1,4-Dichlorobenzene-d<sub>4</sub></li> <li>Naphthalene-d<sub>8</sub></li> </ul>                                                                                                                                                                                                                |                                                                                                                                                                                                                              |                                                         |
|            | - Acenapththene-d <sub>10</sub>                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                              |                                                         |
|            | - Phenanthrene-d <sub>10</sub>                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |                                                         |
|            | - Chrysene-d <sub>12</sub>                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                              |                                                         |
|            | - Perylene-d <sub>12</sub>                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                              |                                                         |
|            | 2. Were internal standard are                                                                                                                                                                                                                                                                           | eas within ± 50%                                                                                                                                                                                                             |                                                         |
|            | of last calibration verifica                                                                                                                                                                                                                                                                            | == :                                                                                                                                                                                                                         | ☑ YES □ 1                                               |
|            | 3. Were internal standard re-                                                                                                                                                                                                                                                                           | tention times within                                                                                                                                                                                                         |                                                         |
|            | ± 30 seconds of last calib                                                                                                                                                                                                                                                                              | ration verification?                                                                                                                                                                                                         | ☑ YES □ 1                                               |
|            | omments: All internal standard cr                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                              |                                                         |
|            | ARGET PARAMETER IDENTI                                                                                                                                                                                                                                                                                  | FICATION:                                                                                                                                                                                                                    |                                                         |
| TA         |                                                                                                                                                                                                                                                                                                         | FICATION: ed parameters within ± 0.06                                                                                                                                                                                        |                                                         |
| TA         | ARGET PARAMETER IDENTI  Were the RRTs of the reporte  RRT units of the standard RR  Check the sample spectra aga                                                                                                                                                                                        | FICATION: ed parameters within ± 0.06 RT? sinst the laboratory standard                                                                                                                                                      | □ NA ØYES □                                             |
| <b>T</b> A | ARGET PARAMETER IDENTI  Were the RRTs of the reporte RRT units of the standard RR  Check the sample spectra aga spectra to see that the followi                                                                                                                                                         | FICATION:  ed parameters within ± 0.06  CT?  inst the laboratory standard  ng criteria were met:                                                                                                                             | □ NA ØYES □                                             |
| <b>T</b> A | Were the RRTs of the reporter RRT units of the standard RR Check the sample spectra agas spectra to see that the followire.  Did characteristic ions materials.                                                                                                                                         | FICATION:  ed parameters within ± 0.06  CT?  inst the laboratory standard  ng criteria were met:                                                                                                                             | □ NA ☑YES □ 1 within                                    |
| <b>T</b> A | Were the RRTs of the reporter RRT units of the standard RR Check the sample spectra agas spectra to see that the following Did characteristic ions mat one scan of each other?                                                                                                                          | FICATION:  ed parameters within ± 0.06  et?  inst the laboratory standard ng criteria were met:  eximize in the same scan or                                                                                                 | □ NA ☑YES □ 1 within □ NA ☑YES □ 1                      |
| <b>T</b> A | Were the RRTs of the reporter RRT units of the standard RR Check the sample spectra agas spectra to see that the followirg Did characteristic ions may one scan of each other?  Were all characteristic ions                                                                                            | FICATION:  ed parameters within ± 0.06  RT?  sinst the laboratory standard ng criteria were met:  eximize in the same scan or the present in the standard sp                                                                 | □ NA ☑YES □ 1 within □ NA ☑YES □ 1                      |
| <b>T</b> A | Were the RRTs of the reporter RRT units of the standard RR Check the sample spectra agas spectra to see that the followire Did characteristic ions may one scan of each other?  Were all characteristic ion present in the sample spectra.                                                              | FICATION:  ed parameters within ± 0.06  et?  inst the laboratory standard ing criteria were met:  aximize in the same scan or  as present in the standard spectra for                                                        | □ NA ☑YES □ 1 within □ NA ☑YES □ 1 pectra               |
| <b>T</b> A | Were the RRTs of the reporter RRT units of the standard RR Check the sample spectra agas spectra to see that the followi  Did characteristic ions may one scan of each other?  Were all characteristic ion present in the sample spectra agas spectra to see that the following the scan of each other? | FICATION:  ed parameters within ± 0.06 ed?  inst the laboratory standard ng criteria were met: eximize in the same scan or the standard spectra for the LOQ?                                                                 | □ NA ☑YES □ 1 within □ NA ☑YES □ 1 pectra               |
| <b>T</b> A | Were the RRTs of the reporter RRT units of the standard RR Check the sample spectra agas spectra to see that the followire.  Did characteristic ions may one scan of each other?  Were all characteristic ion present in the sample spectra agas spectra to see that the followire.                     | FICATION:  ed parameters within ± 0.06 et?  inst the laboratory standarding criteria were met: eximize in the same scan or es present in the standard spectra for the the LOQ? ies of the ions between the                   | □ NA ☑YES □ 1 within □ NA ☑YES □ 1 pectra □ NA ☑YES □ 1 |
| <b>T</b> A | Were the RRTs of the reporter RRT units of the standard RR Check the sample spectra agas spectra to see that the followi  Did characteristic ions may one scan of each other?  Were all characteristic ion present in the sample spectra agas spectra to see that the following the scan of each other? | FICATION:  ed parameters within ± 0.06  AT?  inst the laboratory standard ng criteria were met:  aximize in the same scan or as present in the standard spectra for the LOQ?  ies of the ions between the tra within ± 30 %? | □ NA ☑YES □ 1 within □ NA ☑YES □ 1                      |

#### M. TARGET PARAMETER QUANTITATION:

- If the %RSD of a parameter was 15% or less, then the average relative response factor should have been used for quantitation.
- If the %RSD of a parameter was greater than 15%, then the quantitation

# Radford Army Ammunition Plant (RAAP)-Alliant Techsystems Hazardous Waste Management Units (HWMU) 5 and 7 October 31-November 1, 2002 Soil Sampling Event DAA JN: B02271-01 Page 20 of 21

should be based on a calibration curve using the first or higher order regression fit of the five calibration points (6 calibration points for 2<sup>nd</sup> order).

| 1.   | List the parameters detected above the LOQ whose %R a. Was the subsequent quantitation based on a linear |                 |
|------|----------------------------------------------------------------------------------------------------------|-----------------|
|      | regression fit?                                                                                          | 🗹 NA 🗆 YES 🗀 NO |
|      | b. Was the curve forced through the origin?                                                              | ☑ NA □YES □ NO  |
| 2.   | Did the initial analysis of any sample have a concentrati                                                | ion of a        |
|      | target parameter that exceeded the initial calibration ran                                               | ige? □ YES ☑ NO |
|      | -If so, was the sample reanalyzed at a higher dilution?                                                  | ☑ NA □ YES □ NO |
| 3.   | Were the parameter concentrations that were recorded                                                     |                 |
| - •  | on the raw sample quantitation reports accurately transf                                                 | erred           |
|      | to the sample summary sheets?                                                                            | ☑ YES □ NO      |
| I IR | RARY SEARCHES:                                                                                           |                 |
| LID  | RARI SEARCHES.                                                                                           |                 |
| Con  | aments: Library searches were not requested with this data                                               | ı set.          |
| DAA  | A CORRECTIVE ACTION TAKEN AND GENERAL                                                                    | COMMENTS:       |
| Con  | ments: No corrective action was required.                                                                |                 |

N.

0.

Page 21 of 21

#### **LIMITATIONS AND REFERENCES:**

Draper Aden Associates conducted data validation of the above noted data set using summary tables and raw data provided by the analyzing laboratory. Data validation was conducted in general accordance with SW-846 Method requirements (Test Methods for Evaluating Solid Wastes - Physical and Chemical Methods, USEPA SW-846, 3rd edition - Final Update I, II/IIA and III) and CLP data validation guidelines (USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, October, 1999). Validation of this data set is limited to the items detailed in this report.

Validated by:

Date:

12-17.02

Praper Aden Associates
Engineering • Surveying • Environmental Services

Jeanie Flint

Environmental Scientist 2206 South Main Street Blacksburg, Virginia 24060 540-552-0444

jlint@daa.com

| Sample ID                     | Analyte  | Laborato<br>Result |   | Validated<br>Result | LOQ   | Validation Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------|----------|--------------------|---|---------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6010B                         |          |                    |   |                     | 10.00 | and the second s |
| 5GP-1(1-2')                   | Aluminum | 19200              | J | 19200               | 24.7  | No action taken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5GP-1(9-10')                  | Aluminum | 12100              | J | 12100               | 23.4  | No action taken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5GP-12(3-4')                  | Aluminum | 19600              | J | 19600               | 25    | No action taken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5GP-16(3-4')                  | Aluminum | 17000              | J | 17000               | 24.8  | No action taken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5GP-3(9-10')                  | Aluminum | 14800              | J | 14800               | 24.4  | No action taken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5GP-6(10-11')                 | Aluminum | 19400              | J | 19400               | 24.2  | No action taken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5GP-8(11-12')                 | Aluminum | 19600              | J | 19600               | 24    | No action taken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5GP-8(7-8')                   | Aluminum | 14200              | J | 14200               | 23.7  | No action taken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7GP-1(1-3')                   | Aluminum | 11100              | J | 11100               | 23.5  | No action taken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7GP-16(3-4')                  | Aluminum | 6650               | J | 6650                | 24.1  | No action taken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7GP-2(13.5-14.5')             | Aluminum | 19700              | J | 19700               | 24.3  | No action taken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7GP-2(8-12')                  | Aluminum | 8790               | J | 8790                | 24.3  | No action taken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7GP-3(10-11')                 | Aluminum | 11700              | J | 11700               | 25.3  | No action taken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7GP-4(3-4')                   | Aluminum | 5290               | J | 5290                | 23.4  | No action taken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 'GP-5(6-11')                  | Aluminum | 20000              | J | 20000               | 24.1  | No action taken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7GP-8(5-8')                   | Aluminum | 22400              | J | 22400               | 24.7  | No action taken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5GP-1(1-2')                   | Antimony | 1.8                | В | Ú J                 | 7.4   | Result < LOQ. Calibration blank contamination. Low matrix spike recovery. Result biased low.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5GP-1(9-10')                  | Antimony | 0.9                | В | U J                 | 7     | Result < LOQ. Calibration blank contamination. Low matrix spike recovery. Result biased low.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5GP-12(3-4')                  | Antimony | 1.6                | В | U J                 | 7.5   | Result < LOQ. Calibration blank contamination. Low matrix spike recovery. Result biased low.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5GP-16(3-4')                  | Antimony | 1.1                | В | U J                 | 7.4   | Result < LOQ. Calibration blank contamination. Low matrix spike recovery. Result biased low.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5GP-3(9-10')                  | Antimony | 1.4                | В | Ŭ J                 | 7.3   | Result < LOQ. Calibration blank contamination. Low matrix spike recovery. Result biased low.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5GP-6(10-11')                 | Antimony | 1.1                | В | U J                 | 7.2   | Result < LOQ. Calibration blank contamination. Low matrix spike recovery. Result biased low.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5GP-8(11-12')                 | Antimony | 1.2                | В | U J                 | 7.2   | Result < LOQ. Calibration blank contamination. Low matrix spike recovery. Result biased low.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5GP-8(7-8')                   | Antimony | 1.1                | В | U J                 | 7.1   | Result < LOQ. Calibration blank contamination. Low matrix spike recovery. Result biased low.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7GP-1(1-3')                   | Antimony | 0.52               | В | U J                 | 7     | Result < LOQ. Calibration blank contamination. Low matrix spike recovery. Result biased low.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7GP-16(3-4')                  | Antimony | 0.59               | В | Ð 1                 | 7.2   | Result < LOQ. Calibration blank contamination. Low matrix spike recovery. Result biased low.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <sup>7</sup> GP-2(13.5-14.5') | Antimony | 1.3                | В | U J                 | 7.3   | Result < LOQ. Calibration blank contamination. Low matrix spike recovery. Result biased low.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Sample ID              | Analyte  | Laboratory<br>Result | , v | alidated<br>Result | LOQ  | Validation Notes                                                                             |
|------------------------|----------|----------------------|-----|--------------------|------|----------------------------------------------------------------------------------------------|
| 7GP-2(8-12')           | Antimony | 1.1 B                | ŭ   | J J                | 7.3  | Result < LOQ. Calibration blank contamination. Low matrix spike recovery. Result biased low. |
| 7GP-3(10-11')          | Antimony | 1.1 B                | ι   | j j                | 7.6  | Result < LOQ. Calibration blank contamination. Low matrix spike recovery. Result biased low. |
| 7GP-4(3-4')            | Antimony | 0.77 B               | L   | J J                | 7    | Result < LOQ. Calibration blank contamination. Low matrix spike recovery. Result biased low. |
| 7GP-5(6-11')           | Antimony | 1 B                  | ι   | J J                | 7.2  | Result < LOQ. Calibration blank contamination. Low matrix spike recovery. Result biased low. |
| 7GP-8(5-8')            | Antimony | 0.8 B                | ι   | J J                | 7.4  | Result < LOQ. Calibration blank contamination. Low matrix spike recovery. Result biased low. |
| 5GP-1(1-2')            | Arsenic  | 2.2                  | 2   | 2                  | 1.2  | No action taken.                                                                             |
| 5GP-1(9-10')           | Arsenic  | 3.9                  | 3   | .9                 | 1.2  | No action taken.                                                                             |
| 5GP-12(3-4')           | Arsenic  | 2.7                  | 2   | .7                 | 1.2  | No action taken.                                                                             |
| 5GP-16(3-4')           | Arsenic  | 4                    | 4   |                    | 1.2  | No action taken.                                                                             |
| 5GP-3(9-10')           | Arsenic  | 2.6                  | 2   | 6                  | 1.2  | No action taken.                                                                             |
| 5GP-6(10-11')          | Arsenic  | 1.6                  | 1   | .6                 | 1.2  | No action taken.                                                                             |
| 5GP-8(11-12')          | Arsenic  | 3.4                  | 3   | .4                 | 1.2  | No action taken.                                                                             |
| 5GP-8(7-8')            | Arsenic  | 4.1                  | 4   | 1.1                | 1.2  | No action taken.                                                                             |
| 7GP-1(1-3')            | Arsenic  | 3.8                  | 3   | 3.8                | 1.2  | No action taken.                                                                             |
| 7GP-16(3- <b>4</b> ')  | Arsenic  | 1 B                  | : 1 | J                  | 1.2  | Result < LOQ.                                                                                |
| 7GP-2(13.5-14.5')      | Arsenic  | 3.1                  | 3   | 3.1                | 1.2  | No action taken.                                                                             |
| 7GP-2(8-12')           | Arsenic  | 2.7                  | 2   | 2.7                | 1.2  | No action taken.                                                                             |
| 7G <b>P-</b> 3(10-11') | Arsenic  | 26.1                 | 2   | 26.1               | 1.3  | No action taken.                                                                             |
| 7GP-4(3-4')            | Arsenic  | 0.96 B               | : t | J                  | 1.2  | Result < LOQ.                                                                                |
| 7GP-5(6-11')           | Arsenic  | 3.5                  | 3   | 3.5                | 1.2  | No action taken.                                                                             |
| 7GP-8(5 <b>-8'</b> )   | Arsenic  | 2.4                  | 2   | 2.4                | 1.2  | No action taken.                                                                             |
| Unit_5_TCLP            | Arsenic  | 0.0091 ј             | Ţ   | J                  | 0.1  | Result < LOQ.                                                                                |
| Unit_7_TCLP            | Arsenic  | 0.0056 ј             | τ   | J                  | 0.1  | Result < LOQ.                                                                                |
| 5GP-1(1-2')            | Barium   | 85.1 J               | 8   | 35.1               | 24.7 | No action taken.                                                                             |
| 5GP-1(9-10')           | Barium   | 47.3 J               | 4   | 17.3               | 23.4 | No action taken.                                                                             |
| 5GP-12(3-4')           | Barium   | 56.2 J               | 5   | 56.2               | 25   | No action taken.                                                                             |
| 5GP-16(3-4')           | Barium   | 51.2 J               | 5   | 51.2               | 24.8 | No action taken.                                                                             |
| 5GP-3(9-10')           | Barium   | 37.2 J               | 3   | 37.2               | 24.4 | No action taken.                                                                             |
| 5GP-6(10-11')          | Barium   | 56.9 J               | 5   | 56.9               | 24.2 | No action taken.                                                                             |
| 5GP-8(11-12')          | Barium   | 61.4 J               | (   | 01.4               | 24   | No action taken.                                                                             |
| 5GP-8(7-8')            | Barium   | 46.1 ј               | 4   | 16.1               | 23.7 | No action taken.                                                                             |

| Sample ID             | Analyte   | Laborator<br>Result | у | Validated<br>Result | LOQ  | Validation Notes |  |
|-----------------------|-----------|---------------------|---|---------------------|------|------------------|--|
| 7GP-1(1-3')           | Barium    | 66.9 ]              |   | 66.9                | 23.5 | No action taken. |  |
| 7GP-16(3-4')          | Barium    | 106 J               |   | 106                 | 24.1 | No action taken. |  |
| 7GP-2(13.5-14.5')     | Barium    | 70.9 j              | Ī | 70.9                | 24.3 | No action taken. |  |
| 7GP-2(8-12')          | Barium    | 40.9 J              | ı | 40.9                | 24.3 | No action taken. |  |
| 7GP-3(10-11')         | Barium    | 229 J               |   | 229                 | 25.3 | No action taken. |  |
| 7GP-4(3-4')           | Barium    | 69.2 J              | i | 69.2                | 23.4 | No action taken. |  |
| 7GP-5(6-11')          | Barium    | 55.6 J              | ī | 55.6                | 24.1 | No action taken. |  |
| 7GP-8(5-8')           | Barium    | 55 J                | ı | 55                  | 24.7 | No action taken. |  |
| Unit_5_TCLP           | Barium    | 0.714               |   | 0.714               | 0.1  | No action taken. |  |
| Unit_7_TCLP           | Barium    | 0.521               |   | 0.521               | 0.1  | No action taken. |  |
| 5GP-1(1-2')           | Beryllium | 0.59 E              | 3 | U                   | 0.62 | Result < LOQ.    |  |
| 5GP-1(9-10')          | Beryllium | 1.1                 |   | 1.1                 | 0.59 | No action taken. |  |
| 5GP-12(3-4')          | Beryllium | 0.55 E              | 3 | U                   | 0.62 | Result < LOQ.    |  |
| 5GP-16(3-4')          | Beryllium | 0.4 E               | 3 | U                   | 0.62 | Result < LOQ.    |  |
| 5GP-3(9-10')          | Beryllium | 0.31 F              | В | U                   | 0.61 | Result < LOQ.    |  |
| 5GP-6(10-11')         | Beryllium | 0.41 E              | В | U                   | 0.6  | Result < LOQ.    |  |
| 5GP-8(11-12')         | Beryllium | 0.81                |   | 0.81                | 0.6  | No action taken. |  |
| 5GP-8(7-8')           | Beryllium | 1.3                 |   | 1.3                 | 0.59 | No action taken. |  |
| 7GP-1(1-3')           | Beryllium | 0.7                 |   | 0.7                 | 0.59 | No action taken. |  |
| 7GP-16(3-4')          | Beryllium | 0.55 E              | В | U                   | 0.6  | Result < LOQ.    |  |
| 7GP-2(13.5-14.5')     | Beryllium | 0.84                |   | 0.84                | 0.61 | No action taken. |  |
| 7GP <b>-</b> 2(8-12') | Beryllium | 1.2                 |   | 1.2                 | 0.61 | No action taken. |  |
| 7GP-3(10-11')         | Beryllium | 1.5                 |   | 1.5                 | 0.63 | No action taken. |  |
| 7GP-4(3-4')           | Beryllium | 0.44 E              | В | U                   | 0.59 | Result < LOQ.    |  |
| 7GP-5(6-11')          | Beryllium | 0.35 E              | В | U                   | 0.6  | Result < LOQ.    |  |
| 7GP-8(5-8')           | Beryllium | 0.41 E              | В | U                   | 0.62 | Result < LOQ.    |  |
| 7GP-1(1-3')           | Cadmium   | 0.027 F             | В | υ                   | 0.59 | Result < LOQ.    |  |
| 7GP-16(3-4')          | Cadmium   | 0.061 г             | В | U                   | 0.6  | Result < LOQ.    |  |
| 7GP-3(10-11')         | Cadmium   | 0.16 д              | В | U                   | 0.63 | Result < LOQ.    |  |
| 5GP-1(1-2')           | Calcium   | 1060                |   | 1060                | 618  | No action taken. |  |
| 5GP-1(9-10')          | Calcium   | 303 I               | В | U                   | 586  | Result < LOQ.    |  |
| 5GP-12(3-4')          | Calcium   | 3200                |   | 3200                | 624  | No action taken. |  |
| GP-16(3-4')           | Calcium   | 1020                |   | 1020                | 620  | No action taken. |  |

| Sample ID         | Analyte_ | Laboratory<br>Result | Validated<br>Result | LOQ | Validation Notes                              |
|-------------------|----------|----------------------|---------------------|-----|-----------------------------------------------|
| 5GP-3(9-10')      | Calcium  | 866                  | 866                 | 609 | No action taken.                              |
| 5GP-6(10-11')     | Calcium  | 9930                 | 9930                | 604 | No action taken.                              |
| 5GP-8(11-12')     | Calcium  | 576 B                | U                   | 599 | Result < LOQ.                                 |
| 5GP-8(7-8')       | Calcium  | 159 B                | U                   | 592 | Result < LOQ.                                 |
| 7GP-1(1-3')       | Calcium  | 7490                 | 7490                | 587 | No action taken.                              |
| 7GP-16(3-4')      | Calcium  | 1230                 | 1230                | 603 | No action taken.                              |
| 7GP-2(13.5-14.5') | Calcium  | 480 B                | υ                   | 608 | Result < LOQ.                                 |
| 7GP-2(8-12')      | Calcium  | 283 B                | U                   | 607 | Result < LOQ.                                 |
| 7GP-3(10-11')     | Calcium  | 28100                | 28100               | 631 | No action taken.                              |
| 7GP-4(3-4')       | Calcium  | 749                  | 749                 | 586 | No action taken.                              |
| 7GP-5(6-11')      | Calcium  | 259 B                | U                   | 602 | Result < LOQ.                                 |
| 7GP-8(5-8')       | Calcium  | 1570                 | 1570                | 618 | No action taken.                              |
| 5GP-1(1-2')       | Chromium | 22.4                 | 22.4 J              | 1.2 | Low matrix spike recovery. Result biased low. |
| 5GP-1(9-10')      | Chromium | 31.7                 | 31.7 J              | 1.2 | Low matrix spike recovery. Result biased low. |
| 5GP-12(3-4')      | Chromium | 27                   | 27 J                | 1.2 | Low matrix spike recovery. Result biased low. |
| 5GP-16(3-4')      | Chromium | 24.4                 | 24.4 J              | 1.2 | Low matrix spike recovery. Result biased low. |
| 5GP-3(9-10')      | Chromium | 22.8                 | 22.8 J              | 1.2 | Low matrix spike recovery. Result biased low. |
| 5GP-6(10-11')     | Chromium | 17.9                 | 17.9 J              | 1.2 | Low matrix spike recovery. Result biased low. |
| 5GP-8(11-12')     | Chromium | 26.9                 | 26.9 J              | 1.2 | Low matrix spike recovery. Result biased low. |
| 5GP-8(7-8')       | Chromium | 21.6                 | 21.6 J              | 1.2 | Low matrix spike recovery. Result biased low. |
| 7GP-1(1-3')       | Chromium | 24.1                 | 24.1 J              | 1.2 | Low matrix spike recovery. Result biased low. |
| 7GP-16(3-4')      | Chromium | 11.5                 | 11.5 J              | 1.2 | Low matrix spike recovery. Result biased low. |
| 7GP-2(13.5-14.5') | Chromium | 22.5                 | 22.5 J              | 1.2 | Low matrix spike recovery. Result biased low. |
| 7GP-2(8-12')      | Chromium | 22                   | 22 J                | 1.2 | Low matrix spike recovery. Result biased low. |
| 7GP-3(10-11')     | Chromium | 32.8                 | 32.8 J              | 1.3 | Low matrix spike recovery. Result biased low. |
| 7GP-4(3-4')       | Chromium | 10.1                 | 10.1 J              | 1.2 | Low matrix spike recovery. Result biased low. |
| 7GP-5(6-11')      | Chromium | 22.8                 | 22.8 J              | 1.2 | Low matrix spike recovery. Result biased low. |
| 7GP-8(5-8')       | Chromium | 20.1                 | 20.1 J              | 1.2 | Low matrix spike recovery. Result biased low. |
| 5GP-1(1-2')       | Cobalt   | 9                    | 9                   | 6.2 | No action taken.                              |
| 5GP-1(9-10')      | Cobalt   | 17.6                 | 17.6                | 5.9 | No action taken.                              |
| 5GP-12(3-4')      | Cobalt   | 9.1                  | 9.1                 | 6.2 | No action taken.                              |
| 5GP-16(3-4')      | Cobalt   | 8.2                  | 8.2                 | 6.2 | No action taken.                              |
| 5GP-3(9-10')      | Cobalt   | 3. <b>2</b> B        | U                   | 6.1 | Result < ŁOQ.                                 |

| Sample ID            | Analyte | Laboratory<br>Result | Validated<br>Result | LOQ         | Validation Notes |  |
|----------------------|---------|----------------------|---------------------|-------------|------------------|--|
| 5GP-6(10-11')        | Cobalt  | 5.5 B                | υ                   | 6           | Result < LOQ.    |  |
| 5GP-8(11-12')        | Cobalt  | 10                   | 10                  | 6           | No action taken. |  |
| 5GP-8(7-8')          | Cobalt  | 11.6                 | 11.6                | 5.9         | No action taken. |  |
| 7GP-1(1-3')          | Cobalt  | 11.5                 | 11.5                | 5.9         | No action taken. |  |
| 7GP-16(3-4')         | Cobalt  | 5.9 B                | U                   | 6           | Result < LOQ.    |  |
| 7GP-2(13.5-14.5')    | Cobalt  | 16.2                 | 16.2                | 6.1         | No action taken. |  |
| 7GP-2(8-12')         | Cobalt  | 12.5                 | 12.5                | 6.1         | No action taken. |  |
| 7GP-3(10-11')        | Cobalt  | 8.1                  | 8.1                 | 6.3         | No action taken. |  |
| 7GP-4(3-4')          | Cobalt  | 5.4 B                | U                   | 5.9         | Result < LOQ.    |  |
| 7GP-5(6-11')         | Cobalt  | 4.5 B                | U                   | 6           | Result < LOQ.    |  |
| 7GP-8(5-8')          | Cobalt  | 5.4 B                | U                   | 6.2         | Result < LOQ.    |  |
| 5GP-1(1-2')          | Соррег  | 13.9                 | 13.9                | 3.1         | No action taken. |  |
| 5GP-1(9-10')         | Copper  | 19.8                 | 19.8                | 2.9         | No action taken. |  |
| 5GP-12(3-4')         | Соррег  | 13.6                 | 13.6                | 3.1         | No action taken. |  |
| 5GP-16(3-4')         | Copper  | 10.6                 | 10.6                | 3.1         | No action taken. |  |
| 5GP-3(9-10')         | Copper  | 9.5                  | 9.5                 | 3           | No action taken. |  |
| 5GP-6(10-11')        | Copper  | 11.6                 | 11.6                | 3           | No action taken. |  |
| 5GP-8(11-12')        | Соррег  | 14.8                 | 14.8                | 3           | No action taken. |  |
| 5GP-8(7 <b>-</b> 8') | Copper  | 16.8                 | 16.8                | 3           | No action taken. |  |
| 7GP-1(1-3')          | Copper  | 22.8                 | 22.8                | 2.9         | No action taken. |  |
| 7GP-16(3-4')         | Соррег  | 5.1                  | 5.1                 | 3           | No action taken. |  |
| 7GP-2(13.5-14.5')    | Соррег  | 14.2                 | 14.2                | 3           | No action taken. |  |
| 7GP-2(8-12')         | Copper  | 22                   | 22                  | 3           | No action taken. |  |
| 7GP-3(10-11')        | Соррег  | 23.2                 | 23.2                | 3. <b>2</b> | No action taken. |  |
| 7G <b>P-4</b> (3-4') | Соррег  | 5.1                  | 5.1                 | 2.9         | No action taken. |  |
| 7GP-5(6-11')         | Соррег  | 10                   | 10                  | 3           | No action taken. |  |
| 7GP-8(5-8')          | Соррег  | 12.7                 | 12.7                | 3.1         | No action takeπ. |  |
| 5GP-1(1-2')          | Iron    | 30700                | 30700               | 12.4        | No action taken. |  |
| 5GP-1(9-10')         | Iron    | 26700                | 26700               | 11.7        | No action taken. |  |
| 5GP-12(3-4')         | Iron    | 33400                | 33400               | 12.5        | No action taken. |  |
| 5GP-16(3-4')         | lron    | 28200                | 28200               | 12.4        | No action taken. |  |
| 5GP-3(9-10')         | lron    | 24400                | 24400               | 12.2        | No action taken. |  |
| 5GP-6(10-11')        | lron    | 22400                | 22400               | 12.1        | No action taken. |  |

| Sample ID         | Analyte   | Laboratory<br>Result | Validated<br>Result | LOQ  | Validation Notes |
|-------------------|-----------|----------------------|---------------------|------|------------------|
| 5GP-8(11-12')     | Iron      | 29000                | 29000               | 12   | No action taken. |
| 5GP-8(7-8')       | Iron      | 28400                | 28400               | 11.8 | No action taken. |
| 7GP-1(1-3')       | Iron      | 19400                | 19400               | 11.7 | No action taken. |
| 7GP-16(3-4')      | Iron      | 10800                | 10800               | 12.1 | No action taken. |
| 7GP-2(13.5-14.5') | Iron      | 29300                | 29300               | 12.2 | No action taken. |
| 7GP-2(8-12')      | Iron      | 23300                | 23300               | 12.1 | No action taken. |
| 7GP-3(10-11')     | Iron      | 15900                | 15900               | 12.6 | No action taken. |
| 7GP-4(3-4')       | Iron      | 9860                 | 9860                | 11.7 | No action taken. |
| 7GP-5(6-11')      | lron      | 23600                | 23600               | 12   | No action taken. |
| 7GP-8(5-8')       | Iron      | 23200                | 23200               | 12.4 | No action taken. |
| 5GP-1(1-2')       | Lead      | 12.9                 | 12.9                | 0.37 | No action taken. |
| 5GP-1(9-10')      | Lead      | 9.8                  | 9.8                 | 0.35 | No action taken. |
| 5GP-12(3-4')      | Lead      | 12.6                 | 12.6                | 0.37 | No action taken. |
| 5GP-16(3-4')      | Lead      | 11.4                 | 11.4                | 0.37 | No action taken. |
| 5GP-3(9-10')      | Lead      | 9.7                  | 9.7                 | 0.37 | No action taken. |
| 5GP-6(10-11')     | Lead      | 11.3                 | 11.3                | 0.36 | No action taken. |
| 5GP-8(11-12')     | Lead      | 9.6                  | 9.6                 | 0.36 | No action taken. |
| 5GP-8(7-8')       | Lead      | 9.6                  | 9.6                 | 0.36 | No action taken. |
| 7GP-1(1-3')       | Lead      | 8.1                  | 8.1                 | 0.35 | No action taken. |
| 7GP-16(3-4')      | Lead      | 5.4                  | 5.4                 | 0.36 | No action taken. |
| 7GP-2(13.5-14.5') | Lead      | 13.6                 | 13.6                | 0.36 | No action taken. |
| 7GP-2(8-12')      | Lead      | 2.8                  | 2.8                 | 0.36 | No action taken. |
| 7GP-3(10-11')     | Lead      | 35.1                 | 35.1                | 0.38 | No action taken. |
| 7GP-4(3-4')       | Lead      | 5.8                  | 5.8                 | 0.35 | No action taken. |
| 7GP-5(6-11')      | Lead      | 11                   | 11                  | 0.36 | No action taken. |
| 7GP-8(5-8')       | Lead      | 10.3                 | 10.3                | 0.37 | No action taken. |
| Unit_5_TCLP       | Lead      | 0.0116 ј             | U                   | 0.1  | Result < LOQ.    |
| 5GP-1(1-2')       | Magnesium | 1530                 | 1530                | 618  | No action taken. |
| 5GP-1(9-10')      | Magnesium | 1730                 | 1730                | 586  | No action taken. |
| 5GP-12(3-4')      | Magnesium | 2200                 | 2200                | 624  | No action taken. |
| 5GP-16(3-4')      | Magnesium | 812                  | 812                 | 620  | No action taken. |
| 5GP-3(9-10')      | Magnesium | 597 B                | U                   | 609  | Result < LOQ.    |
| 5GP-6(10-11')     | Magnesium | 1220                 | 1220                | 604  | No action taken. |

| Sample ID         | Analyte   | Laboratory<br>Result | Validated<br>Result | LOQ | Validation Notes |
|-------------------|-----------|----------------------|---------------------|-----|------------------|
| 5GP-8(11-12')     | Magnesium | 1560                 | 1560                | 599 | No action taken. |
| 5GP-8(7-8')       | Magnesium | 1410                 | 1410                | 592 | No action taken. |
| 7GP-1(1-3')       | Magnesium | 4290                 | 4290                | 587 | No action taken. |
| 7GP-16(3-4')      | Magnesium | 1890                 | 1890                | 603 | No action taken. |
| 7GP-2(13.5-14.5') | Magnesium | 2000                 | 2000                | 608 | No action taken. |
| 7GP-2(8-12')      | Magnesium | 3140                 | 3140                | 607 | No action taken. |
| 7GP-3(10-11')     | Magnesium | 2440                 | 2440                | 631 | No action taken. |
| 7GP-4(3-4')       | Magnesium | 1590                 | 1590                | 586 | No action taken. |
| 7GP-5(6-11')      | Magnesium | 787                  | 787                 | 602 | No action taken. |
| 7GP-8(5-8')       | Magnesium | 1090                 | 1090                | 618 | No action taken. |
| 5GP-1(1-2')       | Manganese | 337                  | 337                 | 1.9 | No action taken. |
| 5GP-1(9-10')      | Manganese | 360                  | 360                 | 1.8 | No action taken. |
| 5GP-12(3-4')      | Manganese | 457                  | 457                 | 1.9 | No action taken. |
| 5GP-16(3-4')      | Manganese | 393                  | 393                 | 1.9 | No action taken. |
| 5GP-3(9-10')      | Manganese | 90.8                 | 90.8                | 1.8 | No action taken. |
| 5GP-6(10-11')     | Manganese | 154                  | 154                 | 1.8 | No action taken. |
| 5GP-8(11-12')     | Manganese | 372                  | 372                 | 1.8 | No action taken. |
| 5GP-8(7-8')       | Manganese | 242                  | 242                 | 1.8 | No action taken. |
| 7GP-1(1-3')       | Manganese | 662                  | 662                 | 1.8 | No action taken. |
| 7GP-16(3-4')      | Manganese | 422                  | 422                 | 1.8 | No action taken. |
| 7GP-2(13.5-14.5') | Manganese | 407                  | 407                 | 1.8 | No action taken. |
| 7GP-2(8-12')      | Manganese | 274                  | 274                 | 1.8 | No action taken. |
| 7GP-3(10-11')     | Manganese | <b>14</b> 5          | 145                 | 1.9 | No action taken. |
| 7GP-4(3-4°)       | Manganese | 292                  | 292                 | 1.8 | No action taken. |
| 7GP-5(6-11')      | Manganese | 187                  | 187                 | 1.8 | No action taken. |
| 7GP-8(5-8')       | Manganese | 280                  | 280                 | 1.9 | No action taken. |
| 5GP-1(1-2')       | Nickel    | 9.4                  | 9.4                 | 4.9 | No action taken. |
| 5GP-1(9-10')      | Nickel    | 19                   | 19                  | 4.7 | No action taken. |
| 5GP-12(3-4')      | Nickel    | 8.2                  | 8.2                 | 5   | No action taken. |
| 5GP-16(3-4')      | Nickel    | 6.3                  | 6.3                 | 5   | No action taken. |
| 5GP-3(9-10')      | Nickel    | 5.3                  | 5.3                 | 4.9 | No action taken. |
| 5GP-6(10-11')     | Nickel    | 7.9                  | 7.9                 | 4.8 | No action taken. |
| GP-8(11-12')      | Nickel    | 11                   | 11                  | 4.8 | No action taken. |
|                   |           |                      |                     |     |                  |

| Sample ID         | Analyte   | Laboratory<br>Result | y<br>      | Validated<br>Result | LOQ  | Validation Notes                              |
|-------------------|-----------|----------------------|------------|---------------------|------|-----------------------------------------------|
| 5GP-8(7-8')       | Nickel    | 10.7                 |            | 10.7                | 4.7  | No action taken.                              |
| 7GP-1(1-3')       | Nickel    | 13.5                 |            | 13.5                | 4.7  | No action taken.                              |
| 7GP-16(3-4')      | Nickel    | 7.7                  |            | 7.7                 | 4.8  | No action taken.                              |
| 7GP-2(13.5-14.5') | Nickel    | 11.4                 |            | 11.4                | 4.9  | No action taken.                              |
| 7GP-2(8-12')      | Nickel    | 21.6                 |            | 21.6                | 4.9  | No action taken.                              |
| 7GP-3(10-11')     | Nickel    | 15.9                 |            | 15.9                | 5.1  | No action taken.                              |
| 7GP-4(3-4')       | Nickel    | 6.3                  |            | 6.3                 | 4.7  | No action taken.                              |
| 7GP-5(6-11')      | Nickel    | 7.2                  |            | 7.2                 | 4.8  | No action taken.                              |
| 7GP-8(5-8')       | Nickel    | 8.5                  |            | 8.5                 | 4.9  | No action taken.                              |
| 5GP-1(1-2')       | Potassium | 1580 ј               |            | 1580                | 618  | No action taken.                              |
| 5GP-1(9-10')      | Potassium | 851 ј                |            | 851                 | 586  | No action taken.                              |
| 5GP-12(3-4')      | Potassium | 915 <b>j</b>         |            | 915                 | 624  | No action taken.                              |
| 5GP-16(3-4')      | Potassium | 561 B                | 3 J        | U                   | 620  | Result < LOQ.                                 |
| 5GP-3(9-10')      | Potassium | 500 B                | 3 <b>J</b> | U                   | 609  | Result < LOQ.                                 |
| 5GP-6(10-11')     | Potassium | 1120 ј               |            | 1120                | 604  | No action taken.                              |
| 5GP-8(11-12')     | Potassium | 1420 ј               |            | 1420                | 599  | No action taken.                              |
| 5GP-8(7-8')       | Potassium | 1090 <b>J</b>        |            | 1090                | 592  | No action taken.                              |
| 7GP-1(1-3')       | Potassium | 774 ј                |            | 774                 | 587  | No action taken.                              |
| 7GP-16(3-4')      | Potassium | 809 J                |            | 809                 | 603  | No action taken.                              |
| 7GP-2(13.5-14.5') | Potassium | 1390 ј               |            | 1390                | 608  | No action taken.                              |
| 7GP-2(8-12')      | Potassium | 1070 <b>J</b>        | ı          | 1070                | 607  | No action taken.                              |
| 7GP-3(10-11')     | Potassium | 2970 ј               | ī          | 2970                | 631  | No action taken.                              |
| 7GP-4(3-4')       | Potassium | 729 J                |            | 729                 | 586  | No action taken.                              |
| 7GP-5(6-11')      | Potassium | 732 J                | ī          | 732                 | 602  | No action taken.                              |
| 7GP-8(5-8')       | Potassium | 1040 ј               | ī          | 1040                | 618  | No action taken.                              |
| 7GP-3(10-11')     | Selenium  | 3.5                  |            | 3.5                 | 0.63 | No action taken.                              |
| 5GP-6(10-11')     | Sodium    | 80.8 E               | 3          | U                   | 604  | Result < LOQ.                                 |
| 7GP-3(10-11')     | Sodium    | 156 E                | 3          | U                   | 631  | Result < LOQ.                                 |
| 7GP-16(3-4')      | Thallium  | 0.7 E                | 3          | U                   | 1.2  | Result < LOQ.                                 |
| 5GP-1(1-2')       | Vanadium  | 64.9                 |            | 64.9 J              | 6.2  | Low matrix spike recovery. Result biased low. |
| 5GP-1(9-10')      | Vanadium  | 32                   |            | 32 J                | 5.9  | Low matrix spike recovery. Result biased low. |
| 5GP-12(3-4')      | Vanadium  | 61.8                 |            | 61.8 J              | 6.2  | Low matrix spike recovery. Result biased low. |
| 5GP-16(3-4')      | Vanadium  | 55.4                 |            | 55.4 J              | 6.2  | Low matrix spike recovery. Result biased low. |

Data Validation Report. All soil results in mg/kg/dry weight basis.

| Sample ID         | Analyte  | Laboratory<br>Result | Validated<br>Result | LOQ         | Validation Notes                              |
|-------------------|----------|----------------------|---------------------|-------------|-----------------------------------------------|
| 5GP-3(9-10')      | Vanadium | 54.3                 | 54.3 J              | 6.1         | Low matrix spike recovery. Result biased low. |
| 5GP-6(10-11')     | Vanadium | 57.5                 | 57.5 J              | 6           | Low matrix spike recovery. Result biased low. |
| 5GP-8(11-12')     | Vanadium | 55.2                 | 55.2 J              | 6           | Low matrix spike recovery. Result biased low. |
| 5GP-8(7-8')       | Vanadium | 26.7                 | 26.7 J              | 5.9         | Low matrix spike recovery. Result biased low. |
| 7GP-1(1-3')       | Vanadium | 28                   | 28 J                | 5.9         | Low matrix spike recovery. Result biased low. |
| 7GP-16(3-4')      | Vanadium | 15.4                 | 15.4 J              | 6           | Low matrix spike recovery. Result biased low. |
| 7GP-2(13.5-14.5') | Vanadium | 57.7                 | 57.7 J              | 6.1         | Low matrix spike recovery. Result biased low. |
| 7GP-2(8-12')      | Vanadium | 21.1                 | 21.1 J              | 6.1         | Low matrix spike recovery. Result biased low. |
| 7GP-3(10-11')     | Vanadium | 42.1                 | 42.1 J              | 6.3         | Low matrix spike recovery. Result biased low. |
| 7GP-4(3-4')       | Vanadium | 14                   | 14 J                | 5.9         | Low matrix spike recovery. Result biased low. |
| 7GP-5(6-11')      | Vanadium | 60.6                 | 60.6 J              | 6           | Low matrix spike recovery. Result biased low. |
| 7GP-8(5-8')       | Vanadium | 61.8                 | 61.8 J              | 6.2         | Low matrix spike recovery. Result biased low. |
| 5GP-1(1-2')       | Zinc     | 35.3                 | 35.3                | 2.5         | No action taken.                              |
| 5GP-1(9-10')      | Zinc     | 20.7                 | 20.7                | 2.3         | No action taken.                              |
| 5GP-12(3-4')      | Zinc     | 32.1                 | 32.1                | 2.5         | No action taken.                              |
| 5GP-16(3-4')      | Zinc     | 20.2                 | 20.2                | 2.5         | No action taken.                              |
| 5GP-3(9-10')      | Zinc     | 18.6                 | 18.6                | 2.4         | No action taken.                              |
| 5GP-6(10-11')     | Zinc     | 26.4                 | 26.4                | 2.4         | No action taken.                              |
| 5GP-8(11-12')     | Zinc     | 33.8                 | 33.8                | 2.4         | No action taken.                              |
| 5GP-8(7-8')       | Zinc     | 23.9                 | 23.9                | 2.4         | No action taken.                              |
| 7GP-1(1-3')       | Zinc     | 17.4                 | 17.4                | 2.3         | No action taken.                              |
| 7GP-16(3-4')      | Zinc     | 39.7                 | 39.7                | 2.4         | No action taken.                              |
| 7GP-2(13.5-14.5') | Zinc     | 32.6                 | 32.6                | 2.4         | No action taken.                              |
| 7GP-2(8-12')      | Zinc     | 15                   | 15                  | 2.4         | No action taken.                              |
| 7GP-3(10-11')     | Zinc     | 33.8                 | 33.8                | <b>2</b> .5 | No action taken.                              |
| 7GP-4(3-4')       | Zinc     | 35                   | 35                  | 2.3         | No action taken.                              |
| 7GP-5(6-11')      | Zinc     | 24.2                 | 24.2                | 2.4         | No action taken.                              |
| 7GP-8(5-8')       | Zinc     | 28.1                 | 28.1                | 2.5         | No action taken.                              |

| Sample ID         | Analyte | Laboratory<br>Result | Validated<br>Result | LOQ  | Validation Notes |
|-------------------|---------|----------------------|---------------------|------|------------------|
| 7471A             |         | And the second       |                     |      |                  |
| 5GP-1(1-2')       | Mercury | 0.048 B              | U                   | 0.12 | Result < LOQ.    |
| 5GP-1(9-10')      | Mercury | 0.12 U               | U                   | 0.12 | Result < LOQ.    |
| 5GP-12(3-4')      | Mercury | 0.049 B              | U                   | 0.12 | Result < LOQ.    |
| 5GP-16(3-4')      | Mercury | 0.07 B               | U                   | 0.12 | Result < LOQ.    |
| 5GP-3(9-10')      | Мегсигу | 0.057 B              | U                   | 0.12 | Result < LOQ.    |
| 5GP-6(10-11')     | Mercury | 0.043 B              | υ                   | 0.12 | Result < LOQ.    |
| 5GP-8(11-12')     | Mercury | 0.057 B              | U                   | 0.12 | Result < LOQ.    |
| 5GP-8(7-8')       | Mercury | 0.023 B              | U                   | 0.12 | Result < LOQ.    |
| 7GP-1(1-3')       | Mercury | 0.026 B              | U                   | 0.12 | Result < LOQ.    |
| 7GP-16(3-4')      | Mercury | 0.12 U               | U                   | 0.12 | Result < LOQ.    |
| 7GP-2(13.5-14.5') | Mercury | 0.05 B               | U                   | 0.12 | Result < LOQ.    |
| 7GP-2(8-12')      | Mercury | 0.12 U               | U                   | 0.12 | Result < LOQ.    |
| 7GP-3(10-11')     | Mercury | 0.04 B               | U                   | 0.13 | Result < LOQ.    |
| 7GP-4(3-4')       | Mercury | 0.12 U               | U                   | 0.12 | Result < LOQ.    |
| 7GP-5(6-11')      | Mercury | 0.1 B                | U                   | 0.12 | Result < LOQ.    |
| 7GP-8(5-8')       | Mercury | 0.061 B              | U                   | 0.12 | Result < LOQ.    |

Event Date: 10/31/02-11/1/02 Data Validation Report. All soil results in mg/kg/dry weight basis. Alliant-Hazardous Waste Management Unit 5 and 7

| Sample ID         | Analyte      | Laboratory<br>Result |   | γ Sajj | Validated<br>Result LC | Loa   | Validation Notes                                                                |
|-------------------|--------------|----------------------|---|--------|------------------------|-------|---------------------------------------------------------------------------------|
| 80814/8082        |              |                      |   |        |                        |       |                                                                                 |
| 5GP-1(1-2')       | Aroclor-1016 | 0.0055               | n | Ω      |                        | 0.019 | Analyte not detected. Estimated due limited QC information.                     |
| 5GP-1(9-10')      | Aroclor-1016 | 0.0056               | Ω | Ω      | J 0.                   | 0.02  | Analyte not detected. Estimated due limited QC information.                     |
| 5GP-12(3-4')      | Aroclor-1016 | 0.0057               | Ω | Ω      | .0 Ł                   | 0.02  | Analyte not detected. Estimated due limited $\mathbb{Q}\mathbb{C}$ information. |
| 5GP-16(3-4')      | Aroclor-1016 | 0.0058               | Ω | n      | J 0.                   | 0.021 | Analyte not detected. Estimated due limited $QC$ information.                   |
| 5GP-3(9-10')      | Aroclor-1016 | 0.0058               | n | Ω      | J 0.                   | 0.021 | Analyte not detected. Estimated due limited QC information.                     |
| 5GP-6(10-11')     | Aroclor-1016 | 0.0055               | Ω | Ω      | J 0.                   | 0.019 | Analyte not detected. Estimated due limited QC information.                     |
| 5GP-8(11-12')     | Aroclor-1016 | 0.0056               | Ω | Ω      | J 0.                   | 0.02  | Analyte not detected. Estimated due limited QC information.                     |
| 5GP-8(7-8')       | Aroclor-1016 | 0.0056               | Ω | Ω      | J 0.                   | 0.02  | Analyte not detected. Estimated due limited $\mathbb{Q}\mathbb{C}$ information. |
| 7GP-1(1-3')       | Aroclor-1016 | 0.0056               | n | Ω      | J 0.                   | 0.02  | Analyte not detected. Estimated due limited $\mathbb{Q}\mathbb{C}$ information. |
| 7GP-16(3-4')      | Aroclor-1016 | 0.0057               | Ω | Ω      | .0 <b>f</b>            | 0.02  | Analyte not detected. Estimated due limited QC information.                     |
| 7GP-2(13.5-14.5') | Aroclor-1016 | 0.0058               | n | )      | J 0.                   | 0.021 | Analyte not detected. Estimated due limited $\mathbb{Q}\mathbb{C}$ information. |
| 7GP-2(8-12')      | Aroclor-1016 | 0.0057               | Ω | n      | J 0.                   | 0.02  | Analyte not detected. Estimated due limited $\mathbb{Q}\mathbb{C}$ information. |
| 7GP-3(10-11')     | Aroclor-1016 | 0.0061               | n | n      | J 0.                   | 0.021 | Analyte not detected. Estimated due limited QC information.                     |
| 7GP-4(3-4')       | Aroclor-1016 | 0.0056               | n | n      | ·0                     | 0.02  | Analyte not detected. Estimated due limited $\mathbb{Q}\mathbb{C}$ information. |
| 7GP-5(6-11')      | Aroclor-1016 | 0.0057               | n | Ω      | J 0.                   | 0.02  | Analyte not detected. Estimated due limited $QC$ information.                   |
| 7GP-8(5-8')       | Aroclor-1016 | 0.0058               | n | n      | ٥.                     | 0.021 | Analyte not detected. Estimated due limited QC information.                     |
| 5GP-1(1-2')       | Aroclor-1221 | 0.011                | n | D      | J 0.                   | 0.034 | Analyte not detected. Estimated due limited QC information.                     |
| 5GP-1(9-10')      | Aroclor-1221 | 0.012                | n | n      | .0                     | 0.035 | Analyte not detected. Estimated due limited QC information.                     |
| 5GP-12(3-4')      | Aroclor-1221 | 0.012                | n | n      | .0 J                   | 0.036 | Analyte not detected. Estimated due limited $QC$ information.                   |
| 5GP-16(3-4")      | Aroclor-1221 | 0.012                | n | n      | J 0.                   | 0.037 | Analyte not detected. Estimated due limited QC information.                     |
| 5GP-3(9-10°)      | Aroclor-1221 | 0.012                | D | n n    | J 0                    | 0.636 | Analyte not detected. Estimated due limited $QC$ information.                   |
| 3GP-6(10-11')     | Atoclor-1221 | 0.011                | Ω | n      | J 0.                   | 0.034 | Analyte not detected. Estimated due limited QC information.                     |



| Sample ID         | Analyte      | Laboratory<br>Result | Validated<br>Result | LOQ   | Validation Notes                                            |
|-------------------|--------------|----------------------|---------------------|-------|-------------------------------------------------------------|
| 5GP-8(11-12')     | Aroclor-1221 | 0.012 U              | U J                 | 0.035 | Analyte not detected. Estimated due limited QC information. |
| 5GP-8(7-8')       | Aroclor-1221 | 0.012 U              | U J                 | 0.035 | Analyte not detected. Estimated due limited QC information. |
| 7GP-1(1-3')       | Aroclor-1221 | 0.012 U              | U J                 | 0.035 | Analyte not detected. Estimated due limited QC information. |
| 7GP-16(3-4')      | Aroclor-1221 | 0.012 U              | U J                 | 0.036 | Analyte not detected. Estimated due limited QC information. |
| 7GP-2(13.5-14.5') | Aroclor-1221 | 0.012 U              | U J                 | 0.036 | Analyte not detected. Estimated due limited QC information. |
| 7GP-2(8-12')      | Aroclor-1221 | 0.012 U              | U J                 | 0.036 | Analyte not detected. Estimated due limited QC information. |
| 7GP-3(10-11')     | Aroclor-1221 | 0.013 U              | U J                 | 0.038 | Analyte not detected. Estimated due limited QC information. |
| 7GP-4(3-4')       | Aroclor-1221 | 0.012 U              | U J                 | 0.035 | Analyte not detected. Estimated due limited QC information. |
| 7GP-5(6-11')      | Aroclor-1221 | 0.012 U              | U J                 | 0.036 | Analyte not detected. Estimated due limited QC information. |
| 7GP-8(5-8')       | Aroclor-1221 | 0.012 U              | U J                 | 0.036 | Analyte not detected. Estimated due limited QC information. |
| GP-1(1-2')        | Aroclor-1232 | 0.0049 U             | U J                 | 0.019 | Analyte not detected. Estimated due limited QC information. |
| 5GP-1(9-10')      | Aroclor-1232 | 0.005 U              | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 5GP-12(3-4')      | Aroclor-1232 | 0.0051 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 5GP-16(3-4')      | Aroclor-1232 | 0.0052 U             | U J                 | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 5GP-3(9-10')      | Aroclor-1232 | 0.0052 U             | U J                 | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 5GP-6(10-11')     | Aroclor-1232 | 0.0049 U             | U J                 | 0.019 | Analyte not detected. Estimated due limited QC information. |
| 5GP-8(11-12')     | Aroclor-1232 | 0.005 U              | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 5GP-8(7-8')       | Aroclor-1232 | 0.005 U              | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-1(1-3')       | Aroclor-1232 | 0.0 <b>0</b> 5 U     | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 'GP-16(3-4')      | Aroclor-1232 | 0.0051 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 'GP-2(13.5-14.5') | Aroclor-1232 | 0.0052 υ             | U J                 | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 'GP-2(8-12')      | Aroclor-1232 | 0.0051 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
|                   |              |                      |                     |       |                                                             |

| Sample ID         | Analyte      | Laboratory<br>Result | Validated<br>Result | LOQ   | Validation Notes                                            |
|-------------------|--------------|----------------------|---------------------|-------|-------------------------------------------------------------|
| 7GP-3(10-11')     | Aroclor-1232 | 0.0054 U             | U J                 | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 7GP-4(3-4')       | Aroclor-1232 | 0.005 U              | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-5(6-11')      | Aroclor-1232 | 0.0051 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-8(5-8')       | Aroclor-1232 | 0.0052 U             | U J                 | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 5GP-1(1-2')       | Aroclor-1242 | 0.0057 U             | U J                 | 0.019 | Analyte not detected. Estimated due limited QC information. |
| 5GP-1(9-10')      | Aroclor-1242 | 0.0059 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 5GP-12(3-4')      | Aroclor-1242 | 0.006 U              | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 5GP-16(3-4')      | Aroclor-1242 | 0.0061 U             | U J                 | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 5GP-3(9-10')      | Aroclor-1242 | 0.006 U              | U J                 | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 5GP-6(10-11')     | Aroclor-1242 | 0.0057 U             | U J                 | 0.019 | Analyte not detected. Estimated due limited QC information. |
| 5GP-8(11-12')     | Aroclor-1242 | 0.0058 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 5GP-8(7-8')       | Aroclor-1242 | 0.0059 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-1(1-3')       | Aroclor-1242 | 0.0058 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-16(3-4')      | Aroclor-1242 | 0.006 U              | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-2(13.5-14.5') | Aroclor-1242 | 0.006 U              | U J                 | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 7GP-2(8-12')      | Aroclor-1242 | 0.0059 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-3(10-11')     | Aroclor-1242 | 0. <b>0063</b> U     | U J                 | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 7GP-4(3-4')       | Aroclor-1242 | 0.0059 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-5(6-11')      | Aroclor-1242 | 0.006 U              | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-8(5-8')       | Aroclor-1242 | 0.0 <b>0</b> 61 U    | U J                 | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 5GP-1(1-2')       | Aroclor-1248 | 0.0056 U             | U J                 | 0.019 | Analyte not detected. Estimated due limited QC information. |
| 5GP-1(9-10')      | Aroclor-1248 | 0.0057 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |

| Sample ID         | Analyte      | Laboratory<br>Result | Validated<br>Result | LOQ   | Validation Notes                                            |
|-------------------|--------------|----------------------|---------------------|-------|-------------------------------------------------------------|
| 5GP-12(3-4')      | Aroclor-1248 | 0.0059 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 5GP-16(3-4')      | Aroclor-1248 | 0.006 υ              | U J                 | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 5GP-3(9-10')      | Aroclor-1248 | 0.0059 U             | U J                 | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 5GP-6(10-11')     | Aroclor-1248 | 0.0056 U             | U J                 | 0.019 | Analyte not detected. Estimated due limited QC information. |
| 5GP-8(11-12')     | Aroclor-1248 | 0.0057 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 5GP-8(7-8')       | Aroclor-1248 | 0.0057 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-1(1-3')       | Aroclor-1248 | 0.0057 υ             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-16(3-4')      | Aroclor-1248 | 0.0059 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-2(13.5-14.5') | Aroclor-1248 | 0.0059 U             | U J                 | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 7GP-2(8-12')      | Aroclor-1248 | 0.0058 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-3(10-11')     | Aroclor-1248 | 0.0062 U             | U J                 | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 7GP-4(3-4')       | Aroclor-1248 | 0.0057 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-5(6-11')      | Aroclor-1248 | 0.0058 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-8(5-8')       | Aroclor-1248 | 0.006 U              | U J                 | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 5GP-1(1-2')       | Aroclor-1254 | 0.0065 U             | U J                 | 0.019 | Analyte not detected. Estimated due limited QC information. |
| 5GP-1(9-10')      | Aroclor-1254 | 0.0067 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 5GP-12(3-4')      | Aroclor-1254 | 0.0068 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 5GP-16(3-4')      | Aroclor-1254 | 0.0069 U             | U J                 | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 5GP-3(9-10')      | Aroclor-1254 | 0.0069 U             | U J                 | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 5GP-6(10-11')     | Aroclor-1254 | 0.0065 U             | U J                 | 0.019 | Analyte not detected. Estimated due limited QC information. |
| 5GP-8(11-12')     | Aroclor-1254 | 0.0067 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 5GP-8(7-8')       | Aroclor-1254 | 0.0067 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |

| Sample ID         | Analyte      | Laboratory<br>Result | Validated<br>Result | LOQ   | Validation Notes                                            |
|-------------------|--------------|----------------------|---------------------|-------|-------------------------------------------------------------|
| 7GP-1(1-3')       | Aroclor-1254 | 0.0066 U             | υJ                  | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-16(3-4')      | Aroclor-1254 | 0.0068 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-2(13.5-14.5') | Aroclor-1254 | 0.0069 U             | U J                 | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 7GP-2(8-12')      | Aroclor-1254 | 0.0068 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-3(10-11')     | Aroclor-1254 | 0.0072 U             | U J                 | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 7GP-4(3-4')       | Aroclor-1254 | 0.0067 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-5(6-11')      | Aroclor-1254 | 0.0068 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-8(5-8')       | Aroclor-1254 | 0.0069 U             | U J                 | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 5GP-1(1-2')       | Aroclor-1260 | 0.005 U              | U J                 | 0.019 | Analyte not detected. Estimated due limited QC information. |
| 5GP-1(9-10')      | Aroclor-1260 | 0.0052 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 5GP-12(3-4')      | Aroclor-1260 | 0.0053 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 5GP-16(3-4')      | Aroclor-1260 | 0.0054 U             | υJ                  | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 5GP-3(9-10')      | Aroclor-1260 | 0.0053 U             | U J                 | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 5GP-6(10-11')     | Aroclor-1260 | 0.005 υ              | U J                 | 0.019 | Analyte not detected. Estimated due limited QC information. |
| 5GP-8(11-12')     | Aroclor-1260 | 0.0051 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 5GP-8(7-8')       | Aroclor-1260 | 0.0052 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-1(1-3')       | Aroclor-1260 | 0.0051 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-16(3-4')      | Aroclor-1260 | 0.0053 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-2(13.5-14.5') | Aroclor-1260 | 0.0053 U             | U J                 | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 7GP-2(8-12')      | Aroclor-1260 | 0.0052 U             | U J                 | 0.02  | Analyte not detected. Estimated due limited QC information. |
| 7GP-3(10-11')     | Aroclor-1260 | 0.0056 U             | U J                 | 0.021 | Analyte not detected. Estimated due limited QC information. |
| 7GP-4(3-4')       | Aroclor-1260 | <b>0</b> .0052 U     | υJ                  | 0.02  | Analyte not detected. Estimated due limited QC information. |

| Sample ID              | Analyte         | Laboratory<br>Result | Validated<br>Result | LOQ    | Validation Notes                                            |
|------------------------|-----------------|----------------------|---------------------|--------|-------------------------------------------------------------|
| GP-5(6-11')            | Aroclor-1260    | 0.0052 U             | U J                 | 0.02   | Analyte not detected. Estimated due limited QC information. |
| 'GP-8(5-8')            | Aroclor-1260    | 0.0053 U             | U J                 | 0.021  | Analyte not detected. Estimated due limited QC information. |
| GP-6(10-11')           | delta-BHC       | 0.00022 J            | U                   | 0.001  | Result < LOQ.                                               |
| 6GP-1(1-2')            | Chlordane-gamma | 0.00048 ј            | U                   | 0.0019 | Result < LOQ.                                               |
| 'GP-1(1-3')            | Chlordane-gamma | 0.00027 ј            | U                   | 0.002  | Result < LOQ.                                               |
| 'GP-16(3-4')           | Chlordane-gamma | 0.00026 ј            | U                   | 0.002  | Result < LOQ.                                               |
| 'GP-5(6-11')           | Chlordane-gamma | 0.00023 J            | U                   | 0.002  | Result < LOQ.                                               |
| 7GP-8(5- <b>8</b> ')   | Chlordane-gamma | 0.00028 ј            | U                   | 0.0021 | Result < LOQ.                                               |
| 5GP-1(9-10')           | 4,4-DDD         | 0.019                | 0.019               | 0.004  | No action taken.                                            |
| 5GP-6(10 <b>-</b> 11') | 4,4-DDD         | 0.0067               | 0.0067              | 0.0019 | No action taken.                                            |
| 6GP-8(11-12')          | 4,4-DDD         | 0.00097 ј            | υ                   | 0.002  | Result < LOQ.                                               |
| 6GP-8(7-8')            | 4,4-DDD         | 0.051                | 0.051               | 0.01   | No action taken.                                            |
| 7GP-2(13.5-14.5')      | 4,4-DDD         | 0.0035               | 0.0035              | 0.0021 | No action taken.                                            |
| 7GP-2(8-12')           | <b>4,4</b> -DDD | 0.00075 ј            | U                   | 0.002  | Result < LOQ.                                               |
| 7GP-5(6-11')           | 4,4-DDD         | 0.0006 ј             | U                   | 0.002  | Result < LOQ.                                               |
| 7GP-8(5-8')            | 4,4-DDD         | 0.00049 ј            | U                   | 0.0021 | Result < LOQ.                                               |
| 5GP-1(9-10')           | 4,4-DDE         | 0.00049 ј            | U                   | 0.002  | Result < LOQ.                                               |
| 5GP-6(10-11')          | 4,4-DDE         | 0.0017 ј             | U                   | 0.0019 | Result < LOQ.                                               |
| 5GP-8(11-12')          | 4,4-DDE         | 0.0012 ј             | U                   | 0.002  | Result < LOQ.                                               |
| 5GP-8(7-8')            | 4,4-DDE         | 0.0011 ј             | U                   | 0.002  | Result < LOQ.                                               |
| 7GP-3(10-11')          | 4,4-DDE         | 0.0025               | 0.0025              | 0.0021 | No action taken.                                            |
| 7GP-2(13.5-14.5')      | 4,4-DDT         | 0.00067 ј            | U                   | 0.0021 | Result < LOQ.                                               |
| 5GP-1(9-10')           | Endrin Aldehyde | 0.0023 ј             | U                   | 0.0035 | Result < LOQ.                                               |
| 5GP-12(3-4')           | Endrin Aldehyde | 0.0017 ј             | U                   | 0.0036 | Result < LOQ.                                               |
| 5GP-16(3-4')           | Endrin Aldehyde | 0.0022 ј             | U                   | 0.0037 | Result < LOQ.                                               |
| 5GP-8(11-12')          | Endrin Aldehyde | 0.0017 ј             | U                   | 0.0035 | Result < LOQ.                                               |
| 7GP-2(13.5-14.5')      | Endrin Aldehyde | 0.0031 J             | U                   | 0.0036 | Result < LOQ.                                               |
| 7GP-2(8-12')           | Endrin Aldehyde | 0.0019 J             | U                   | 0.0036 | Result < LOQ.                                               |

| Sample ID                     | Analyte                          | Laborato<br>Resul | •     |   | idated<br>esult | LOQ        | Validation Notes                                                  |
|-------------------------------|----------------------------------|-------------------|-------|---|-----------------|------------|-------------------------------------------------------------------|
| 8260B                         |                                  |                   | PAL . |   |                 | use<br>use |                                                                   |
| 5GP-1(1-2')                   | Acetone                          | 0.007             | U     | U | J               | 0.01       | Estimated due to %D> 25% and one slightly low surrogate recovery. |
| 5GP-1(9-10')                  | Acetone                          | 0.007             | U     | υ | J               | 0.017      | Estimated due to %D> 25%.                                         |
| 5GP-12(3-4')                  | Acetone                          | 0.011             | J     | υ | J               | 0.016      | Result < LOQ. Estimated due to %D> 25%.                           |
| 5GP-16(3-4')                  | Acetone                          | 0.009             | U     | U | J               | 0.019      | Estimated due to %D> 25%.                                         |
| 5GP-3(9-10')                  | Acetone                          | 0.008             | U     | U | J               | 0.019      | Estimated due to %D> 25%.                                         |
| 5GP-6(10-11')                 | Acetone                          | 0.013             | J     | U | J               | 0.018      | Result < LOQ. Estimated due to %D> 25%.                           |
| 5GP-8(11-12')                 | Acetone                          | 0.016             | J     | υ | J               | 0.017      | Result < LOQ. Estimated due to %D> 25%.                           |
| 5GP-8(7-8')                   | Acetone                          | 0.008             | U     | U | J               | 0.019      | Estimated due to %D> 25%.                                         |
| 5GP-1(1-2')                   | Benzene                          | 0.001             | U     | U | J               | 0.004      | Estimated due one slightly low surrogate recovery.                |
| 5GP-1(1-2')                   | Bromodichloromethane             | 0.001             | υ     | U | J               | 0.004      | Estimated due one slightly low surrogate recovery.                |
| 5GP-1(1-2')                   | Bromoform                        | 0.001             | U     | U | J               | 0.004      | Estimated due one slightly low surrogate recovery.                |
| 5GP-1(1-2')                   | Bromomethane                     | 0.002             | U     | U | J               | 0.004      | Estimated due one sligtly low surrogate recovery.                 |
| 5GP-1(1-2')                   | 2-Butanone (methyl ethyl ketone) | 0.004             | U     | υ | J               | 0.009      | Estimated due to %D> 25% and one slightly low surrogate recovery. |
| 5GP-1(9-10')                  | 2-Butanone (methyl ethyl ketone) | 0.004             | U     | U | J               | 0.009      | Estimated due to %D> 25%.                                         |
| 5GP-12(3-4')                  | 2-Butanone (methyl ethyl ketone) | 0.004             | υ     | υ | J               | 0.008      | Estimated due to %D> 25%.                                         |
| 5GP-16(3-4')                  | 2-Butanone (methyl ethyl ketone) | 0.005             | U     | υ | J               | 0.01       | Estimated due to %D> 25%.                                         |
| 5GP-3(9-10')                  | 2-Butanone (methyl ethyl ketone) | 0.005             | U     | U | J               | 0.01       | Estimated due to %D> 25%.                                         |
| 5GP-6(10-11')                 | 2-Butanone (methyl ethyl ketone) | 0.005             | U     | ប | J               | 0.009      | Estimated due to %D> 25%.                                         |
| 5GP-8(11-12')                 | 2-Butanone (methyl ethyl ketone) | 0.004             | U     | υ | J               | 0.009      | Estimated due to %D> 25%.                                         |
| 5GP-8(7-8')                   | 2-Butanone (methyl ethyl ketone) | 0.005             | U     | υ | J               | 0.009      | Estimated due to %D> 25%.                                         |
| 5GP-1(1-2')                   | Carbon Disulfide                 | 0.001             | U     | U | J               | 0.004      | Estimated due one slightly low surrogate recovery.                |
| 5GP-1(1-2')                   | Carbon Tetrachloride             | 0.001             | U     | U | J               | 0.004      | Estimated due one slightly low surrogate recovery.                |
| 5GP-1(1-2')                   | Chlorobenzene                    | 0.001             | U     | U | J               | 0.004      | Estimated due one slightly low surrogate recovery.                |
| 5G <b>P</b> -1(1 <b>-</b> 2') | Chloroethane                     | 0.002             | υ     | U | J               | 0.004      | Estimated due one slightly low surrogate recovery.                |
| 5GP-1(1-2')                   | Chloroform                       | 0.001             | U     | U | J               | 0.004      | Estimated due one slightly low surrogate recovery.                |
| 5GP-1(1-2')                   | Chloromethane                    | 0.002             | U     | U | J               | 0.004      | Estimated due one sligtly low surrogate recovery.                 |
| 5GP-1(1-2')                   | Dibromochloromethane             | 0.001             | U     | U | J               | 0.004      | Estimated due one slightly low surrogate recovery.                |
| 5GP-1(1-2')                   | 1,1-Dichloroethane               | 0.001             | U     | U | J               | 0.004      | Estimated due one slightly low surrogate recovery.                |

| Sample ID         | Analyte                                       | Laboratory<br>Result | / |   | idated<br>esult | LOQ   | Validation Notes                                                  |
|-------------------|-----------------------------------------------|----------------------|---|---|-----------------|-------|-------------------------------------------------------------------|
| 7GP-1(1-3')       | 1,1-Dichloroethane                            | 0.001 ປ              |   | U | J               | 0.005 | Estimated due to %D> 25%                                          |
| 7GP-16(3-4')      | 1,1-Dichloroethane                            | 0.001 U              |   | U | J               | 0.005 | Estimated due to %D> 25%                                          |
| 7GP-2(13.5-14.5') | 1,1-Dichloroethane                            | 0.001 U              |   | U | J               | 0.006 | Estimated due to %D> 25%                                          |
| 7GP-2(8-12')      | 1,1-Dichloroethane                            | 0.001 U              | Ī | U | J               | 0.006 | Estimated due to %D> 25%                                          |
| 7GP-3(10-11')     | 1,1-Dichloroethane                            | 0.001 U              |   | U | J               | 0.006 | Estimated due to %D> 25%                                          |
| 7GP-4(3-4')       | 1,1-Dichloroethane                            | 0.001 υ              |   | U | J               | 0.005 | Estimated due to %D> 25%                                          |
| 7GP-5(6-11')      | 1,1-Dichloroethane                            | 0.001 U              |   | U | J               | 0.006 | Estimated due to %D> 25%                                          |
| 7GP-8(5-8')       | 1,1-Dichloroethane                            | 0.001 U              | ı | U | J               | 0.005 | Estimated due to %D> 25%                                          |
| 5GP-1(1-2')       | 1,2-Dichloroethane                            | 0.001 υ              | ſ | U | J               | 0.004 | Estimated due one slightly low surrogate recovery.                |
| 5GP-1(1-2')       | 1,1-Dichloroethene                            | 0.001 U              | ı | U | J               | 0.004 | Estimated due one slightly low surrogate recovery.                |
| 7GP-16(3-4')      | 1,1-Dichloroethene                            | 0.001 J              |   | U |                 | 0.005 | Result < LOQ.                                                     |
| 5GP-1(1-2')       | cis-1,2-Dichloroethene                        | 0.001 U              | ī | U | J               | 0.004 | Estimated due one slightly low surrogate recovery.                |
| 5GP-1(1-2')       | trans-1,2-Dichloroethene                      | 0.001 U              | ı | U | J               | 0.004 | Estimated due one slightly low surrogate recovery.                |
| 5GP-1(1-2')       | 1,2-Dichloropropane                           | 0.001 U              | Ī | U | J               | 0.004 | Estimated due one slightly low surrogate recovery.                |
| 5GP-1(1-2')       | cis-1,3-Dichloropropene                       | 0.001 U              | ı | U | J               | 0.004 | Estimated due one slightly low surrogate recovery.                |
| 5GP-1(1-2')       | trans-1,3-<br>Dichloropropene                 | 0.001 U              | ī | U | J               | 0.004 | Estimated due one slightly low surrogate recovery.                |
| 5GP-1(1-2')       | Ethylbenzene                                  | 0.001 U              | Ī | U | J               | 0.004 | Estimated due one slightly low surrogate recovery.                |
| 5GP-1(1-2')       | 2-Hexanone                                    | 0.003 U              | ī | U | J               | 0.009 | Estimated due to %D> 25% and one slightly low surrogate recovery. |
| 5GP-1(9-10')      | 2-Hexanone                                    | 0.004 U              | ţ | U | J               | 0.009 | Estimated due to %D> 25%.                                         |
| 5GP-12(3-4')      | 2-Hexanone                                    | 0.002 U              | J | U | J               | 0.008 | Estimated due to %D> 25%.                                         |
| 5GP-16(3-4')      | 2-Hexanone                                    | 0.004 U              | ſ | U | J               | 0.01  | Estimated due to %D> 25%.                                         |
| 5GP-3(9-10')      | 2-Hexanone                                    | 0.004 U              | Ī | U | J               | 0.01  | Estimated due to %D> 25%.                                         |
| 5GP-6(10-11')     | 2-Hexanone                                    | 0.003 U              | ī | U | J               | 0.009 | Estimated due to %D> 25%.                                         |
| 5GP-8(11-12')     | 2-Hexanone                                    | 0.0 <b>04</b> U      | Ī | U | J               | 0.009 | Estimated due to %D> 25%.                                         |
| 5GP-8(7-8')       | 2-Hexanone                                    | 0.004 U              | Ţ | U | J               | 0.009 | Estimated due to %D> 25%.                                         |
| 5GP-1(1-2')       | 4-Methyl-2-pentanone (methyl isobutyl ketone) | 0.003 U              | Ī | υ | J               | 0.009 | Estimated due one slightly low surrogate recovery.                |
| 5GP-1(1-2')       | Methylene Chloride                            | 0.002 U              | Ī | U | J               | 0.004 | Estimated due one slightly low surrogate recovery.                |
| 5GP-1(1-2')       | Styrene                                       | 0.001 U              | J | U | J               | 0.004 | Estimated due one slightly low surrogate recovery.                |
| 5GP-1(1-2')       | 1,1,2,2-Tetrachloroethane                     | : 0.001 ບ            | Ī | U | J               | 0.007 | Estimated due to %D> 25% and one slightly low surrogate recovery. |
| 5GP-1(9-10')      | 1,1,2,2-Tetrachloroethane                     | ຍ 0.001 ປ            | ļ | U | j               | 0.004 | Estimated due to %D> 25%.                                         |
| GP-12(3-4')       | 1,1,2,2-Tetrachloroethane                     | 0.001 U              | r | U | J               | 0.004 | Estimated due to %D> 25%.                                         |

Alliant-Hazardous Waste Management Unit 5 and 7 Event Date: 10/31/02-11/1/02

| Sample ID     | Analyte                         | Laborat<br>Resu | - |      | idated<br>lesult | LOQ   | Validation Notes                                                                             |
|---------------|---------------------------------|-----------------|---|------|------------------|-------|----------------------------------------------------------------------------------------------|
| 5GP-16(3-4')  | 1,1,2,2-Tetrachloroethane       | 0.001           | U | U    | J                | 0.005 | Estimated due to %D> 25%.                                                                    |
| 5GP-3(9-10')  | 1,1,2,2-Tetrachloroethane       | 0.001           | U | U    | J                | 0.005 | Estimated due to %D> 25%.                                                                    |
| 5GP-6(10-11') | 1,1,2,2-Tetrachloroethane       | 0.001           | U | U    | J                | 0.005 | Estimated due to %D> 25%.                                                                    |
| 5GP-8(11-12') | 1,1,2,2-Tetrachloroethane       | 0.001           | U | U    | J                | 0.004 | Estimated due to %D> 25%.                                                                    |
| 5GP-8(7-8')   | 1,1,2,2-Tetrachloroethane       | 0.001           | U | U    | J                | 0.005 | Estimated due to %D> 25%.                                                                    |
| 5GP-1(1-2')   | Tetrachloroethene               | 0.001           | U | U    | J                | 0.004 | Estimated due one slightly low surrogate recovery.                                           |
| 5GP-1(1-2')   | Toluene                         | 0.001           | U | U    | J                | 0.004 | Estimated due one slightly low surrogate recovery.                                           |
| 5GP-1(1-2')   | 1,1,1-Trichloroethane           | 0.001           | U | U    | J                | 0.004 | Estimated due one slightly low surrogate recovery.                                           |
| 5GP-1(1-2')   | 1,1,2-Trichloroethane           | 0.001           | U | U    | J                | 0.004 | Estimated due one slightly low surrogate recovery.                                           |
| 5GP-1(1-2')   | Trichloroethene                 | 0.001           | U | U    | J                | 0.004 | Estimated due one slightly low surrogate recovery.                                           |
| 5GP-1(1-2')   | Vinyl Chloride                  | 0.001           | U | U    | J                | 0.004 | Estimated due one sligtly low surrogate recovery.                                            |
| 5GP-1(1-2')   | Total Xylenes                   | 0.001           | U | U    | J                | 0.004 | Estimated due one slightly low surrogate recovery.                                           |
| 8270C         |                                 |                 |   |      |                  |       |                                                                                              |
| 5GP-8(7-8')   | bis-(2-<br>Ethylhexyl)phthalate | 0.092           | J | U    |                  | 0.39  | Result < LOQ.                                                                                |
| 7GP-3(10-11') | bis-(2-<br>Ethylhexyl)phthalate | 0.09            | J | U    |                  | 0.42  | Result < LOQ.                                                                                |
| 5GP-6(10-11') | N-Nitrosodiphenylamine          | 0.063           | J | U    |                  | 0.38  | Result < LOQ.                                                                                |
| 5GP-8(11-12') | N-Nitrosodiphenylamine          | 0.082           | J | υ    |                  | 0.39  | Result < LOQ.                                                                                |
| 7GP-3(10-11') | N-Nitrosodiphenylamine          | 0.75            |   | 0.75 | 5                | 0.42  | No action taken.                                                                             |
| 9012A.        |                                 |                 | 7 |      | +                |       |                                                                                              |
| 5GP-1(9-10')  | Cyanide                         | 0.13            | В | U    |                  | 0.59  | Result < LOQ. Result attributed to blank contamination (<5Xpreparation blank concentration). |
| 5GP-6(10-11') | Cyanide                         | 0.11            | В | U    |                  | 0.6   | Result < LOQ. Result attributed to blank contamination (<5Xpreparation blank concentration). |
| 7GP-3(10-11') | Cyanide                         | 0.69            |   | 0.69 | )                | 0.63  | No action taken.                                                                             |

#### **Data Validation Qualifier Definitions:**

- U- Denotes the analyte was analyzed for, but was not detected above the laboratory limit of quantitation (LOQ).
- J- Denotes an estimated value. See sample specific note presented on data validation report table for further explanation.
- UJ- The LOQ should be considered estimated. See sample specific note presented on data validation report table for further explanation.
- R- Denotes sample result was rejected. See sample specific note presented on data validation report table for further explanation.

NOTE: The table summaries all detected results and results which required qualification based on data validation. All Results reported on a dryweight basis.

See laboratory report for definition of laboratory result qualifiers, if needed.

| Laboratory: L                 | ancaster Laboratories, Inc. 2425             | New Holiand | Pike, Lancas                              | ter, PA 17605- | 2425 (717                                    | 656-2300      |                                                  |                          |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                |                 |
|-------------------------------|----------------------------------------------|-------------|-------------------------------------------|----------------|----------------------------------------------|---------------|--------------------------------------------------|--------------------------|-----------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------|-----------------|
|                               | raper Aden Associates                        | Consultar   | nt:                                       |                | Draper Adei                                  | n Associates  | Sam                                              | le Site:                 |                                         | RF.             | AAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Project Specific (PS) or Bato  | h (B) QC: ☑es  | □в              |
|                               | ndy Kassoff/ Ross Miller                     | Attn:       |                                           |                |                                              | Frazier       |                                                  |                          |                                         |                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample Collection for Project  | •              |                 |
|                               | 206 South Main Street                        | Address:    |                                           |                | 2206 South Main Street                       |               |                                                  | ocation: Montgomery (    |                                         |                 | County, Virginia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                | ✓ves           | □no             |
| Phone:                        | cksburg, Virginia 24060<br>(540) 552-0444    | Phone:      |                                           |                | Blacksburg, Virginia 24060<br>(540) 552-0444 |               |                                                  | Event: HWMU-5 and        |                                         |                 | and HWMU-7 Investigation   Carrier: FED EX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                |                 |
| Fax:                          | (540) 552-0291                               | Fax:        |                                           |                | (540) 5                                      |               | DAA                                              |                          | *************************************** |                 | 71-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tracking Number:               |                |                 |
| Fax:                          | (540) 552-0291                               |             |                                           |                | , ,                                          |               | Lab                                              |                          |                                         |                 | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                |                 |
| Box 1: Matrix                 |                                              | D 0- 0-     |                                           |                |                                              | _             |                                                  | <b>5 5</b> 110           | 3.1. 2714                               |                 | The state of the s | _                              | ·              |                 |
| SW Surface Water              | T Trip Blank                                 | A HCI       | reservative                               |                |                                              | E NaOH        |                                                  | 3: Filtered/<br>Filtered | Unfiltered                              |                 | Box 4: Sample<br>Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Invoice                        |                |                 |
| GW Groundwater                | E Equipment Blank                            | B HN        |                                           |                |                                              | F ZnAc        |                                                  | Unfiltered               |                                         |                 | G Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Copy to Consultant:            |                | □no             |
| L Leachate                    | P Product                                    | C H₂S       | iO.                                       |                |                                              | G Other (S    | pecify) Box                                      | 5: Sample                | Container Typ                           |                 | C Composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bill: @Client Consultan        | ·              | _               |
| S Soil                        | O Other                                      | D Nat       |                                           |                |                                              | H None        | P Pla                                            |                          | V VOA                                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Preserved and shipped on ic    | :e: 🗸 YES Bo   | □no             |
|                               |                                              |             |                                           |                |                                              |               | AG A                                             | nber Glass               | CG Clear                                | Glass           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                |                 |
|                               | Box 4 - Sample Type                          |             | G                                         | G              | <u> </u>                                     |               |                                                  |                          |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | See attached target analyte li |                |                 |
|                               | x 3 - Filtered/Unfiltered                    |             | U                                         | U              | <u>u</u>                                     |               |                                                  | _                        |                                         | <u> </u>        | analytes, usin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | g SW846 Test Methods           | (8270C, 8081A, | 8082)           |
|                               | equired pH of Sample                         | _           | -                                         | •              | TT-                                          | <u> </u>      |                                                  | _                        |                                         |                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                |                 |
|                               | Box 2 - Preservative - Sample Container Type |             | D<br>VOA                                  | 1-500ml G      | \$ 500W                                      |               |                                                  |                          |                                         |                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                |                 |
| BOX 3                         | - Sample Container Type                      |             | • 70                                      | 1-3001111 G    |                                              |               | <del>                                     </del> |                          |                                         |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                |                 |
| -                             |                                              |             | [ //w)                                    | ļ.             | 2                                            |               |                                                  |                          |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                |                 |
|                               |                                              |             | 1/24                                      | (              | TEREM                                        |               |                                                  | 1                        |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                |                 |
|                               |                                              |             | ( * //                                    | l e            | <del> </del>                                 | - ~~          |                                                  |                          |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                |                 |
|                               |                                              |             |                                           | 🐇              | 3 >                                          | 3-3           |                                                  |                          |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                |                 |
|                               |                                              | <u>\$</u>   | \# /                                      | 1              | まびこ                                          | 2 40          |                                                  |                          |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                |                 |
|                               | ,   Š                                        | Bot         | <b> </b>   <b> </b>   <b> </b>   <b> </b> |                | 2 7 3                                        | ZK            |                                                  |                          |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                |                 |
|                               | 2002                                         | ا ة         | <b>T</b> /                                | <u> </u>       | コンピの                                         | <b>53</b>     |                                                  |                          |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                |                 |
| 1                             | +-                                           | ĕ.          | <b>! !</b> /                              | <u> </u>       | 3 2 3                                        | 7.2           |                                                  |                          |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                |                 |
| Sample ID                     | Date Time                                    | N See       | <b>-</b>                                  | S              | r 3 8                                        | 22            |                                                  |                          |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                |                 |
| <del>```\`</del>              | c/21 13:10 s                                 | 5           | <b></b> A                                 | Х.             |                                              |               |                                                  | _                        |                                         |                 | 56P-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1-2')                         |                |                 |
| 1-10 )5GP- ( / 1              | 931 13:10 s                                  | 541         | - 1                                       | X              |                                              |               | 1                                                |                          |                                         |                 | 56P-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 PT-10)                       |                |                 |
| 10-11 SGP- 6 / 1              | 431 13:50 s                                  | 4           |                                           | ×              |                                              |               |                                                  |                          |                                         |                 | 56P-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 (10:11)                      | •              |                 |
| 10) 5GP. 3                    | 14:30 s                                      | Ì,          |                                           | ×              |                                              |               |                                                  |                          |                                         |                 | 56P-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 (9-10')                      |                |                 |
| -8 5GP- 8                     | 15:50 s                                      | 1           |                                           | ×              |                                              |               |                                                  |                          |                                         |                 | 5GP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                |                 |
| -121 SGP- 8                   | 16:05 s                                      | 1           |                                           | x              |                                              |               |                                                  |                          |                                         |                 | 56P-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | _              | _               |
| -4') SGP- 12                  | 16:40 s                                      | 1           | / 1                                       | x              |                                              |               |                                                  |                          |                                         |                 | 56P-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 (3-41)                       |                |                 |
| -4) 5GP-16~1                  | 0/31 17:00 5                                 | l           | K.                                        | x              |                                              |               |                                                  |                          |                                         |                 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 (3-41)                       |                |                 |
| FULTCLP 1                     | 1/1 13:55 5                                  |             |                                           |                | 1                                            |               |                                                  |                          |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AKAETEK 12ATTON                |                | /               |
| LA HWMU-5                     |                                              |             |                                           |                |                                              |               |                                                  |                          |                                         |                 | IGNITABIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ity , corposium                | Y , REACTIV    | ry              |
| Clients Special Instruct      | tions:                                       |             |                                           |                |                                              |               |                                                  |                          |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                              | •              |                 |
| Received by lab in Good       | Condition Yes No                             | Custody Se  | al Intact                                 | Yes h          | lo Temper                                    | ature upon ar | rival Receiv                                     | ed on Ice                | Yes                                     | No              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                |                 |
| Describe problems, if an      |                                              | 000,000,00  |                                           | _ , , , ,      | -                                            |               | , , , , , , , , , , , , , , , , , , , ,          |                          |                                         | _ ,,,,          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                |                 |
| Sampler Name<br>(Print): DAPP | EN FOOWELL                                   | Date: [1    | lila                                      | #1 Relinquis   |                                              | <b>)</b>      | Codwa                                            | Date:                    | 11/1/02                                 | #2 Relin        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | Date:          | Sample Storage  |
|                               | - FISHER                                     | Date. (     | 111-1                                     | by (Signature  |                                              | <u>zvuu</u>   | - Frank                                          | , Date:                  | (1) 42                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | Jake.          | Time Requested: |
| Sampler Signature:            | un bowa                                      | Time:       | 6:30                                      | Company Name:  | DAA                                          |               |                                                  | Time:                    | 17:30                                   | Compan<br>Name: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | Time:          |                 |
| Sampler Name                  | <u> </u>                                     |             |                                           | #1 Received    |                                              | -             |                                                  |                          |                                         | #2 Rece         | ived                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                | 30 DYS ORG/6    |
| (Print):                      |                                              | Date:       |                                           | by (Signature  | e):                                          |               |                                                  | Date:                    |                                         | by (Sign        | ature):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | Date:          | MTHS INORG      |
| Sampler                       |                                              |             |                                           | Company        |                                              |               | · · · · · · · · · · · · · · · · · · ·            |                          |                                         | Compan          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                       |                | ]               |
| Signature                     |                                              | Time:       |                                           | Name:          |                                              | _             |                                                  | Time:                    |                                         | Name:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | Time:          |                 |

#### CHAIN OF CUS Y RECORD

| Cilent:                                          |                | n Associates                   |              | Consulta    | nt:         | D                     | raper Aden              |                  | les                       | Sample S  | ite:        |              | RFAA                                             | NP .              | Project Specific (PS) or Bato                        |              | Ørs         | <b>□</b> 8       |
|--------------------------------------------------|----------------|--------------------------------|--------------|-------------|-------------|-----------------------|-------------------------|------------------|---------------------------|-----------|-------------|--------------|--------------------------------------------------|-------------------|------------------------------------------------------|--------------|-------------|------------------|
| Attn:                                            | -              | ff/ Ross Miller                |              | Attn:       |             | _                     | Janet C.                |                  |                           |           |             |              |                                                  |                   | Sample Collection for Project Complete? (See Note 1) |              |             |                  |
| Address:                                         |                | ı Main Street<br>√irginia 2406 |              | Address:    |             |                       | 206 South<br>cksburg, V |                  |                           | Location  |             | Monte        | gomery Co                                        | unty, Virginia    | - ~                                                  | Vres         | □wo         |                  |
| Phone:                                           |                | viiginia 2400<br>52-0444       | U            | Phone:      |             | Dia                   | (540) 55                |                  | 000                       | Event:    |             | WWWIL5       | and HWM                                          | U-7 Investigation | Carrier: FED 8                                       | =X           |             |                  |
| Fax:                                             |                | 52-0291                        |              | Fax:        |             |                       | (540) 55                |                  |                           | DAA JN:   |             | HAMMO-2      | B02271                                           | _                 | Tracking Number:                                     | -/\          |             | -                |
| Fax:                                             |                | 52-0291                        |              | 1           |             |                       | (040) 55                | 2-0231           |                           | Lab JN:   |             |              | 002271                                           | ,                 | Tracking Number.                                     |              |             | -                |
|                                                  |                |                                |              |             |             |                       | _                       |                  | _                         |           |             |              |                                                  |                   |                                                      | -            | _           | <u>-</u>         |
| Box 1: Matrix                                    |                |                                |              | 1           | reservative |                       |                         |                  |                           |           | iltered/Un  | filtered     |                                                  | ox 4: Sample      | invoice                                              |              |             |                  |
| SW Surface                                       |                | T Trip Blan                    |              | A HC        |             |                       |                         | E NaC            |                           | F Filt    |             |              | 1 '                                              | ype               |                                                      |              |             |                  |
| GW Grounds                                       |                | E Equipme                      | ent Blank    | B HN        | •           |                       |                         | F ZnA            |                           | U Un      |             |              |                                                  | Grab              | Copy to Consultant:                                  | <b>⊘</b> YES | □wo         |                  |
| L Leachal                                        | е              | P Product                      |              | C H₂S       | •           |                       |                         |                  | er (Specify)              | 1         | ample Co    | ntainer Type | c                                                | Composite         | Bill:                                                |              |             |                  |
| S Soil                                           |                | O Other                        |              | D Na        | HSO4        |                       |                         | H Non            | е                         | P Plastic |             | V VOA        | _                                                |                   | Preserved and shipped on it                          | ce: ☑ yes    | Bo □NO      |                  |
|                                                  |                |                                |              | <u> </u>    |             |                       | 7                       |                  |                           | AG Amber  | Glass       | CG Clear (   | _                                                |                   | <u> </u>                                             |              |             |                  |
|                                                  |                | mple Type                      |              |             | G           | G                     | <u> </u>                | <u> </u>         |                           |           |             |              |                                                  |                   | : See attached target analyte li                     |              | t for all a | <u>nalyte</u>    |
|                                                  | Box 3 - Filte  |                                |              |             | U           | U                     | u                       | <b>↓</b>         | -                         |           | -           | +            | <u> </u>                                         | sing SW846        | Test Methods (8270C, 8                               | 3081A, 8082) |             |                  |
|                                                  |                | H of Sample                    |              |             |             | •                     |                         |                  |                           |           | <u> </u>    | +            | -                                                |                   |                                                      |              |             |                  |
|                                                  |                | eservative                     |              |             | D           | H                     | 2 1                     | 1                |                           |           | <u> </u>    | ļ ·          | ₩.                                               | •                 |                                                      |              |             |                  |
|                                                  | Box 5 - Sample | Container T                    | уре          | 1           | VOA         | 1-500ml G             | 0 50                    | <del>pmc (</del> | <del>2</del>              | 1         |             |              |                                                  |                   |                                                      |              |             |                  |
|                                                  |                |                                |              |             |             |                       | CHARCIERIZA<br>P        |                  |                           |           |             |              |                                                  |                   |                                                      |              |             |                  |
|                                                  |                | ì                              |              |             |             |                       | <del> </del>            | 1                |                           |           |             |              |                                                  |                   |                                                      |              |             |                  |
|                                                  |                |                                |              |             | i           |                       | Ø                       |                  |                           |           |             |              |                                                  |                   |                                                      |              |             |                  |
|                                                  |                |                                |              |             |             | , m                   | して                      |                  |                           |           |             |              |                                                  |                   |                                                      |              |             |                  |
|                                                  |                |                                |              |             | \$635       | Į Ž                   | 18                      | l                | ì                         |           |             |              |                                                  |                   |                                                      |              |             |                  |
|                                                  |                |                                |              | 2           |             | mivolatiles/Pests/PCB | 3                       |                  |                           |           |             |              |                                                  |                   |                                                      |              |             |                  |
|                                                  |                |                                | ×            | Į           | 8260B/      | ₽.                    | 13.0                    |                  |                           |           |             |              |                                                  |                   |                                                      |              |             |                  |
|                                                  | 9              |                                | 1: Matrix    | ă           | 2 2         | 5                     | TU                      |                  |                           | Į.        | 1           |              |                                                  |                   |                                                      |              |             |                  |
|                                                  | 2002           |                                | š            | 5           | ]           | ¥                     | エエン                     | )                |                           |           |             |              |                                                  |                   |                                                      |              |             |                  |
|                                                  |                | •                              | <del>"</del> | , <u>\$</u> | 🛔           | ≗                     | 万年                      | 1                |                           |           |             |              |                                                  |                   |                                                      |              |             |                  |
| Sample ID                                        | Date:          | E                              | Box          | 1 5         | /olatii     | <u>E</u>              | II                      |                  |                           |           |             |              |                                                  |                   |                                                      |              |             |                  |
| 3') 7GP- /                                       | 11.1           | 10:00                          | s            | 11          | ×           | ×                     |                         |                  |                           |           |             |              | <del>                                     </del> |                   |                                                      |              |             |                  |
| _ /\                                             | <u> </u>       |                                |              | 14          |             |                       |                         | <del>-</del>     |                           | 1         |             |              |                                                  |                   |                                                      |              |             |                  |
| 12'), 7GP-                                       | 1              | 10:40                          | S            | +           | X           | ×                     | <del>  -</del>          |                  | <u> </u>                  | <u> </u>  | ,           |              |                                                  |                   |                                                      | •            |             |                  |
| -14.5)GP. 5                                      |                | 11:05                          | <u> </u>     | <u> </u>    | ×           | ×                     |                         |                  |                           |           |             |              |                                                  |                   |                                                      |              |             |                  |
| -11) 7GP- 3                                      | 34             | 11:25                          | S            |             | ×           | ×                     |                         | ,                |                           |           |             |              |                                                  |                   |                                                      |              |             |                  |
| -8) 7GP- 2                                       | 3/             | 12:15                          | S            |             | ×           | ×                     | İ                       |                  |                           |           |             | j            |                                                  |                   |                                                      |              |             |                  |
| 1 7GP- K                                         | 5/             | 12:50                          | s            | 12          | х           | ×                     |                         |                  |                           |           |             |              |                                                  | + MS              | MSD                                                  |              |             |                  |
| 4') 7GP- 11                                      | 6              | 13:30                          | s            |             | х           | ×                     |                         |                  |                           |           |             |              |                                                  |                   | 1 -                                                  |              |             |                  |
| 1 7GP- 4                                         |                | 3.45                           | s            | 4           | ×           | ×                     |                         |                  |                           |           |             |              |                                                  |                   | 1                                                    |              |             |                  |
| anit 7 TC                                        | LP 11/1        | 14:00                          | 5            | -           |             |                       | V 1                     | -                | 1                         |           |             |              | ç                                                | FULL CHAP         | PACTERIZATION                                        | TCUP, USA    | रिक्स हार   | 174              |
| Clients Special I                                |                | , , , , ,                      |              |             |             | <u> </u>              |                         |                  | !                         |           |             |              |                                                  |                   |                                                      | -            | eros u      | HAY              |
| <del></del>                                      |                | ••                             |              |             | -           |                       |                         |                  |                           |           |             | ·, ·-· ·     |                                                  |                   |                                                      | KEI          | herver      | Υ                |
| Received by lab i                                |                | Yes _                          | No           | Custody Se  | eal Intact  | Yes i                 | No Temp                 | erature u        | upon arrival _            | Rece      | ived on Ice | e Yes _      | No                                               |                   |                                                      |              |             |                  |
| Describe problem                                 | ns, if any:    | ***                            |              | ī           |             | 8                     | -                       |                  | 12                        | 1 0/      | A           |              |                                                  |                   |                                                      | T            |             |                  |
| Sampler Name                                     | EREN           | 1.50                           |              | Date: 11    | 1,102       | #1 Relinquis          |                         | au               | $-\mathbf{L}(\mathbf{r})$ | dwa       | V 1         | 1/1/40       | #2 Relind                                        | quished           |                                                      | D-4          | S           | Clara            |
| (Print):                                         | 4451           | CUME                           |              | Date: [1    | 1102        | by (Signatur          | e):                     | wu               |                           | ·····     | Date:       | 1/1/00       | by (Signa                                        | ature):           |                                                      | Date:        | Sample      |                  |
| Complex                                          | 1              | 100                            | . ال         | d           |             | Company               | 7.1                     | 1                |                           |           |             | -, -         | Company                                          | y                 |                                                      |              | Time Re     | equeste          |
| oampier 🛴                                        | . TOTAL / /    | ~ K1 V                         | lwell        | И топо IL   | ,30         | Name:                 | DA                      | ~                |                           |           | Time:       | 7:36         | Name:                                            |                   |                                                      | Time:        | 1           |                  |
|                                                  | $\perp$        | ~~//                           | $\nu\sim$    | ( Inne. I C |             |                       |                         |                  |                           |           |             |              |                                                  |                   |                                                      |              |             |                  |
| Signature:                                       | Low            |                                |              | Time.       |             | 1                     |                         |                  |                           |           |             |              | 1                                                | ived              |                                                      |              |             |                  |
| Sampler Name                                     | Low            | - CAA                          | <i></i>      |             | ,           | #1 Received           | l                       |                  |                           |           |             |              | #2 Recei                                         |                   |                                                      |              |             | S ORG/6<br>INORG |
| Sampler Signature: Sampler Name (Print): Sampler |                |                                | <i></i>      | Date:       |             | 1                     | l                       |                  |                           |           | Date:       |              | 1                                                | ature):           |                                                      | Date:        |             |                  |

## Analysis Request Anvironmental Services Chain of Systody



For Lancaster Laboratories use only

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>#</b> 0004    | 0 = 1       |                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|-------------------------------|
| Please print. Instructions on reverse side correspond with circled numbers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |             |                               |
| Client: RADEN ASSOC. Acct.#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | For Lab          | Use On      | ly                            |
| Project Name/#: NAP - UNIT 5 (LOSUREWSID#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FSC:<br>SCR #: _ |             | <u> </u>                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |             | 6                             |
| Project Manager: ROSS MUCEL P.O.#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | / /              |             | samples (requested)           |
| Name of state where samples were collected: VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |             | sam                           |
| Name of state where samples were collected:     A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |             | ure of<br>ipt (if             |
| Sample Identification Single Registration Sing | /                |             | Temperature<br>upon receipt ( |
| Sample Identification Calle negli Collected 25 8 8 5 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remarks          |             | Tem                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FE ATTACHED      | ANAI        | C.F                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LIST FOR TC      |             |                               |
| 54P. 6 (10-11') / 13:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>         |             | <u></u>                       |
| 56F-3 (9-10) / 14:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | <del></del> |                               |
| 5(.5.8 (7.8))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |             |                               |
| 16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05   16:05  |                  |             |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |             |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |             |                               |
| - 10/31/02 17:00 X X 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |             |                               |
| Turnaround Time Requested (TAT) (please circle): (Normal Rush Relinquished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | D-4-        | T: (                          |
| Turnaround Time Requested (TAT) (please circle): Normal Rush (Rush TAT is subject to Lancaster Laboratories approval and surcharge.)  Date results are needed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | Date        | Time (                        |
| Date results are needed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | Date        | Time                          |
| Rush results requested by (please circle). Phone Fax E-mail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | Date        |                               |
| Phone #:         Fax #:         Relinquished by:         Date         Time         Received by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | <br>Date    | Time                          |
| Data Package Options (please circle if required)  SDG Complete?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |             | 1                             |
| QC Summary Type VI (Raw Data) Yes No Relinquished by: Date Time Received by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | Date        | Time                          |
| Type I (Tier I) GLP State-specific QC required? Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |                               |
| Type II (Tier II) Other (If yes, indicate QC sample and submit triplicate volume.)  Relinquished by:  Date Time Received by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | Date        | Time                          |
| Type III (NJ Red. Del.) Internal Chain of Custody required? Yes No  Type IV (CLP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |             | 1                             |

## **Analysis Report**





#### ANALYTICAL RESULTS

Prepared for:

Draper Aden Associates, Inc. 2206 South Main Street Blacksburg VA 24060

540-552-0444

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

#### SAMPLE GROUP

The sample group for this submittal is 829085. Samples arrived at the laboratory on Friday, November 01, 2002. The PO# for this group is B02271-01.

| Client Description              | Lancaster Labs Number |
|---------------------------------|-----------------------|
| 5GP-1 (1-2') Grab Soil Sample   | 3931702               |
| 5GP-1 (9-10') Grab Soil Sample  | 3931703               |
| 5GP-6 (10-11') Grab Soil Sample | 3931704               |
| 5GP-3 (9-10') Grab Soil Sample  | 3931705               |
| 5GP-8 (7-8') Grab Soil Sample   | 3931706               |
| 5GP-8 (11-12') Grab Soil Sample | 3931707               |
| 5GP-12 (3-4') Grab Soil Sample  | 3931708               |
| 5GP-16 (3-4') Grab Soil Sample  | 3931709               |
|                                 |                       |

#### **METHODOLOGY**

The specific methodologies used in obtaining the enclosed analytical results are indicated on the laboratory chronicles.

1 COPY TO Draper Aden Associates, Inc. Attn: Ms. Janet Frazier 1 COPY TO Data Package Group



## **Analysis Report**



REPAINT 140

Questions? Contact your Client Services Representative Michael E McAdams at (717) 656-2300.

Respectfully Submitted,

Robert E. Mellinger Sr Chemist/Coordinator





Page 1 of 2

Lancaster Laboratories Sample No. SW 3931702

Collected:10/31/2002 13:10

by DK

Account Number: 11200

Submitted: 11/01/2002 09:20

Reported: 02/28/2003 at 12:00

Reported: 02/28/2003 at 12:00

Discard: 03/31/2003

5GP-1 (1-2') Grab Soil Sample

RAAP-Unit 5 Closure

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

Dry

5GP11 SDG#: RAR02-01

|       |                               |                  |                | 227                |                |          |
|-------|-------------------------------|------------------|----------------|--------------------|----------------|----------|
| CAT   |                               |                  | Dry            | Method             |                | Dilution |
| No.   | Analysis Name                 | CAS Number       | Result         | Detection<br>Limit | Units          | Factor   |
| 07801 | Moisture (Re-Entry)           | n.a.             | 12.2           | 0.060              | *              | 1        |
|       | The moisture result above was | taken from a sa  | ample aliquot  |                    |                |          |
|       | which was submitted to the la | boratory under a | separate cha:  | in of custody      |                |          |
|       | (SDG#RAR-01). The moisture r  | esult was used f | for dry weight | calculations.      |                |          |
|       | See General Comments for pair | ed sample number | reference.     |                    |                |          |
|       |                               |                  |                |                    |                |          |
| 06292 | TCL by 8260 (soil)            |                  |                |                    |                |          |
| 05444 | Chloromethane                 | 74-87-3          | N.D.           | 2.                 | ug/kg          | 0.88     |
| 05445 | Vinyl Chloride                | 75-01-4          | N.D.           | 1.                 | ug/kg          | 0.88     |
| 05446 | Bromomethane                  | 74-83-9          | N.D.           | 2:                 | ug/kg          | 0.88     |
| 05447 | Chloroethane                  | 75-00-3          | N.D.           | 2.                 | ug/kg          | 0.88     |
| 05449 | 1,1-Dichloroethene            | 75-35-4          | N.D.           | 1.                 | ug/kg          | 0.88     |
| 05450 | Methylene Chloride            | 75-09-2          | N.D.           | 2.                 | ug/kg          | 0.88     |
| 05451 | trans-1,2-Dichloroethene      | 156-60-5         | N.D.           | 1.                 | ug/kg          | 0.88     |
| 05452 | 1,1-Dichloroethane            | 75-34-3          | N.D.           | 1.                 | ug/kg          | 0.88     |
| 05454 | cis-1,2-Dichloroethene        | 156-59-2         | N.D.           | 1.                 | ug/kg          | 0.88     |
| 05455 | Chloroform                    | 67-66-3          | N.D.           | 1.                 | ug/kg          | 0.88     |
| 05457 | 1,1,1-Trichloroethane         | 71-55-6          | N.D.           | 1.                 | ug/kg          | 0.88     |
| 05458 | Carbon Tetrachloride          | 56-23-5          | N.D.           | 1.                 | ug/ <b>k</b> g | 0.88     |
| 05460 | Benzene                       | 71-43-2          | N.D.           | 1.                 | ug/ <b>k</b> g | 0.88     |
| 05461 | 1,2-Dichloroethane            | 107-06-2         | N.D.           | 1.                 | ug/ <b>k</b> g | 0.88     |
| 05462 | Trichloroethene               | 79-01-6          | N.D.           | 1.                 | ug/ <b>k</b> g | 0.88     |
| 05463 | 1,2-Dichloropropane           | 78-87-5          | N.D.           | 1.                 | ug/kg          | 0.88     |
| 05465 | Bromodichloromethane          | 75-27-4          | N.D.           | 1.                 | ug/kg          | 0.88     |
| 05466 | Toluene                       | 108-88-3         | N.D.           | 1.                 | ug/kg          | 0.88     |
| 05467 | 1,1,2-Trichloroethane         | 79-00-5          | N.D.           | 1.                 | ug/kg          | 0.88     |
| 05468 | Tetrachloroethene             | 127-18-4         | N.D.           | 1.                 | ug/kg          | 0.88     |
| 05470 | Dibromochloromethane          | 124-48-1         | N.D.           | 1.                 | ug/kg          | 0.88     |
| 05472 | Chlorobenzene                 | 108-90-7         | N.D.           | 1.                 | ug/kg          | 0.88     |
| 05474 | Ethylbenzene                  | 100-41-4         | N.D.           | 1.                 | ug/kg          | 0.88     |
| 05477 | Styrene                       | 100-42-5         | N.D.           | 1.                 | ug/kg          | 0.88     |
| 05478 | Bromoform                     | 75-25-2          | <b>N</b> .D.   | 1.                 | u <b>g/k</b> g | 0.88     |
| 05480 | 1,1,2,2-Tetrachloroethane     | 79-34-5          | N.D.           | 1.                 | ${f u}$ g/kg   | 0.88     |
| 06293 | Acetone                       | 67-64-1          | N.D.           | 7.                 | ug/kg          | 0.88     |
| 16294 | Carbon Disulfide              | 75-15-0          | N.D.           | 1.                 | ug/kg          | 0.88     |



## **Analysis Repor**



Page 2 of 2

Lancaster Laboratories Sample No. 3931702

Collected:10/31/2002 13:10 by DK

Submitted: 11/01/2002 09:20 Reported: 02/28/2003 at 12:00

Discard: 03/31/2003

5GP-1 (1-2') Grab Soil Sample

RAAP-Unit 5 Closure

Account Number: 11200

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

5GP11 SDG#: RAR02-01

|       |                           |             |        | Dry                |       |          |
|-------|---------------------------|-------------|--------|--------------------|-------|----------|
| CAT   |                           |             | Dry    | Method             |       | Dilution |
| No.   | Analysis Name             | CAS Number  | Result | Detection<br>Limit | Units | Factor   |
| 06296 | 2-Butanone                | 78 - 93 - 3 | N.D.   | 5.                 | ug/kg | 0.88     |
| 06297 | trans-1,3-Dichloropropene | 10061-02-6  | N.D.   | 1.                 | ug/kg | 0.88     |
| 06298 | cis-1,3-Dichloropropene   | 10061-01-5  | N.D.   | 1.                 | ug/kg | 88.0     |
| 06299 | 4-Methyl-2-pentanone      | 108-10-1    | N.D.   | 3.                 | ug/kg | 0.88     |
| 06300 | 2-Hexanone                | 591-78-6    | N.D.   | 3.                 | ug/kg | 0.88     |
| 06301 | Xylene (Total)            | 1330-20-7   | N.D.   | 1.                 | ug/kg | 0.88     |
|       |                           |             |        |                    |       |          |

A site-specific MSD sample was not submitted for the project. A LCS/LCSD was performed to demonstrate precision and accuracy at a batch level.

Poor surrogate recovery was observed for 1,2-dichloroethane-d4 in the GC/MS volatile fraction. The percent recovery was 79%. The sample was reanalyzed as a matrix spike, and 1,2-dichloroethane-d4 was 86% recovery which was within the QC limits. Another vial of the sample was not available for further analysis.

Paired with 5GP-1 (1-2') for % MOS result. See SW3933074

#### Laboratory Chronicle

| CAT   |                                  |                    | Analysis |                  |                   | Dilution |
|-------|----------------------------------|--------------------|----------|------------------|-------------------|----------|
| No.   | Analysis Name                    | Method             | Trial#   | Date and Time    | Analyst           | Factor   |
| 07801 | Moisture (Re-Entry)              | EPA 160.3 modified | 1        | 11/05/2002 08:39 | Helen L Schaeffer | 1        |
| 06292 | TCL by 8260 (soil)               | SW-846 8260B       | 1        | 11/04/2002 14:18 | Roy R Mellott Jr  | 0.88     |
| 08389 | Low/High Encore Prep<br>Tracking | SW-846 5035        | 1        | 11/01/2002 18:18 | Medina A Long     | n.a.     |
| 08389 | Low/High Encore Prep<br>Tracking | SW-846 5035        | 2        | 11/01/2002 17:05 | Medina A Long     | n.a.     |
| 08389 | Low/High Encore Prep<br>Tracking | SW-846 5035        | 3        | 11/01/2002 17:06 | Medina A Long     | n.a.     |



Blacksburg VA 24060





Page 1 of 2

Lancaster Laboratories Sample No. SW 3931703

Collected: 10/31/2002 13:10 by DK Account Number: 11200

 Submitted: 11/01/2002 09:20
 Draper Aden Associates, Inc.

 Reported: 02/28/2003 at 12:01
 2206 South Main Street

Discard: 03/31/2003

5GP-1 (9-10') Grab Soil Sample

RAAP-Unit 5 Closure

5GP19 SDG#: RAR02-02

|               |                               |                  |               | Dry                |       |          |
|---------------|-------------------------------|------------------|---------------|--------------------|-------|----------|
| CAT           |                               |                  | Dry           | Method             |       | Dilution |
| No.           | Analysis Name                 | CAS Number       | Result        | Detection<br>Limit | Units | Factor   |
| 07801         | Moisture (Re-Entry)           | n.a.             | 14.6          | 0.060              | ₩     | 1        |
|               | The moisture result above was | taken from a sa  | ample aliquot |                    |       |          |
|               | which was submitted to the la | boratory under a | separate cha  | in of custody      |       |          |
|               | (SDG#RAR-01). The moisture r  | esult was used f | or dry weight | calculations.      |       |          |
|               | See General Comments for pair | ed sample number | reference.    |                    |       |          |
|               |                               |                  |               |                    |       |          |
| <b>062</b> 92 | TCL by 8260 (soil)            |                  |               |                    |       |          |
| 05444         | Chloromethane                 | 74-87-3          | N.D.          | 2.                 | ug/kg | 0.86     |
| 05445         | Vinyl Chloride                | 75-01-4          | N.D.          | 1.                 | ug/kg | 0.86     |
| 05446         | Bromomethane                  | 74-83-9          | N.D.          | 2.                 | ug/kg | 0.86     |
| 05447         | Chloroethane                  | 75-00-3          | N.D.          | 2.                 | ug/kg | 0.86     |
| 05449         | 1,1-Dichloroethene            | 75-35-4          | N.D.          | 1.                 | ug/kg | 0.86     |
| 05450         | Methylene Chloride            | 75-09-2          | N.D.          | 2.                 | ug/kg | 0.86     |
| 05451         | trans-1,2-Dichloroethene      | 156-60-5         | N.D.          | 1.                 | ug/kg | 0.86     |
| 05452         | 1,1-Dichloroethane            | 75-34-3          | N.D.          | 1.                 | ug/kg | 0.86     |
| 05454         | cis-1,2-Dichloroethene        | 156-59-2         | N.D.          | 1.                 | ug/kg | 0.86     |
| 05455         | Chloroform                    | 67-66-3          | N.D.          | 1.                 | ug/kg | 0.86     |
| 05457         | 1,1,1-Trichloroethane         | 71-55-6          | N.D.          | 1.                 | ug/kg | 0.86     |
| 05458         | Carbon Tetrachloride          | 56-23-5          | N.D.          | 1.                 | ug/kg | 0.86     |
| 05460         | Benzene                       | 71-43-2          | N.D.          | 1.                 | ug/kg | 0.86     |
| 05461         | 1,2-Dichloroethane            | 107-06-2         | N.D.          | 1.                 | ug/kg | 0.86     |
| 05462         | Trichloroethene               | 79-01-6          | N.D.          | 1.                 | ug/kg | 0.86     |
| 05463         | 1,2-Dichloropropane           | 78-87-5          | N.D.          | 1.                 | ug/kg | 0.86     |
| 05465         | Bromodichloromethane          | 75-27-4          | N.D.          | 1.                 | ug/kg | 0.86     |
| 05466         | Toluene                       | 108-88-3         | N.D.          | 1.                 | ug/kg | 0.86     |
| 05467         | 1,1,2-Trichloroethane         | 79-00-5          | N.D.          | 1.                 | ug/kg | 0.86     |
| 05468         | Tetrachloroethene             | 127-18-4         | N.D.          | 1.                 | ug/kg | 0.86     |
| 05470         | Dibromochloromethane          | 124-48-1         | N.D.          | 1.                 | ug/kg | 0.86     |
| 05472         | Chlorobenzene                 | 108-90-7         | N.D.          | 1.                 | ug/kg | 0.86     |
| 05474         | Ethylbenzene                  | 100-41-4         | N.D.          | 1.                 | ug/kg | 0.86     |
| 05477         | Styrene                       | 100-42-5         | N.D.          | 1.                 | ug/kg | 0.86     |
| 05478         | Bromoform                     | 75-2 <b>5</b> -2 | N.D.          | 1.                 | ug/kg | 0.86     |
| 05480         | 1,1,2,2-Tetrachloroethane     | 79-34-5          | N.D.          | 1.                 | ug/kg | 0.86     |
| 06293         | Acetone                       | 67 - 64 - 1      | N.D.          | 7.                 | ug/kg | 0.86     |
| 76294         | Carbon Disulfide              | 75-15-0          | N.D.          | 1.                 | ug/kg | 0.86     |





Page 2 of 2

Lancaster Laboratories Sample No. SW 3931703

Collected:10/31/2002 13:10

by DK

Account Number: 11200

Submitted: 11/01/2002 09:20

Reported: 02/28/2003 at 12:01

Discard: 03/31/2003

5GP-1 (9-10') Grab Soil Sample

RAAP-Unit 5 Closure

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

5GP19 SDG#: RAR02-02

|      |                             |            |        | Dry                |       |            |
|------|-----------------------------|------------|--------|--------------------|-------|------------|
| CAT  |                             |            | Dry    | Method             |       | Dilution 5 |
| No.  | Analysis Name               | CAS Number | Result | Detection<br>Limit | Units | Factor     |
| 0629 | 6 2-Butanone                | 78-93-3    | N.D.   | 4.                 | ug/kg | 0.86       |
| 0629 | 7 trans-1,3-Dichloropropene | 10061-02-6 | N.D.   | 1.                 | ug/kg | 0.86       |
| 0629 | 8 cis-1,3-Dichloropropene   | 10061-01-5 | N.D.   | 1.                 | ug/kg | 0.86       |
| 0629 | 9 4-Methyl-2-pentanone      | 108-10-1   | N.D.   | 4.                 | ug/kg | 0.86       |
| 0630 | 0 2-Hexanone                | 591-78-6   | N.D.   | 4.                 | ug/kg | 0.86       |
| 0630 | l Xylene (Total)            | 1330-20-7  | N.D.   | 1.                 | ug/kg | 0.86       |
|      |                             |            |        |                    |       |            |

A site-specific MSD sample was not submitted for the project. A LCS/LCSD was performed to demonstrate precision and accuracy at a batch level.

Paired with 5GP-1 (9-10') for % MOS result. See SW3933075

| - 1 .      | ~1    |       |
|------------|-------|-------|
| Laboratory | ('hro | ทาดโค |
|            |       |       |

| CAT   |                      |                    | _      | Analysis         |                   | Dilution |
|-------|----------------------|--------------------|--------|------------------|-------------------|----------|
| No.   | Analysis Name        | Method             | Trial# | Date and Time    | Analyst           | Factor   |
| 07801 | Moisture (Re-Entry)  | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer | 1        |
| 06292 | TCL by 8260 (soil)   | SW-846 8260B       | 1      | 11/04/2002 15:24 | Roy R Mellott Jr  | 0.86     |
| 08389 | Low/High Encore Prep | SW-846 5035        | 1      | 11/01/2002 18:16 | Medina A Long     | n.a.     |
|       | Tracking             |                    |        |                  |                   |          |
| 08389 | Low/High Encore Prep | SW-846 5035        | 2      | 11/01/2002 17:07 | Medina A Long     | n.a.     |
|       | Tracking             |                    |        |                  | _                 |          |
| 08389 | Low/High Encore Prep | SW-846 5035        | 3      | 11/01/2002 17:08 | Medina A Long     | n.a.     |
|       | Tracking             |                    |        |                  | _                 |          |





Page 1 of 2

Lancaster Laboratories Sample No. SW 3931704

Collected:10/31/2002 13:50

by DK

Account Number: 11200

Submitted: 11/01/2002 09:20

Reported: 02/28/2003 at 12:01

Discard: 03/31/2003

5GP-6 (10-11') Grab Soil Sample

RAAP-Unit 5 Closure

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

Dry

5GP6- SDG#: RAR02-03

|    |             |                               |                  |                | ,                  |                |          |
|----|-------------|-------------------------------|------------------|----------------|--------------------|----------------|----------|
| CA | T           |                               |                  | Dry            | Method             |                | Dilution |
| No |             | Analysis Name                 | CAS Number       | Result         | Detection<br>Limit | Units          | Factor   |
| 07 | 801         | Moisture (Re-Entry)           | n.a.             | 12.7           | 0.060              | *              | 1        |
|    |             | The moisture result above was | taken from a sa  | ample aliquot  |                    |                |          |
|    |             | which was submitted to the la | boratory under a | a separate cha | in of custody      |                |          |
|    |             | (SDG#RAR-01). The moisture r  | esult was used f | for dry weight | calculations.      |                |          |
|    |             | See General Comments for pair | ed sample number | reference.     |                    |                |          |
|    |             |                               |                  |                |                    |                |          |
| 06 | 292         | TCL by 8260 (soil)            |                  |                |                    |                |          |
| 05 | 444         | Chloromethane                 | 74-87-3          | N.D.           | 2.                 | ug/kg          | 0.91     |
| 05 | 445         | Vinyl Chloride                | 75-01-4          | N.D.           | 1.                 | ug/kg          | 0.91     |
| 05 | 446         | Bromomethane                  | 74-83-9          | N.D.           | 2.                 | ug/kg          | 0.91     |
| 05 | 447         | Chloroethane                  | 75-00-3          | N.D.           | 2.                 | ug/kg          | 0.91     |
| 05 | 449         | 1,1-Dichloroethene            | 75-35-4          | N.D.           | 1.                 | ug/kg          | 0.91     |
| 05 | 450         | Methylene Chloride            | 75-09-2          | N.D.           | 2.                 | ug/kg          | 0.91     |
| 05 | 451         | trans-1,2-Dichloroethene      | 156-60-5         | N.D.           | 1.                 | ug/kg          | 0.91     |
| 05 | 452         | 1,1-Dichloroethane            | 75-34-3          | N.D.           | 1.                 | ug/kg          | 0.91     |
| 05 | 454         | cis-1,2-Dichloroethene        | 156-59-2         | N.D.           | 1.                 | ug/kg          | 0.91     |
| 05 | 455         | Chloroform                    | 67-66-3          | N.D.           | 1.                 | ug/kg          | 0.91     |
| 05 | 457         | 1,1,1-Trichloroethane         | 71-55-6          | N.D.           | 1.                 | ug/kg          | 0.91     |
| 05 | 458         | Carbon Tetrachloride          | 56-23-5          | N.D.           | 1.                 | ug/kg          | 0.91     |
| 05 | 460         | Benzene                       | 71-43-2          | N.D.           | 1.                 | ug/kg          | 0.91     |
| 05 | 461         | 1,2-Dichloroethane            | 107-06-2         | N.D.           | 1.                 | ug/kg          | 0.91     |
|    | 462         | Trichloroethene               | 79-01-6          | N.D.           | 1.                 | ug/kg          | 0.91     |
| 05 | 463         | 1,2-Dichloropropane           | 78-87-5          | N.D.           | 1.                 | ug/kg          | 0.91     |
|    | 465         | Bromodichloromethane          | 75-27-4          | N.D.           | 1.                 | ug/kg          | 0.91     |
|    | 466         | Toluene                       | 108-88-3         | N.D.           | 1.                 | ug/kg          | 0.91     |
| 05 | 467         | 1,1,2-Trichloroethane         | 79-00-5          | N.D.           | 1.                 | ug/kg          | 0.91     |
|    | 468         | Tetrachloroethene             | 127-18-4         | N.D.           | 1.                 | ug/kg          | 0.91     |
|    | 470         | Dibromochloromethane          | 124-48-1         | N.D.           | 1.                 | ug/kg          | 0.91     |
|    | 472         | Chlorobenzene                 | 108-90-7         | N.D.           | 1.                 | ug/kg          | 0.91     |
| 05 | 474         | Ethylbenzene                  | 100-41-4         | N.D.           | 1.                 | ug/ <b>k</b> g | 0.91     |
|    | 477         | Styrene                       | 100-42-5         | N.D.           | 1.                 | ug/kg          | 0.91     |
|    | <b>47</b> 8 | Bromoform                     | 75-25-2          | N.D.           | 1.                 | ug/k <b>g</b>  | 0.91     |
|    | 480         | 1,1,2,2-Tetrachloroethane     | 79-34-5          | <b>N</b> .D.   | 1.                 | ug/kg          | 0.91     |
|    | 293         | Acetone                       | 67-64-1          | 13. J          | 7.                 | ug/kg          | 0.91     |
| 06 | 294         | Carbon Disulfide              | 75-15-0          | N.D.           | 1.                 | ug/kg          | 0.91     |
|    |             |                               |                  |                |                    |                |          |







Page 2 of 2

Lancaster Laboratories Sample No. SW 3931704

Collected:10/31/2002 13:50

by DK

Account Number: 11200

Submitted: 11/01/2002 09:20

Reported: 02/28/2003 at 12:01

Discard: 03/31/2003

5GP-6 (10-11') Grab Soil Sample

RAAP-Unit 5 Closure

Draper Aden Associates, Inc. 2206 South Main Street

Blacksburg VA 24060

5GP6- SDG#: RAR02-03

|       |                           |                  |        | Dry                |       |          |
|-------|---------------------------|------------------|--------|--------------------|-------|----------|
| CAT   |                           |                  | Dry    | Method             |       | Dilution |
| No.   | Analysis Name             | CAS Number       | Result | Detection<br>Limit | Units | Factor   |
| 06296 | 2-Butanone                | 78-93-3          | N.D.   | 5.                 | ug/kg | 0.91     |
| 06297 | trans-1,3-Dichloropropene | 10061-02-6       | N.D.   | 1.                 | ug/kg | 0.91     |
| 06298 | cis-1,3-Dichloropropene   | 10061-01-5       | N.D.   | 1.                 | ug/kg | 0.91     |
| 06299 | 4-Methyl-2-pentanone      | 108-10-1         | N.D.   | 3.                 | ug/kg | 0.91     |
| 06300 | 2-Hexanone                | 591-78- <b>6</b> | N.D.   | 3.                 | ug/kg | 0.91     |
| 06301 | Xylene (Total)            | 1330-20-7        | N.D.   | 1.                 | ug/kg | 0.91     |
|       |                           |                  |        |                    |       |          |

A site-specific MSD sample was not submitted for the project. A LCS/LCSD was performed to demonstrate precision and accuracy at a batch level.

Paired with 5GP-6 (10-11') for % MOS result. See SW3933076

#### Laboratory Chronicle

| CAT   |                      | ·                  |        | Analysis         |                   | Dilution      |
|-------|----------------------|--------------------|--------|------------------|-------------------|---------------|
| No.   | Analysis Name        | Method             | Trial# | Date and Time    | Analyst           | <b>Factor</b> |
| 07801 | Moisture (Re-Entry)  | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer | 1             |
| 06292 | TCL by 8260 (soil)   | SW-846 8260B       | 1      | 11/04/2002 15:56 | Roy R Mellott Jr  | 0.91          |
| 08389 | Low/High Encore Prep | SW-846 5035        | 1      | 11/01/2002 18:14 | Medina A Long     | n.a.          |
|       | Tracking             |                    |        |                  |                   |               |
| 08389 | Low/High Encore Prep | SW-846 5035        | 2      | 11/01/2002 17:09 | Medina A Long     | n.a.          |
|       | Tracking             |                    |        |                  |                   |               |
| 08389 | Low/High Encore Prep | SW-846 5035        | 3      | 11/01/2002 17:10 | Medina A Long     | n.a.          |
|       | Tracking             |                    |        |                  |                   |               |

Draper Aden Associates, Inc.

2206 South Main Street

Blacksburg VA 24060

147





Page 1 of 2

Lancaster Laboratories Sample No. SW 3931705

Collected:10/31/2002 14:30 by DK Account Number: 11200

Submitted: 11/01/2002 09:20 Reported: 02/28/2003 at 12:01

Discard: 03/31/2003

5GP-3 (9-10') Grab Soil Sample

RAAP-Unit 5 Closure

5GP39 SDG#: RAR02-04

| 30133 | BBOW: Idikob 01                                                                                                   |                                              |                                 |                    |       |          |
|-------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------|--------------------|-------|----------|
|       |                                                                                                                   |                                              |                                 | Dry                |       |          |
| CAT   |                                                                                                                   |                                              | Dry                             | Method             |       | Dilution |
| No.   | Analysis Name                                                                                                     | CAS Number                                   | Result                          | Detection<br>Limit | Units | Factor   |
| 07801 | Moisture (Re-Entry)                                                                                               | n.a.                                         | 17.2                            | 0.060              | *     | 1        |
|       | The moisture result above which was submitted to the (SDG#RAR-01). The moisture See General Comments for page 15. | e laboratory under a<br>re result was used f | separate cha:<br>for dry weight |                    |       |          |
| 16292 | TCL by 8260 (soil)                                                                                                |                                              |                                 |                    |       |          |
| 05444 | Chloromethane                                                                                                     | 74-87-3                                      | N.D.                            | 2.                 | ug/kg | 0.97     |
| 05445 | Vinyl Chloride                                                                                                    | 75-01-4                                      | N.D.                            | 1.                 | ug/kg | 0.97     |

| 05444 | Chloromethane             | 74-87-3  | N.D. | 2. | ug/kg   | 0.97 |
|-------|---------------------------|----------|------|----|---------|------|
| 05445 | Vinyl Chloride            | 75-01-4  | N.D. | 1. | ug/kg   | 0.97 |
| 05446 | Bromomethane              | 74-83-9  | N.D. | 2. | ug/kg   | 0.97 |
| 05447 | Chloroethane              | 75-00-3  | N.D. | 2. | ug/kg   | 0.97 |
| 05449 | 1,1-Dichloroethene        | 75-35-4  | N.D. | 1. | ug/kg   | 0.97 |
| 05450 | Methylene Chloride        | 75-09-2  | N.D. | 2. | ug/kg   | 0.97 |
| 05451 | trans-1,2-Dichloroethene  | 156-60-5 | N.D. | 1. | ug/kg   | 0.97 |
| 05452 | 1,1-Dichloroethane        | 75-34-3  | N.D. | 1. | ug/kg   | 0.97 |
| 05454 | cis-1,2-Dichloroethene    | 156-59-2 | N.D. | 1. | ug/kg   | 0.97 |
| 05455 | Chloroform                | 67-66-3  | N.D. | 1. | ug/kg   | 0.97 |
| 05457 | 1,1,1-Trichloroethane     | 71-55-6  | N.D. | 1. | ug/kg   | 0.97 |
| 05458 | Carbon Tetrachloride      | 56-23-5  | N.D. | 1. | ug/kg   | 0.97 |
| 05460 | Benzene                   | 71-43-2  | N.D. | 1. | · ug/kg | 0.97 |
| 05461 | 1,2-Dichloroethane        | 107-06-2 | N.D. | 1. | ug/kg   | 0.97 |
| 05462 | Trichloroethene           | 79-01-6  | N.D. | 1. | ug/kg   | 0.97 |
| 05463 | 1,2-Dichloropropane       | 78-87-5  | N.D. | 1. | ug/kg   | 0.97 |
| 05465 | Bromodichloromethane      | 75-27-4  | N.D. | 1. | ug/kg   | 0.97 |
| 05466 | Toluene                   | 108-88-3 | N.D. | 1. | ug/kg   | 0.97 |
| 05467 | 1,1,2-Trichloroethane     | 79-00-5  | N.D. | 1. | ug/kg   | 0.97 |
| 05468 | Tetrachloroethene         | 127-18-4 | N.D. | 1. | ug/kg   | 0.97 |
| 05470 | Dibromochloromethane      | 124-48-1 | N.D. | 1. | ug/kg   | 0.97 |
| 05472 | Chlorobenzene             | 108-90-7 | N.D. | 1. | ug/kg   | 0.97 |
| 05474 | Ethylbenzene              | 100-41-4 | N.D. | 1. | ug/kg   | 0.97 |
| 05477 | Styrene                   | 100-42-5 | N.D. | 1. | ug/kg   | 0.97 |
| 05478 | Bromoform                 | 75-25-2  | N.D. | 1. | ug/kg   | 0.97 |
| 05480 | 1,1,2,2-Tetrachloroethane | 79-34-5  | N.D. | 1. | ug/kg   | 0.97 |
| 06293 | Acetone                   | 67-64-1  | N.D. | 8. | ug/kg   | 0.97 |
| 5294  | Carbon Disulfide          | 75-15-0  | N.D. | 1. | ug/kg   | 0.97 |
|       |                           |          |      |    |         |      |



148 REPRINT

Page 2 of 2

Lancaster Laboratories Sample No. SW 3931705

Collected:10/31/2002 14:30 by DK Account Number: 11200

Submitted: 11/01/2002 09:20 Draper Aden Associates, Inc.

Reported: 02/28/2003 at 12:01 2206 South Main Street
Discard: 03/31/2003 Blacksburg VA 24060

RAAP-Unit 5 Closure

5GP39 SDG#: RAR02-04

5GP-3 (9-10') Grab Soil Sample

|       |                           |            |        | νry                |       |          |
|-------|---------------------------|------------|--------|--------------------|-------|----------|
| CAT   |                           |            | Dry    | Method             |       | Dilution |
| No.   | Analysis Name             | CAS Number | Result | Detection<br>Limit | Units | Factor   |
| 06296 | 2-Butanone                | 78-93-3    | N.D.   | 5.                 | ug/kg | 0.97     |
| 06297 | trans-1,3-Dichloropropene | 10061-02-6 | N.D.   | 1.                 | ug/kg | 0.97     |
| 06298 | cis-1,3-Dichloropropene   | 10061-01-5 | N.D.   | 1.                 | ug/kg | 0.97     |
| 06299 | 4-Methyl-2-pentanone      | 108-10-1   | N.D.   | 4.                 | ug/kg | 0.97     |
| 06300 | 2-Hexanone                | 591-78-6   | N.D.   | 4.                 | ug/kg | 0.97     |
| 06301 | Xylene (Total)            | 1330-20-7  | N.D.   | 1.                 | ug/kg | 0.97     |
|       |                           |            |        |                    |       |          |

A site-specific MSD sample was not submitted for the project. A LCS/LCSD was performed to demonstrate precision and accuracy at a batch level.

Paired with 5GP-3 (9-10') for % MOS result. See SW3933077

| Laboratory Chronicle |                                  |                    |        |                  |                   |          |  |
|----------------------|----------------------------------|--------------------|--------|------------------|-------------------|----------|--|
| CAT                  |                                  | _                  |        | Analysis         |                   | Dilution |  |
| No.                  | Analysis Name                    | Method             | Trial# | Date and Time    | Analyst           | Factor   |  |
| 07801                | Moisture (Re-Entry)              | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer | 1        |  |
| 06292                | TCL by 8260 (soil)               | SW-846 8260B       | 1      | 11/04/2002 16:29 | Roy R Mellott Jr  | 0.97     |  |
| 08389                | Low/High Encore Prep<br>Tracking | SW-846 5035        | 1      | 11/01/2002 18:08 | Medina A Long     | n.a.     |  |
| 08389                | Low/High Encore Prep<br>Tracking | SW-846 5035        | 2      | 11/01/2002 17:11 | Medina A Long     | n.a.     |  |
| 08389                | Low/High Encore Prep<br>Tracking | SW-846 5035        | 3      | 11/01/2002 17:12 | Medina A Long     | n.a.     |  |







Page 1 of 2

Lancaster Laboratories Sample No. SW 3931706

Collected:10/31/2002 15:50 by DK Account Number: 11200

Submitted: 11/01/2002 09:20 Draper Aden Associates, Inc.

Reported: 02/28/2003 at 12:01 2206 South Main Street Discard: 03/31/2003 Blacksburg VA 24060

RAAP-Unit 5 Closure

5GP87 SDG#: RAR02~05

5GP-8 (7-8') Grab Soil Sample

|       |                                  |                 |                   | DLY                |       |          |
|-------|----------------------------------|-----------------|-------------------|--------------------|-------|----------|
| CAT   |                                  |                 | Dry               | Method             |       | Dilution |
| No.   | Analysis Name                    | CAS Number      | Result            | Detection<br>Limit | Units | Factor   |
| 07801 | Moisture (Re-Entry)              | n.a.            | 14.6              | 0.060              | *     | 1        |
|       | The moisture result above was to | aken from a sa  | mple aliquot      |                    |       |          |
|       | which was submitted to the labor | ratory under a  | separate chain o  | f custody          |       |          |
|       | (SDG#RAR-01). The moisture resu  | ult was used f  | or dry weight cal | culations.         |       |          |
|       | See General Comments for paired  | sample number   | reference.        |                    |       |          |
|       |                                  |                 |                   |                    |       |          |
| 06292 | TCL by 8260 (soil)               |                 |                   |                    |       |          |
|       |                                  |                 |                   |                    |       | 0.04     |
| 05444 | Chloromethane                    | 74-87-3         | N.D.              | 2.                 | ug/kg | 0.94     |
| 05445 | Vinyl Chloride                   | 75-01-4         | N.D.              | 1.                 | ug/kg | 0.94     |
| 05446 | Bromomethane                     | 74-83-9         | N.D.              | 2.                 | ug/kg | 0.94     |
| 05447 | Chloroethane                     | 75-00-3         | N.D.              | 2.                 | ug/kg | 0.94     |
| 05449 | 1,1-Dichloroethene               | 75-35-4         | N.D.              | 1.                 | ug/kg | 0.94     |
| 05450 | Methylene Chloride               | 75-09-2         | N.D.              | 2.                 | ug/kg | 0.94     |
| 05451 | trans-1,2-Dichloroethene         | 156-60-5        | N.D.              | 1.                 | ug/kg | 0.94     |
| 05452 | 1,1-Dichloroethane               | 75-34-3         | N.D.              | 1.                 | ug/kg | 0.94     |
| 05454 | cis-1,2-Dichloroethene           | 156-59-2        | N.D.              | 1.                 | ug/kg | 0.94     |
| 05455 | Chloroform                       | 67-66-3         | N.D.              | 1.                 | ug/kg | 0.94     |
| 05457 | 1,1,1-Trichloroethane            | 71-55-6         | N.D.              | 1.                 | ug/kg | 0.94     |
| 05458 | Carbon Tetrachloride             | 56-23-5         | N.D.              | 1.                 | ug/kg | 0.94     |
| 05460 | Benzene                          | 71-43-2         | N.D.              | 1.                 | ug/kg | 0.94     |
| 05461 | 1,2-Dichloroethane               | 107-06-2        | N.D.              | 1.                 | ug/kg | 0.94     |
| 05462 | Trichloroethene                  | 79-01-6         | N.D.              | 1.                 | ug/kg | 0.94     |
| 05463 | 1,2-Dichloropropane              | 78-87-5         | N.D.              | 1.                 | ug/kg | 0.94     |
| 05465 | Bromodichloromethane             | 75-27-4         | N.D.              | 1.                 | ug/kg | 0.94     |
| 05466 | Toluene                          | 108-88-3        | N.D.              | 1.                 | ug/kg | 0.94     |
| 05467 | 1,1,2-Trichloroethane            | 79-00-5         | N.D.              | 1.                 | ug/kg | 0.94     |
| 05468 | Tetrachloroethene                | 127-18-4        | N.D.              | 1.                 | ug/kg | 0.94     |
| 05470 | Dibromochloromethane             | 124-48-1        | N.D.              | 1.                 | ug/kg | 0.94     |
| 05472 | Chlorobenzene                    | 108-90-7        | N.D.              | 1.                 | ug/kg | 0.94     |
| 05474 | Ethylbenzene                     | 100-41-4        | N.D.              | 1.                 | ug/kg | 0.94     |
| 05477 | Styrene                          | 100-42-5        | N.D.              | 1.                 | ug/kg | 0.94     |
| 05478 | Bromoform                        | 75-25-2         | N.D.              | 1.                 | ug/kg | 0.94     |
| 05480 | 1,1,2,2-Tetrachloroethane        | <b>79-34-</b> 5 | N.D.              | 1.                 | ug/kg | 0.94     |
| 06293 | Acetone                          | 67-64-1         | <b>N</b> .D.      | 8.                 | ug/kg | 0.94     |
| 26294 | Carbon Disulfide                 | 75-15-0         | N.D.              | 1.                 | ug/kg | 0.94     |

Dry





Page 2 of 2

Lancaster Laboratories Sample No. SW 3931706

Collected:10/31/2002 15:50 by DK Account Number: 11200

Submitted: 11/01/2002 09:20 Draper Aden Associates, Inc.

Reported: 02/28/2003 at 12:01 2206 South Main Street

Discard: 03/31/2003 Blacksburg VA 24060 5GP-8 (7-8') Grab Soil Sample

RAAP-Unit 5 Closure

5GP87 SDG#: RAR02-05

|       |                           |            |        | Dry                |       |          |
|-------|---------------------------|------------|--------|--------------------|-------|----------|
| CAT   |                           |            | Dry    | Method             |       | Dilution |
| No.   | Analysis Name             | CAS Number | Result | Detection<br>Limit | Units | Factor   |
| 06296 | 2-Butanone                | 78-93-3    | N.D.   | 5.                 | ug/kg | 0.94     |
| 06297 | trans-1,3-Dichloropropene | 10061-02-6 | N.D.   | 1.                 | ug/kg | 0.94     |
| 06298 | cis-1,3-Dichloropropene   | 10061-01-5 | N.D.   | 1.                 | ug/kg | 0.94     |
| 06299 | 4-Methyl-2-pentanone      | 108-10-1   | N.D.   | 4.                 | ug/kg | 0.94     |
| 06300 | 2-Hexanone                | 591-78-6   | N.D.   | 4.                 | ug/kg | 0.94     |
| 06301 | Xylene (Total)            | 1330-20-7  | N.D.   | 1.                 | ug/kg | 0.94     |

A site-specific MSD sample was not submitted for the project. A LCS/LCSD was performed to demonstrate precision and accuracy at a batch level.

Paired with 5GP-8 (7-8') for % MOS result. See SW3933078

#### Laboratory Chronicle

| CAT   |                      |                    |        | Analysis         |                   | Dilution |
|-------|----------------------|--------------------|--------|------------------|-------------------|----------|
| No.   | Analysis Name        | Method             | Trial# | Date and Time    | Analyst           | Factor   |
| 07801 | Moisture (Re-Entry)  | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer | 1        |
| 06292 | TCL by 8260 (soil)   | SW-846 8260B       | 1      | 11/04/2002 17:02 | Roy R Mellott Jr  | 0.94     |
| 08389 | Low/High Encore Prep | SW-846 5035        | 1      | 11/01/2002 18:10 | Medina A Long     | n.a.     |
|       | Tracking             |                    |        |                  |                   |          |
| 08389 | Low/High Encore Prep | SW-846 5035        | 2      | 11/01/2002 17:13 | Medina A Long     | n.a.     |
|       | Tracking             |                    |        |                  |                   |          |
| 08389 | Low/High Encore Prep | SW-846 5035        | 3      | 11/01/2002 17:14 | Medina A Long     | n.a.     |
|       | Tracking             |                    |        |                  |                   |          |







Page 1 of 2

Lancaster Laboratories Sample No. SW 3931707

Collected:10/31/2002 16:05 by DK Account Number: 11200

Submitted: 11/01/2002 09:20 Reported: 02/28/2003 at 12:01

Discard: 03/31/2003

5GP-8 (11-12') Grab Soil Sample

RAAP-Unit 5 Closure

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

5GP8- SDG#: RAR02-06

|       |                                |                  |              | Dry             |                        |          |
|-------|--------------------------------|------------------|--------------|-----------------|------------------------|----------|
| CAT   |                                |                  | Dry          | Method          |                        | Dilution |
| No.   | Analysis Name                  | CAS Number       | Result       | Detection       | Units                  | Factor   |
|       |                                |                  |              | Limit           |                        |          |
| 07801 | Moisture (Re-Entry)            | n.a.             | 14.5         | 0.060           | 8                      | 1        |
|       | The moisture result above was  |                  |              |                 |                        |          |
|       | which was submitted to the lab |                  |              |                 |                        |          |
|       | (SDG#RAR-01). The moisture re  |                  |              | t calculations. |                        |          |
|       | See General Comments for paire | ed sample number | reference.   |                 |                        |          |
| 0.000 | mor 1 - 0000 (1)               |                  |              |                 |                        |          |
| 06292 | TCL by 8260 (soil)             |                  |              |                 |                        |          |
| 05444 | Chloromethane                  | 74-87-3          | N.D.         | 2.              | ug/kg                  | 0.86     |
| 05445 | Vinyl Chloride                 | 75-01-4          | N.D.         | 1.              | ug/kg                  | 0.86     |
| 05446 | Bromomethane                   | 74-83-9          | N.D.         | 2.              | ug/kg                  | 0.86     |
| 05447 | Chloroethane                   | 75-00-3          | N.D.         | 2.              | ug/kg                  | 0.86     |
| 05449 | 1,1-Dichloroethene             | 75-35-4          | N.D.         | 1.              | ug/kg                  | 0.86     |
| 05450 | Methylene Chloride             | 75-09-2          | N.D.         | 2.              | ug/kg                  | 0.86     |
| 05451 | trans-1,2-Dichloroethene       | 156-60-5         | N.D.         | 1.              | ug/kg                  | 0.86     |
| 05452 | 1,1-Dichloroethane             | 75-34-3          | N.D.         | 1.              | ug/kg                  | 0.86     |
| 05454 | cis-1,2-Dichloroethene         | 156-59-2         | N.D.         | 1.              | ug/kg                  | 0.86     |
| 05455 | Chloroform                     | 67-66-3          | N.D.         | 1.              | ug/kg                  | 0.86     |
| 05457 | 1,1,1-Trichloroethane          | 71-55- <b>6</b>  | N.D.         | 1.              | ug/kg                  | 0.86     |
| 05458 | Carbon Tetrachloride           | 56-23-5          | N.D.         | 1.              | ug/kg                  | 0.86     |
| 05460 | Benzene                        | 71-43-2          | N.D.         | 1. **           | ug/kg                  | 0.86     |
| 05461 | 1,2-Dichloroethane             | 107-06-2         | N.D.         | 1.              | ug/kg                  | 0.86     |
| 05462 | Trichloroethene                | 79-01-6          | N.D.         | 1.              | ug/kg                  | 0.86     |
| 05463 | 1,2-Dichloropropane            | 78-87-5          | N.D.         | 1.              | ug/kg                  | 0.86     |
| 05465 | Bromodichloromethane           | 75-27-4          | N.D.         | 1.              | ug/kg                  | 0.86     |
| 05466 | Toluene                        | 108-88-3         | N.D.         | 1.              | ug/kg                  | 0.86     |
| 05467 | 1,1,2-Trichloroethane          | 79-00-5          | N.D.         | 1.              | ug/kg                  | 0.86     |
| 05468 | Tetrachloroethene              | 127-18-4         | N.D.         | 1.              | ug/kg                  | 0.86     |
| 05470 | Dibromochloromethane           | 124-48-1         | N.D.         | 1.              | ug/kg                  | 0.86     |
| 05472 | Chlorobenzene                  | 108-90-7         | N.D.         | 1.              | ug/kg                  | 0.86     |
| 05474 | Ethylbenzene                   | 100-41-4         | N.D.         | 1.              | ug/kg                  | 0.86     |
| 05477 | Styrene                        | 100-42-5         | N.D.         | 1.              | ug/kg                  | 0.86     |
| 05478 | Bromoform                      | 75-25-2          | N.D.         | 1.              | ug/kg                  | 0.86     |
| 05480 | 1,1,2,2-Tetrachloroethane      | 79-34-5          | <b>N</b> .D. | 1.              | <b>u</b> g/ <b>k</b> g | 0.86     |
| 06293 | Acetone                        | 67-64-1          | 16. J        | 7.              | ug/kg                  | 0.86     |
| 16294 | Carbon Disulfide               | 75-15-0          | N.D.         | 1.              | ug/kg                  | 0.86     |





Page 2 of 2

Lancaster Laboratories Sample No. 3931707

Collected:10/31/2002 16:05

by DK

Account Number: 11200

Submitted: 11/01/2002 09:20

Reported: 02/28/2003 at 12:01

Discard: 03/31/2003

5GP-8 (11-12') Grab Soil Sample

RAAP-Unit 5 Closure

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

5GP8-SDG#: RAR02-06

|       |                           |            |        | Dry                |       |          |
|-------|---------------------------|------------|--------|--------------------|-------|----------|
| CAT   |                           |            | Dry    | Method             |       | Dilution |
| No.   | Analysis Name             | CAS Number | Result | Detection<br>Limit | Units | Factor   |
| 06296 | 2-Butanone                | 78-93-3    | N.D.   | 4.                 | ug/kg | 0.86     |
| 06297 | trans-1,3-Dichloropropene | 10061-02-6 | N.D.   | 1.                 | ug/kg | 0.86     |
| 06298 | cis-1,3-Dichloropropene   | 10061-01-5 | N.D.   | 1.                 | ug/kg | 0.86     |
| 06299 | 4-Methyl-2-pentanone      | 108-10-1   | N.D.   | 4.                 | ug/kg | 0.86     |
| 06300 | 2-Hexanone                | 591-78-6   | N.D.   | 4.                 | ug/kg | 0.86     |
| 06301 | Xylene (Total)            | 1330-20-7  | N.D.   | 1.                 | ug/kg | 0.86     |
|       | <del>-</del>              |            |        |                    |       |          |

A site-specific MSD sample was not submitted for the project. A LCS/LCSD was performed to demonstrate precision and accuracy at a batch level.

Paired with 5GP-8 (11-12') for % MOS result. See SW3933079


#### Laboratory Chronicle

| CAT   |                      |                    |        | Analysis         |                   | Dilution |
|-------|----------------------|--------------------|--------|------------------|-------------------|----------|
| No.   | Analysis Name        | Method             | Trial# | Date and Time    | Analyst           | Factor   |
| 07801 | Moisture (Re-Entry)  | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer | 1        |
| 06292 | TCL by 8260 (soil)   | SW-846 8260B       | 1      | 11/04/2002 17:34 | Roy R Mellott Jr  | 0.86     |
| 08389 | Low/High Encore Prep | SW-846 5035        | 1      | 11/01/2002 18:12 | Medina A Long     | n.a.     |
|       | Tracking             |                    |        |                  |                   |          |
| 08389 | Low/High Encore Prep | SW-846 5035        | 2      | 11/01/2002 17:15 | Medina A Long     | n.a.     |
|       | Tracking             |                    |        |                  |                   |          |
| 08389 | Low/High Encore Prep | SW-846 5035        | 3      | 11/01/2002 17:16 | Medina A Long     | n.a.     |
|       | Tracking             |                    |        |                  | _                 |          |

Dry

153





Page 1 of 2

Lancaster Laboratories Sample No. SW 3931708

Collected:10/31/2002 16:40 by DK Account Number: 11200

Submitted: 11/01/2002 09:20 Draper Aden Associates, Inc.

Reported: 02/28/2003 at 12:01 2206 South Main Street

Discard: 03/31/2003 Blacksburg VA 24060

RAAP-Unit 5 Closure

5GP-12 (3-4') Grab Soil Sample

5GP12 SDG#: RAR02-07

| CAT   |                                  |               | Dry        | Method      |       | Dilution |
|-------|----------------------------------|---------------|------------|-------------|-------|----------|
| No.   | Analysis Name                    | CAS Number    | Result     | Detection   | Units | Factor   |
|       |                                  |               |            | Limit       |       |          |
| 07801 | Moisture (Re-Entry)              | n.a.          | 16.3       | 0.060       | ક     | 1        |
|       | The moisture result above was to |               |            |             |       |          |
|       | which was submitted to the labor |               |            |             |       |          |
|       | (SDG#RAR-01). The moisture res   |               |            | lculations. |       |          |
|       | See General Comments for paired  | sample number | reference. |             |       |          |
| 06292 | TCL by 8260 (soil)               |               |            |             |       |          |
| 00232 | TCH by 8280 (SOII)               |               |            |             |       |          |
| 05444 | Chloromethane                    | 74-87-3       | N.D.       | 2.          | ug/kg | 0.81     |
| 05445 | Vinyl Chloride                   | 75-01-4       | N.D.       | 1.          | ug/kg | 0.81     |
| 05446 | Bromomethane                     | 74-83-9       | N.D.       | 2.          | ug/kg | 0.81     |
| 05447 | Chloroethane                     | 75-00-3       | N.D.       | 2.          | ug/kg | 0.81     |
| 05449 | 1,1-Dichloroethene               | 75-35-4       | N.D.       | 1.          | ug/kg | 0.81     |
| 05450 | Methylene Chloride               | 75-09-2       | N.D.       | 2.          | ug/kg | 0.81     |
| 05451 | trans-1,2-Dichloroethene         | 156-60-5      | N.D.       | 1.          | ug/kg | 0.81     |
| 05452 | 1,1-Dichloroethane               | 75 - 34 - 3   | N.D.       | 1.          | ug/kg | 0.81     |
| 05454 | cis-1,2-Dichloroethene           | 156-59-2      | N.D.       | 1.          | ug/kg | 0.81     |
| 05455 | Chloroform                       | 67-66-3       | N.D.       | 1.          | ug/kg | 0.81     |
| 05457 | 1,1,1-Trichloroethane            | 71-55-6       | N.D.       | 1.          | ug/kg | 0.81     |
| 05458 | Carbon Tetrachloride             | 56-23-5       | N.D.       | 1.          | ug/kg | 0.81     |
| 05460 | Benzene                          | 71-43-2       | N.D.       | 1.          | ug/kg | 0.81     |
| 05461 | 1,2-Dichloroethane               | 107-06-2      | N.D.       | 1.          | ug/kg | 0.81     |
| 05462 | Trichloroethene                  | 79-01-6       | N.D.       | 1.          | ug/kg | 0.81     |
| 05463 | 1,2-Dichloropropane              | 78-87-5       | N.D.       | 1.          | ug/kg | 0.81     |
| 05465 | Bromodichloromethane             | 75-27-4       | N.D.       | 1.          | ug/kg | 0.81     |
| 05466 | Toluene                          | 108-88-3      | N.D.       | 1.          | ug/kg | 0.81     |
| 05467 | 1,1,2-Trichloroethane            | 79-00-5       | N.D.       | 1.          | ug/kg | 0.81     |
| 05468 | Tetrachloroethene                | 127-18-4      | N.D.       | 1.          | ug/kg | 0.81     |
| 05470 | Dibromochloromethane             | 124-48-1      | N.D.       | 1.          | ug/kg | 0.81     |
| 05472 | Chlorobenzene                    | 108-90-7      | N.D.       | 1.          | ug/kg | 0.81     |
| 05474 | Ethylbenzene                     | 100-41-4      | N.D.       | 1.          | ug/kg | 0.81     |
| 05477 | Styrene                          | 100-42-5      | N.D.       | 1.          | ug/kg | 0.81     |
| 05478 | Bromoform                        | 75-25-2       | N.D.       | 1.          | ug/kg | 0.81     |
| 05480 | 1,1,2,2-Tetrachloroethane        | 79-34-5       | N.D.       | 1.          | ug/kg | 0.81     |
| 06293 | Acetone                          | 67-64-1       | 11. J      | 7.          | ug/kg | 0.81     |
| 16294 | Carbon Disulfide                 | 75-15-0       | N.D.       | 1.          | ug/kg | 0.81     |
|       |                                  |               |            |             |       |          |



154





Lancaster Laboratories Sample No. 3931708

Collected:10/31/2002 16:40 Account Number: 11200

Submitted: 11/01/2002 09:20 Draper Aden Associates, Inc. Reported: 02/28/2003 at 12:01 2206 South Main Street

Discard: 03/31/2003

5GP-12 (3-4') Grab Soil Sample

RAAP-Unit 5 Closure

Blacksburg VA 24060

5GP12 SDG#: RAR02-07

|       |                           |            |        | Dry                |       |          |
|-------|---------------------------|------------|--------|--------------------|-------|----------|
| CAT   |                           |            | Dry    | Method             |       | Dilution |
| No.   | Analysis Name             | CAS Number | Result | Detection<br>Limit | Units | Factor   |
| 06296 | 2-Butanone                | 78-93-3    | N.D.   | 4.                 | ug/kg | 0.81     |
| 06297 | trans-1,3-Dichloropropene | 10061-02-6 | N.D.   | 1.                 | ug/kg | 0.81     |
| 06298 | cis-1,3-Dichloropropene   | 10061-01-5 | N.D.   | 1.                 | ug/kg | 0.81     |
| 06299 | 4-Methyl-2-pentanone      | 108-10-1   | N.D.   | 2.                 | ug/kg | 0.81     |
| 06300 | 2-Hexanone                | 591-78-6   | N.D.   | 2.                 | ug/kg | 0.81     |
| 06301 | Xylene (Total)            | 1330-20-7  | N.D.   | 1.                 | ug/kg | 0.81     |

A site-specific MSD sample was not submitted for the project. A LCS/LCSD was performed to demonstrate precision and accuracy at a batch level.

Paired with 5GP-12 (3-4') for % MOS result. See SW3933080

| Laboratory | Chronialo |
|------------|-----------|
| Laboratory | curonicie |

| CAT   |                      | -                  | -      | Analysis         |                   | Dilution      |
|-------|----------------------|--------------------|--------|------------------|-------------------|---------------|
| No.   | Analysis Name        | Method             | Trial# | Date and Time    | Analyst           | <b>Factor</b> |
| 07801 | Moisture (Re-Entry)  | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer | 1             |
| 06292 | TCL by 8260 (soil)   | SW-846 8260B       | 1      | 11/04/2002 18:07 | Roy R Mellott Jr  | 0.81          |
| 08389 | Low/High Encore Prep | SW-846 5035        | 1      | 11/01/2002 18:04 | Medina A Long     | n.a.          |
|       | Tracking             |                    |        |                  | -                 |               |
| 08389 | Low/High Encore Prep | SW-846 5035        | 2      | 11/01/2002 17:17 | Medina A Long     | n.a.          |
|       | Tracking             |                    |        |                  | _                 |               |
| 08389 | Low/High Encore Prep | SW-846 5035        | 3      | 11/01/2002 17:18 | Medina A Long     | n.a.          |
|       | Tracking             |                    |        |                  | _                 |               |

155





Page 1 of 2

Lancaster Laboratories Sample No. SW 3931709

Collected:10/31/2002 17:00 by DK Account Number: 11200

Submitted: 11/01/2002 09:20 Draper Aden Associates, Inc.

Reported: 02/28/2003 at 12:01 2206 South Main Street Discard: 03/31/2003 Blacksburg VA 24060

5GP-16 (3-4') Grab Soil Sample RAAP-Unit 5 Closure

5GP16 SDG#: RAR02-08

|       |                               |                  |            | Dry           |       |          |
|-------|-------------------------------|------------------|------------|---------------|-------|----------|
| CAT   |                               |                  | Dry        | Method        |       | Dilution |
| No.   | Analysis Name                 | CAS Number       | Result     | Detection     | Units | Factor   |
|       |                               |                  |            | Limit         | _     | _        |
| 07801 | Moisture (Re-Entry)           | n.a.             | 17.9       | 0.060         | *     | 1        |
|       | The moisture result above was |                  |            |               |       |          |
|       | which was submitted to the la |                  |            |               |       |          |
|       | (SDG#RAR-01). The moisture r  |                  |            | calculations. |       |          |
|       | See General Comments for pair | ed sample number | reference. |               |       |          |
|       | mar 1 0000 ( '1)              |                  |            |               |       |          |
| 16292 | TCL by 8260 (soil)            |                  |            |               |       |          |
| 05444 | Chloromethane                 | 74-87-3          | N.D.       | 2.            | ug/kg | 0.97     |
| 05445 | Vinyl Chloride                | 75-01-4          | N.D.       | 1.            | ug/kg | 0.97     |
| 05446 | Bromomethane                  | 74-83-9          | N.D.       | 2.            | ug/kg | 0.97     |
| 05447 | Chloroethane                  | 75-00-3          | N.D.       | 2.            | ug/kg | 0.97     |
| 05449 | 1,1-Dichloroethene            | 75-35-4          | N.D.       | 1.            | ug/kg | 0.97     |
| 05450 | Methylene Chloride            | 75-09-2          | N.D.       | 2.            | ug/kg | 0.97     |
| 05451 | trans-1,2-Dichloroethene      | 156-60-5         | N.D.       | 1.            | ug/kg | 0.97     |
| 05452 | 1,1-Dichloroethane            | 75-34-3          | N.D.       | 1.            | ug/kg | 0.97     |
| 05454 | cis-1,2-Dichloroethene        | 156-59-2         | N.D.       | 1.            | ug/kg | 0.97     |
| 05455 | Chloroform                    | 67-66-3          | N.D.       | 1.            | ug/kg | 0.97     |
| 05457 | 1,1,1-Trichloroethane         | 71-55-6          | N.D.       | 1.            | ug/kg | 0.97     |
| 05458 | Carbon Tetrachloride          | 56-23-5          | N.D.       | 1.            | ug/kg | 0.97     |
| 05460 | Benzene                       | 71-43-2          | N.D.       | 1.            | ug/kg | 0.97     |
| 05461 | 1,2-Dichloroethane            | 107-06-2         | N.D.       | 1.            | ug/kg | 0.97     |
| 05462 | Trichloroethene               | 79-01-6          | N.D.       | 1.            | ug/kg | 0.97     |
| 05463 | 1,2-Dichloropropane           | 78-87-5          | N.D.       | 1.            | ug/kg | 0.97     |
| 05465 | Bromodichloromethane          | 75-27-4          | N.D.       | 1.            | ug/kg | 0.97     |
| 05466 | Toluene                       | 108-88-3         | N.D.       | 1.            | ug/kg | 0.97     |
| 05467 | 1,1,2-Trichloroethane         | 79-00-5          | N.D.       | 1.            | ug/kg | 0.97     |
| 05468 | Tetrachloroethene             | 127-18-4         | N.D.       | 1.            | ug/kg | 0.97     |
| 05470 | Dibromochloromethane          | 124-48-1         | N.D.       | 1.            | ug/kg | 0.97     |
| 05472 | Chlorobenzene                 | 108-90-7         | N.D.       | 1.            | ug/kg | 0.97     |
| 05474 | Ethylbenzene                  | 100-41-4         | N.D.       | 1.            | ug/kg | 0.97     |
| 05477 | Styrene                       | 100-42-5         | N.D.       | 1.            | ug/kg | 0.97     |
| 05478 | Bromoform                     | 75-25-2          | N.D.       | 1.            | ug/kg | 0.97     |
| 05480 | 1,1,2,2-Tetrachloroethane     | 79-34-5          | N.D.       | 1.            | ug/kg | 0.97     |
| 06293 | Acetone                       | 67-64-1          | N.D.       | 9.            | ug/kg | 0.97     |
| `6294 | Carbon Disulfide              | 75-15-0          | N.D.       | 1.            | ug/kg | 0.97     |
|       |                               |                  |            |               |       |          |





Page 2 of 2

Lancaster Laboratories Sample No. SW 3931709

Collected:10/31/2002 17:00

by DK

Account Number: 11200

Submitted: 11/01/2002 09:20

Reported: 02/28/2003 at 12:01

Discard: 03/31/2003

5GP-16 (3-4') Grab Soil Sample

RAAP-Unit 5 Closure

Draper Aden Associates, Inc. 2206 South Main Street

Blacksburg VA 24060

5GP16 SDG#: RAR02-08

|       |                           |            |        | pry                |       |          |
|-------|---------------------------|------------|--------|--------------------|-------|----------|
| CAT   |                           |            | Dry    | Method             |       | Dilution |
| No.   | Analysis Name             | CAS Number | Result | Detection<br>Limit | Units | Factor   |
| 06296 | 2-Butanone                | 78-93-3    | N.D.   | 5.                 | ug/kg | 0.97     |
| 06297 | trans-1,3-Dichloropropene | 10061-02-6 | N.D.   | 1.                 | ug/kg | 0.97     |
| 06298 | cis-1,3-Dichloropropene   | 10061-01-5 | N.D.   | 1.                 | ug/kg | 0.97     |
| 06299 | 4-Methyl-2-pentanone      | 108-10-1   | N.D.   | 4.                 | ug/kg | 0.97     |
| 06300 | 2-Hexanone                | 591-78-6   | N.D.   | 4.                 | ug/kg | 0.97     |
| 06301 | Xylene (Total)            | 1330-20-7  | N.D.   | 1.                 | ug/kg | 0.97     |
|       |                           |            |        |                    |       |          |

A site-specific MSD sample was not submitted for the project. A LCS/LCSD was performed to demonstrate precision and accuracy at a batch level.

Paired with 5GP-16 (3-4') for % MOS result. See SW3933081

Laboratory Chronicle

| CAT   |                      | •                  | -      | Analysis         |                   | Dilution |
|-------|----------------------|--------------------|--------|------------------|-------------------|----------|
| No.   | Analysis Name        | Method             | Trial# | Date and Time    | Analyst           | Factor   |
| 07801 | Moisture (Re-Entry)  | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer | 1        |
| 06292 | TCL by $8260$ (soil) | SW-846 8260B       | 1      | 11/04/2002 18:40 | Roy R Mellott Jr  | 0.97     |
| 08389 | Low/High Encore Prep | SW-846 5035        | 1      | 11/01/2002 18:06 | Medina A Long     | n.a.     |
|       | Tracking             |                    |        |                  |                   |          |
| 08389 | Low/High Encore Prep | SW-846 5035        | 2      | 11/01/2002 17:19 | Medina A Long     | n.a.     |
|       | Tracking             |                    |        |                  | _                 |          |
| 08389 | Low/High Encore Prep | SW-846 5035        | 3      | 11/01/2002 17:20 | Medina A Long     | n.a.     |
|       | Tracking             |                    |        |                  | _                 |          |

Group Number: 829085





Page 1 of 3

#### Quality Control Summary

Client Name: Draper Aden Associates, Inc.

Reported: 02/28/03 at 12:02 PM

#### Laboratory Compliance Quality Control

| Analysis Name             | Blank<br>Result | Blank<br>MDL | Report<br><u>Units</u> | LCS<br>%REC | LCSD<br>%REC | LCS/LCSD<br>Limits | RPD | RPD Max |
|---------------------------|-----------------|--------------|------------------------|-------------|--------------|--------------------|-----|---------|
| Batch number: K023081AA   | Sample nu       | umber(s):    | 3931702-39             | 31709       |              |                    |     |         |
| Chloromethane             | N.D.            | 2.           | ug/kg                  | 111         | 106          | 47-133             | 4   | 30      |
| Vinyl Chloride            | N.D.            | 1.           | ug/kg                  | 105         | 99           | 57-132             | 5   | 30      |
| Bromomethane              | N.D.            | 2.           | ug/kg                  | 88          | 82           | 54-129             | 7   | 30      |
| Chloroethane              | N.D.            | 2.           | ug/kg                  | 101         | 94           | 66-130             | 7   | 30      |
| 1,1-Dichloroethene        | N.D.            | 1.           | ug/kg                  | 98          | 91           | 77-139             | 7   | 30      |
| Methylene Chloride        | N.D.            | 2.           | ug/kg                  | 92          | 92           | 76-129             | 0   | 30      |
| trans-1,2-Dichloroethene  | N.D.            | 1.           | ug/kg                  | 95          | 91           | 78-131             | 5   | 30      |
| 1,1-Dichloroethane        | N.D.            | 1.           | ug/kg                  | 107         | 104          | 82-130             | 2   | 30      |
| cis-1,2-Dichloroethene    | N.D.            | 1.           | ug/kg                  | 97          | 96           | 85-127             | 2   | 30      |
| Chloroform                | N.D.            | 1.           | ug/kg                  | 98          | 97           | 79-126             | 2   | 30      |
| 1,1,1-Trichloroethane     | N.D.            | 1.           | ug/kg                  | 101         | 98           | 69-133             | 3   | 30      |
| Carbon Tetrachloride      | N.D.            | 1.           | ug/kg                  | 97          | 93           | 68-137             | 4   | 30      |
| Benzene                   | N.D.            | 1.           | ug/kg                  | 100         | 99           | 85-125             | 2   | 30      |
| 1,2-Dichloroethane        | N.D.            | 1.           | ug/kg                  | 105         | 113          | 75-132             | 7   | 30      |
| Trichloroethene           | N.D.            | 1.           | ug/kg                  | 99          | 95           | 81-124             | 4   | 30      |
| 1,2-Dichloropropane       | N.D.            | 1.           | ug/kg                  | 102         | 104          | 81-126             | 2   | 30      |
| romodichloromethane       | N.D.            | 1.           | ug/kg                  | 95          | 97           | 80-123             | 1   | 30      |
| roluene                   | N.D.            | 1.           | ug/kg                  | 100         | 95           | 81-116             | 6   | 30      |
| 1,1,2-Trichloroethane     | N.D.            | 1.           | ug/kg                  | 89          | 94           | 77-116             | 6   | 30      |
| Tetrachloroethene         | N.D.            | 1.           | ug/kg                  | 99          | 94           | 79-128             | 6   | 30      |
| Dibromochloromethane      | N.D.            | 1.           | ug/kg                  | 86          | 89           | 73-116             | 4   | 30      |
| Chlorobenzene             | N.D.            | 1.           | ug/kg                  | 95          | 91           | 81-112             | 4   | 30      |
| Ethylbenzene              | N.D.            | 1.           | ug/kg                  | 98          | 95           | 82-115             | 3   | 30      |
| Styrene                   | N.D.            | 1.           | ug/kg                  | 90          | 88           | 79-116             | 1   | 30      |
| Bromoform                 | N.D.            | 1.           | ug/kg                  | 77          | 86           | 64-121             | 11  | 30      |
| 1,1,2,2-Tetrachloroethane | N.D.            | 1.           | ug/kg                  | 71          | 80           | 64-121             | 13  | 30      |
| Acetone                   | N.D.            | 7.           | ug/kg                  | 57          | 70           | 51- <b>1</b> 78    | 20  | 30      |
| Carbon Disulfide          | N.D.            | 1.           | ug/kg                  | 105         | 100          | 72-144             | 5   | 30      |
| 2-Butanone                | N.D.            | 4.           | ug/kg                  | 71          | 77           | 58-155             | 9   | 30      |
| trans-1,3-Dichloropropene | N.D.            | 1.           | ug/kg                  | 92          | 96           | 75-113             | 4   | 30      |
| cis-1,3-Dichloropropene   | N.D.            | 1.           | ug/kg                  | 97          | 97           | 82-122             | 1   | 30      |
| 4-Methyl-2-pentanone      | N.D.            | 3.           | ug/kg                  | 6 <b>9</b>  | 86           | 56-144             | 21  | 30      |
| 2-Hexanone                | N.D.            | 3.           | ug/kg                  | 65          | 80           | 51-142             | 21  | 30      |
| Xylene (Total)            | N.D.            | 1.           | ug/kg                  | 96          | 94           | 82-117             | 3   | 30      |

#### Sample Matrix Quality Control

|               | MS   | MSD         | ms/msd        |     | RPD | BKG  | qua  | DUP | Dup |
|---------------|------|-------------|---------------|-----|-----|------|------|-----|-----|
|               |      |             |               |     |     |      |      |     | RPD |
| Analysis Name | &REC | <b>%REC</b> | <u>Limits</u> | RPD | MAX | Conc | Conc | RPD | Max |

<sup>\*-</sup> Outside of specification



<sup>(1)</sup> The result for one or both determinations was less than five times the LOQ.

<sup>?)</sup> The background result was more than four times the spike added.





Page 2 of 3

#### Quality Control Summary

Client Name: Draper Aden Associates, Inc.

Group Number: 829085

Reported: 02/28/03 at 12:02 PM

#### Sample Matrix Quality Control

|                           | MS   | MSD    | MS/MSD        |          | RPD | BKG  | DUP  | DUP | Dup |
|---------------------------|------|--------|---------------|----------|-----|------|------|-----|-----|
|                           |      |        |               |          |     |      |      |     | RPD |
| Analysis Name             | %REC | %REC   | <u>Limits</u> | RPD      | MAX | Conc | Conc | RPD | Max |
| Batch number: K023081AA   | _    | number | (s): 393170   | 02-39317 | 09  |      |      |     |     |
| Chloromethane             | 114  |        | 14-144        |          |     |      |      |     |     |
| Vinyl Chloride            | 111  |        | 20-146        |          |     |      |      |     |     |
| Bromomethane              | 88   |        | 24-140        |          |     |      |      |     |     |
| Chloroethane              | 104  |        | 33-147        |          |     |      |      |     |     |
| 1,1-Dichloroethene        | 91   |        | 43-153        |          |     |      |      |     |     |
| Methylene Chloride        | 80   |        | 49-145        |          |     |      |      |     |     |
| trans-1,2-Dichloroethene  | 85   |        | 49-143        |          |     |      |      |     |     |
| 1,1-Dichloroethane        | 96   |        | 51-147        |          |     |      |      |     |     |
| cis-1,2-Dichloroethene    | 87   |        | 54-139        |          |     |      |      |     |     |
| Chloroform                | 88   |        | 57-135        |          |     |      |      |     |     |
| 1,1,1-Trichloroethane     | 96   |        | 47-143        |          |     |      |      |     |     |
| Carbon Tetrachloride      | 91   |        | 43-144        |          |     |      |      |     |     |
| Benzene                   | 89   |        | 52-141        |          |     |      |      |     |     |
| 1,2-Dichloroethane        | 92   |        | 57-137        |          |     |      |      |     |     |
| Trichloroethene           | 87   |        | 47-140        |          |     |      |      |     |     |
| 1,2-Dichloropropane       | 93   |        | 55-138        |          |     |      |      |     |     |
| romodichloromethane       | 83   |        | 55-131        |          |     |      |      |     |     |
| 'oluene                   | 88   |        | 41-147        |          |     |      |      |     |     |
| 1,1,2-Trichloroethane     | 75   |        | 45-150        |          |     |      |      |     |     |
| Tetrachloroethene         | 95   |        | 42~157        |          |     |      |      |     |     |
| Dibromochloromethane      | 72   |        | 46-137        |          |     |      |      |     |     |
| Chlorobenzene             | 84   |        | 48-132        |          |     |      |      |     |     |
| Ethylbenzene              | 89   |        | 44-142        |          |     |      |      |     |     |
| Styrene                   | 80   |        | 30-144        |          |     |      |      |     |     |
| Bromoform                 | 63   |        | 32-139        |          |     |      |      |     |     |
| 1,1,2,2-Tetrachloroethane | 60   |        | 23-180        |          |     |      |      |     |     |
| Acetone                   | 141  |        | 6-214         |          |     |      |      |     |     |
| Carbon Disulfide          | 97   |        | 29-162        |          |     |      |      |     |     |
| 2-Butanone                | 107  |        | 22-181        |          |     |      |      |     |     |
| trans-1,3-Dichloropropene | 80   |        | 46-130        |          |     |      |      |     |     |
| cis-1,3-Dichloropropene   | 83   |        | 50-129        |          |     |      |      |     |     |
| 4-Methyl-2-pentanone      | 60   |        | 40-154        |          |     |      |      |     |     |
| 2-Hexanone                | 86   |        | 28-170        |          |     |      |      |     |     |
| Xylene (Total)            | 87   |        | 47-139        |          |     |      |      |     |     |
|                           |      |        |               |          |     |      |      |     |     |

#### Surrogate Quality Control

Analysis Name: TCL by 8260 (soil)

Batch number: K023081AA

Dibromofluoromethane

1,2-Dichloroethane-d4

Toluene-d8

4-Bromofluorobenzene

- \*- Outside of specification
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.







Page 3 of 3

#### Quality Control Summary

Client Name: Draper Aden Associates, Inc.

Group Number: 829085

Reported: 02/28/03 at 12:02 PM

#### Surrogate Quality Control

| Limits: | 80-120 | 80-120 | 81-117 | 74-121 |
|---------|--------|--------|--------|--------|
| MS      | 96     | 86     | 109    | 107    |
| LCSD    | 100    | 96     | 105    | 111    |
| LCS     | 98     | 91     | 106    | 110    |
| Blank   | 98     | 92     | 102    | 105    |
| 3931709 | 95     | 80     | 105    | 102    |
| 3931708 | 97     | 80     | 106    | 102    |
| 3931707 | 94     | 81     | 110    | 99     |
| 3931706 | 98     | 84     | 105    | 104    |
| 3931705 | 96     | 82     | 104    | 102    |
| 3931704 | 95     | 83     | 106    | 103    |
| 3931703 | 95     | 83     | 104    | 104    |
| 3931702 | 92     | 79*    | 107    | 100    |

#### \*- Outside of specification



<sup>(1)</sup> The result for one or both determinations was less than five times the LOQ.

<sup>?)</sup> The background result was more than four times the spike added.





#### ANALYTICAL RESULTS

Prepared for:

Draper Aden Associates, Inc. 2206 South Main Street Blacksburg VA 24060

540-552-0444

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

#### SAMPLE GROUP

The sample group for this submittal is 829270. Samples arrived at the laboratory on Saturday, November 02, 2002. The PO# for this group is B02271-01.

| (1-3')7GP-1 Grab Soil Sample       3933061         (8-12')7GP-2 Grab Soil Sample       3933062         (13.5-14.5')7GP-2 Grab Soil Sample       3933063         (10-11')7GP-3 Grab Soil Sample       3933064         (5-8')7GP-8 Grab Soil Sample       3933065         (6-11')7GP-5 Unspiked Grab Soil Sample       3933066         (6-11')7GP-5 Matrix Spike Grab Soil Sample       3933067         (6-11')7GP-5 Matrix Spike Dup/Dup Grab Soil Sample       3933068         (3-4')7GP-16 Grab Soil Sample       3933069         (3-4')7GP-4 Grab Soil Sample       3933070         Unit 7 TCLP Composite Soil Sample       3933071         Unit 7 TCLP Composite Soil Sample       3933072         Unit 7 TCLP Composite Soil Sample       3933073         (1-2')5GP-1 Grab Soil Sample       3933073         (1-2')5GP-1 Grab Soil Sample       3933075         (10-11')5GP-6 Grab Soil Sample       3933076         (9-10')5GP-3 Grab Soil Sample       3933078         (11-12')5GP-8 Grab Soil Sample       3933079         (3-4')5GP-12 Grab Soil Sample       3933080         (3-4')5GP-16 Grab Soil Sample       3933081         HWMU-5 Composite Soil Sample       3933082         HWMU-5 Composite Soil Sample       3933083         HWMU-5 Composite Soil Sample       3 | Client Description                                 | Lancaster Labs Number |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------|
| (13.5-14.5')7GP-2 Grab Soil Sample       3933063         (10-11')7GP-3 Grab Soil Sample       3933064         (5-8')7GP-8 Grab Soil Sample       3933065         (6-11')7GP-5 Unspiked Grab Soil Sample       3933066         (6-11')7GP-5 Matrix Spike Grab Soil Sample       3933067         (6-11')7GP-5 Matrix Spike Dup/Dup Grab Soil Sample       3933068         (3-4')7GP-16 Grab Soil Sample       3933070         (3-4')7GP-4 Grab Soil Sample       3933070         Unit 7 TCLP Composite Soil Sample       3933071         Unit 7 TCLP Composite Soil Sample       3933072         Unit 7 TCLP Composite Soil Sample       3933073         (1-2')5GP-1 Grab Soil Sample       3933074         (9-10')5GP-1 Grab Soil Sample       3933075         (10-11')5GP-6 Grab Soil Sample       3933076         (9-10')5GP-3 Grab Soil Sample       3933077         (7-8')5GP-8 Grab Soil Sample       3933078         (11-12')5GP-8 Grab Soil Sample       3933079         (3-4')5GP-12 Grab Soil Sample       3933080         (3-4')5GP-16 Grab Soil Sample       3933081         HWMU-5 Composite Soil Sample       3933082         HWMU-5 Composite Soil Sample       3933083                                                                                                 | (1-3')7GP-1 Grab Soil Sample                       | 3933061               |
| (10-11')7GP-3 Grab Soil Sample       3933064         (5-8')7GP-8 Grab Soil Sample       3933065         (6-11')7GP-5 Unspiked Grab Soil Sample       3933066         (6-11')7GP-5 Matrix Spike Grab Soil Sample       3933067         (6-11')7GP-5 Matrix Spike Dup/Dup Grab Soil Sample       3933068         (3-4')7GP-16 Grab Soil Sample       3933079         (3-4')7GP-4 Grab Soil Sample       3933070         Unit 7 TCLP Composite Soil Sample       3933071         Unit 7 TCLP Composite Soil Sample       3933072         Unit 7 TCLP Composite Soil Sample       3933073         (1-2')5GP-1 Grab Soil Sample       3933074         (9-10')5GP-1 Grab Soil Sample       3933075         (10-11')5GP-6 Grab Soil Sample       3933076         (9-10')5GP-3 Grab Soil Sample       3933078         (11-12')5GP-8 Grab Soil Sample       3933079         (3-4')5GP-12 Grab Soil Sample       3933080         (3-4')5GP-16 Grab Soil Sample       3933081         HWMU-5 Composite Soil Sample       3933082         HWMU-5 Composite Soil Sample       3933083                                                                                                                                                                                                             | (8-12')7GP-2 Grab Soil Sample                      | 3933062               |
| (5-8')7GP-8 Grab Soil Sample       3933065         (6-11')7GP-5 Unspiked Grab Soil Sample       3933066         (6-11')7GP-5 Matrix Spike Grab Soil Sample       3933067         (6-11')7GP-5 Matrix Spike Dup/Dup Grab Soil Sample       3933068         (3-4')7GP-16 Grab Soil Sample       3933070         (3-4')7GP-4 Grab Soil Sample       3933070         Unit 7 TCLP Composite Soil Sample       3933071         Unit 7 TCLP Composite Soil Sample       3933072         Unit 7 TCLP Composite Soil Sample       3933073         (1-2')5GP-1 Grab Soil Sample       3933074         (9-10')5GP-1 Grab Soil Sample       3933075         (10-11')5GP-6 Grab Soil Sample       3933076         (9-10')5GP-3 Grab Soil Sample       3933077         (7-8')5GP-8 Grab Soil Sample       3933078         (11-12')5GP-8 Grab Soil Sample       3933080         (3-4')5GP-12 Grab Soil Sample       3933081         HWMU-5 Composite Soil Sample       3933082         HWMU-5 Composite Soil Sample       3933083                                                                                                                                                                                                                                                                   | (13.5-14.5')7GP-2 Grab Soil Sample                 | 3933063               |
| (6-11')7GP-5 Unspiked Grab Soil Sample       3933066         (6-11')7GP-5 Matrix Spike Grab Soil Sample       3933067         (6-11')7GP-5 Matrix Spike Dup/Dup Grab Soil Sample       3933068         (3-4')7GP-16 Grab Soil Sample       3933069         (3-4')7GP-4 Grab Soil Sample       3933070         Unit 7 TCLP Composite Soil Sample       3933071         Unit 7 TCLP Composite Soil Sample       3933072         Unit 7 TCLP Composite Soil Sample       3933073         (1-2')5GP-1 Grab Soil Sample       3933074         (9-10')5GP-1 Grab Soil Sample       3933075         (10-11')5GP-6 Grab Soil Sample       3933076         (9-10')5GP-3 Grab Soil Sample       3933077         (7-8')5GP-8 Grab Soil Sample       3933078         (11-12')5GP-8 Grab Soil Sample       3933079         (3-4')5GP-12 Grab Soil Sample       3933080         (3-4')5GP-16 Grab Soil Sample       3933081         HWMU-5 Composite Soil Sample       3933082         HWMU-5 Composite Soil Sample       3933083                                                                                                                                                                                                                                                                  | (10-11')7GP-3 Grab Soil Sample                     | 3933064               |
| (6-11')7GP-5 Matrix Spike Grab Soil Sample       3933067         (6-11')7GP-5 Matrix Spike Dup/Dup Grab Soil Sample       3933068         (3-4')7GP-16 Grab Soil Sample       3933079         (3-4')7GP-4 Grab Soil Sample       3933070         Unit 7 TCLP Composite Soil Sample       3933071         Unit 7 TCLP Composite Soil Sample       3933072         Unit 7 TCLP Composite Soil Sample       3933073         (1-2')5GP-1 Grab Soil Sample       3933074         (9-10')5GP-1 Grab Soil Sample       3933075         (10-11')5GP-6 Grab Soil Sample       3933076         (9-10')5GP-3 Grab Soil Sample       3933077         (7-8')5GP-8 Grab Soil Sample       3933078         (11-12')5GP-8 Grab Soil Sample       3933080         (3-4')5GP-12 Grab Soil Sample       3933081         HWMU-5 Composite Soil Sample       3933082         HWMU-5 Composite Soil Sample       3933083          HWMU-5 Composite Soil Sample       3933083                                                                                                                                                                                                                                                                                                                               | (5-8')7GP-8 Grab Soil Sample                       | 3933065               |
| (6-11')7GP-5 Matrix Spike Dup/Dup Grab Soil Sample       3933068         (3-4')7GP-16 Grab Soil Sample       3933070         (3-4')7GP-4 Grab Soil Sample       3933070         Unit 7 TCLP Composite Soil Sample       3933071         Unit 7 TCLP Composite Soil Sample       3933072         Unit 7 TCLP Composite Soil Sample       3933073         (1-2')5GP-1 Grab Soil Sample       3933074         (9-10')5GP-1 Grab Soil Sample       3933075         (10-11')5GP-6 Grab Soil Sample       3933076         (9-10')5GP-3 Grab Soil Sample       3933077         (7-8')5GP-8 Grab Soil Sample       3933079         (3-4')5GP-12 Grab Soil Sample       3933080         (3-4')5GP-16 Grab Soil Sample       3933081         HWMU-5 Composite Soil Sample       3933082         HWMU-5 Composite Soil Sample       3933083                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (6-11')7GP-5 Unspiked Grab Soil Sample             | 3933066               |
| (3-4')7GP-16 Grab Soil Sample       3933069         (3-4')7GP-4 Grab Soil Sample       3933070         Unit 7 TCLP Composite Soil Sample       3933071         Unit 7 TCLP Composite Soil Sample       3933072         Unit 7 TCLP Composite Soil Sample       3933073         (1-2')5GP-1 Grab Soil Sample       3933074         (9-10')5GP-1 Grab Soil Sample       3933075         (10-11')5GP-6 Grab Soil Sample       3933076         (9-10')5GP-3 Grab Soil Sample       3933077         (7-8')5GP-8 Grab Soil Sample       3933078         (11-12')5GP-8 Grab Soil Sample       3933080         (3-4')5GP-12 Grab Soil Sample       3933080         (3-4')5GP-16 Grab Soil Sample       3933081         HWMU-5 Composite Soil Sample       3933082         HWMU-5 Composite Soil Sample       3933083                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (6-11')7GP-5 Matrix Spike Grab Soil Sample         | 3933067               |
| (3-4')7GP-4 Grab Soil Sample       3933070         Unit 7 TCLP Composite Soil Sample       3933071         Unit 7 TCLP Composite Soil Sample       3933072         Unit 7 TCLP Composite Soil Sample       3933073         (1-2')5GP-1 Grab Soil Sample       3933074         (9-10')5GP-1 Grab Soil Sample       3933075         (10-11')5GP-6 Grab Soil Sample       3933076         (9-10')5GP-3 Grab Soil Sample       3933077         (7-8')5GP-8 Grab Soil Sample       3933078         (11-12')5GP-8 Grab Soil Sample       3933080         (3-4')5GP-12 Grab Soil Sample       3933081         HWMU-5 Composite Soil Sample       3933082         HWMU-5 Composite Soil Sample       3933083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (6-11')7GP-5 Matrix Spike Dup/Dup Grab Soil Sample | 3933068               |
| Unit 7 TCLP Composite Soil Sample       3933071         Unit 7 TCLP Composite Soil Sample       3933072         Unit 7 TCLP Composite Soil Sample       3933073         (1-2')5GP-1 Grab Soil Sample       3933074         (9-10')5GP-1 Grab Soil Sample       3933075         (10-11')5GP-6 Grab Soil Sample       3933076         (9-10')5GP-3 Grab Soil Sample       3933077         (7-8')5GP-8 Grab Soil Sample       3933078         (11-12')5GP-8 Grab Soil Sample       3933080         (3-4')5GP-12 Grab Soil Sample       3933081         HWMU-5 Composite Soil Sample       3933082         HWMU-5 Composite Soil Sample       3933083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    | 3933069               |
| Unit 7 TCLP Composite Soil Sample       3933072         Unit 7 TCLP Composite Soil Sample       3933073         (1-2')5GP-1 Grab Soil Sample       3933074         (9-10')5GP-1 Grab Soil Sample       3933075         (10-11')5GP-6 Grab Soil Sample       3933076         (9-10')5GP-3 Grab Soil Sample       3933077         (7-8')5GP-8 Grab Soil Sample       3933078         (11-12')5GP-8 Grab Soil Sample       3933079         (3-4')5GP-12 Grab Soil Sample       3933080         (3-4')5GP-16 Grab Soil Sample       3933081         HWMU-5 Composite Soil Sample       3933082         HWMU-5 Composite Soil Sample       3933083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (3-4')7GP-4 Grab Soil Sample                       | 3933070               |
| Unit 7 TCLP Composite Soil Sample       3933073         (1-2')5GP-1 Grab Soil Sample       3933074         (9-10')5GP-1 Grab Soil Sample       3933075         (10-11')5GP-6 Grab Soil Sample       3933076         (9-10')5GP-3 Grab Soil Sample       3933077         (7-8')5GP-8 Grab Soil Sample       3933078         (11-12')5GP-8 Grab Soil Sample       3933079         (3-4')5GP-12 Grab Soil Sample       3933080         (3-4')5GP-16 Grab Soil Sample       3933081         HWMU-5 Composite Soil Sample       3933082         HWMU-5 Composite Soil Sample       3933083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit 7 TCLP Composite Soil Sample                  | 3933071               |
| (1-2')5GP-1 Grab Soil Sample       3933074         (9-10')5GP-1 Grab Soil Sample       3933075         (10-11')5GP-6 Grab Soil Sample       3933076         (9-10')5GP-3 Grab Soil Sample       3933077         (7-8')5GP-8 Grab Soil Sample       3933078         (11-12')5GP-8 Grab Soil Sample       3933079         (3-4')5GP-12 Grab Soil Sample       3933080         (3-4')5GP-16 Grab Soil Sample       3933081         HWMU-5 Composite Soil Sample       3933082         HWMU-5 Composite Soil Sample       3933083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    | 3933072               |
| (9-10')5GP-1 Grab Soil Sample       3933075         (10-11')5GP-6 Grab Soil Sample       3933076         (9-10')5GP-3 Grab Soil Sample       3933077         (7-8')5GP-8 Grab Soil Sample       3933078         (11-12')5GP-8 Grab Soil Sample       3933079         (3-4')5GP-12 Grab Soil Sample       3933080         (3-4')5GP-16 Grab Soil Sample       3933081         HWMU-5 Composite Soil Sample       3933082         HWMU-5 Composite Soil Sample       3933083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unit 7 TCLP Composite Soil Sample                  | 3933073               |
| (10-11')5GP-6 Grab Soil Sample       3933076         (9-10')5GP-3 Grab Soil Sample       3933077         (7-8')5GP-8 Grab Soil Sample       3933078         (11-12')5GP-8 Grab Soil Sample       3933079         (3-4')5GP-12 Grab Soil Sample       3933080         (3-4')5GP-16 Grab Soil Sample       3933081         HWMU-5 Composite Soil Sample       3933082         HWMU-5 Composite Soil Sample       3933083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • •                                                | 3933074               |
| (9-10')5GP-3 Grab Soil Sample       3933077         (7-8')5GP-8 Grab Soil Sample       3933078         (11-12')5GP-8 Grab Soil Sample       3933079         (3-4')5GP-12 Grab Soil Sample       3933080         (3-4')5GP-16 Grab Soil Sample       3933081         HWMU-5 Composite Soil Sample       3933082         HWMU-5 Composite Soil Sample       3933083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (9-10')5GP-1 Grab Soil Sample                      | 3933075               |
| (7-8')5GP-8 Grab Soil Sample       3933078         (11-12')5GP-8 Grab Soil Sample       3933079         (3-4')5GP-12 Grab Soil Sample       3933080         (3-4')5GP-16 Grab Soil Sample       3933081         HWMU-5 Composite Soil Sample       3933082         HWMU-5 Composite Soil Sample       3933083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (10-11')5GP-6 Grab Soil Sample                     | 3933076               |
| (11-12')5GP-8 Grab Soil Sample       3933079         (3-4')5GP-12 Grab Soil Sample       3933080         (3-4')5GP-16 Grab Soil Sample       3933081         HWMU-5 Composite Soil Sample       3933082         HWMU-5 Composite Soil Sample       3933083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (9-10')5GP-3 Grab Soil Sample                      | 3933077               |
| (3-4')5GP-12 Grab Soil Sample3933080(3-4')5GP-16 Grab Soil Sample3933081HWMU-5 Composite Soil Sample3933082HWMU-5 Composite Soil Sample3933083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (7-8')5GP-8 Grab Soil Sample                       | 3933078               |
| (3-4')5GP-16 Grab Soil Sample3933081HWMU-5 Composite Soil Sample3933082HWMU-5 Composite Soil Sample3933083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (11-12')5GP-8 Grab Soil Sample                     | 3933079               |
| HWMU-5 Composite Soil Sample3933082HWMU-5 Composite Soil Sample3933083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (3-4')5GP-12 Grab Soil Sample                      | 3933080               |
| HWMU-5 Composite Soil Sample 3933083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3-4')5GP-16 Grab Soil Sample                      | 3933081               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HWMU-5 Composite Soil Sample                       | 3933082               |
| HWMU-5 Composite Soil Sample 3933084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HWMU-5 Composite Soil Sample                       | 3933083               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HWMU-5 Composite Soil Sample                       | 3933084               |

#### **METHODOLOGY**







The specific methodologies used in obtaining the enclosed analytical results are indicated on the laboratory chronicles.

1 COPY TO 1 COPY TO Draper Aden Associates, Inc.

Data Package Group

Attn: Ms. Janet Frazier

Questions? Contact your Client Services Representative Michael E McAdams at (717) 656-2300.

Respectfully Submitted,

Max E. Snavely

Sr. Chemist







Page 1 of 5

Lancaster Laboratories Sample No. SW 3933061

Collected:11/01/2002 10:00

Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:33 Draper Aden Associates, Inc.

Discard: 12/26/2002

2206 South Main Street Blacksburg VA 24060

Drv

(1-3')7GP-1 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

137-P SDG#: RAR01-01

|       |                                |                              |                  | Dry                |       |          |
|-------|--------------------------------|------------------------------|------------------|--------------------|-------|----------|
| CAT   |                                |                              | Dry              | Method             |       | Dilution |
| No.   | Analysis Name                  | CAS Number                   | Result           | Detection<br>Limit | Units | Factor   |
| 00111 | Moisture                       | n.a.                         | 13.7             | 0.50               | ⅋     | 1        |
|       | "Moisture" represents the loss |                              |                  |                    |       |          |
|       | 103 - 105 degrees Celsius. The | moisture resul               | t reported above | e is on an         |       |          |
|       | as-received basis.             |                              |                  |                    |       |          |
|       |                                |                              |                  |                    |       |          |
| 01225 | TCL Pesticides in Solids       |                              |                  |                    |       |          |
| 01218 | Gamma BHC - Lindane            | 58-89-9                      | N.D.             | 0.20               | ug/kg | 1        |
| 01219 | Heptachlor                     | 76-44-8                      | N.D.             | 0.20               | ug/kg | 1        |
| 01220 | Aldrin                         | 309-00-2                     | N.D.             | 0.20               | ug/kg | 1        |
| 01221 | p,p-DDT                        | 50-29-3                      | N.D.             | 0.42               | ug/kg | 1        |
| 01222 | Dieldrin                       | 60-57-1                      | N.D.             | 0.38               | ug/kg | 1        |
| 01223 | Endrin                         | 72-20~8                      | N.D.             | 0.41               | ug/kg | 1        |
| 01859 | Methoxychlor                   | 72-43-5                      | N.D.             | 4.6                | ug/kg | 1        |
| 01981 | Alpha BHC                      | 319-84-6                     | N.D.             | 0.20               | ug/kg | 1        |
| 01982 | Beta BHC                       | 319-85-7                     | N.D.             | 0.20               | ug/kg | 1        |
| 01983 | Delta BHC                      | 319-86-8                     | N.D.             | 0.20               | ug/kg | 1        |
| 01984 | Heptachlor Epoxide             | 1024-57-3                    | N.D.             | 0.20               | ug/kg | 1        |
| 01985 | p,p-DDE                        | 72-55-9                      | N.D.             | 0.38               | ug/kg | 1        |
| 01986 | p,p-DDD                        | 72-54-8                      | N.D.             | 0.38               | ug/kg | 1        |
| 01988 | Toxaphen <b>e</b>              | 8001-35-2                    | N.D.             | 13.                | ug/kg | 1        |
| 01989 | Endosulfan I                   | 959-98-8                     | N.D.             | 0.20               | ug/kg | 1        |
| 01990 | Endosulfan II                  | 33213-65-9                   | N.D.             | 0.38               | ug/kg | 1        |
| 01991 | Endosulfan Sulfate             | 1031-07-8                    | N.D.             | 0.38               | ug/kg | 1        |
| 01992 | Endrin Aldehyde                | 7421-93-4                    | N.D.             | 1.2                | ug/kg | 1        |
| 01993 | PCB-1016                       | 12674-11-2                   | N.D.             | 5.6                | ug/kg | 1        |
| 01994 | PCB-1221                       | 11104-28-2                   | N.D.             | 12.                | ug/kg | 1        |
| 01995 | PCB-1232                       | 11141-16-5                   | N.D.             | 5.0                | ug/kg | 1        |
| 01996 | PCB-1242                       | 53 <b>469-21-</b> 9          | N.D.             | 5.8                | ug/kg | 1        |
| 01997 | PCB-1248                       | 12672-29-6                   | N.D.             | 5.7                | ug/kg | 1        |
| 01998 | PCB-1254                       | 11097-69-1                   | N.D.             | 6.6                | ug/kg | 1        |
| 01999 | PCB-1260                       | 11096-82-5                   | N.D.             | 5.1                | ug/kg | 1        |
| 03017 | Endrin Ketone                  | 53494-70-5                   | <b>N</b> .D.     | 0.38               | ug/kg | 1        |
| 03025 | Alpha Chlordane                | 5103-71-9                    | N.D.             | 0.20               | ug/kg | 1        |
| 03026 | Gamma Chlordane                | <b>510</b> 3 - <b>74</b> - 2 | 0.2 <b>7</b> J   | 0.20               | ug/kg | 1        |

Heptachlor was detected in the method blank above the method detection



Dry

Page 2 of 5

Lancaster Laboratories Sample No. 3933061

Account Number: 11200 Collected:11/01/2002 10:00

Draper Aden Associates, Inc. Submitted: 11/02/2002 10:20

HWMU-5 & HWMU-7 Investigation

2206 South Main Street Reported: 11/25/2002 at 14:33 Discard: 12/26/2002 Blacksburg VA 24060 (1-3')7GP-1 Grab Soil Sample

| 137-P | SDG#: | RAR01-01 |
|-------|-------|----------|
|-------|-------|----------|

| CAT                                     |                                   |                          | Dry               | Method     |                | Dilution |
|-----------------------------------------|-----------------------------------|--------------------------|-------------------|------------|----------------|----------|
| No.                                     | Analysis Name                     | CAS Number               | Result            | Detection  | Units          | Factor   |
|                                         |                                   |                          |                   | Limit      |                |          |
|                                         | limit. No heptachlor was detected | ed in the samp           | le, therefore the | data is    |                |          |
|                                         | reported.                         |                          |                   |            |                |          |
|                                         |                                   |                          |                   |            |                |          |
| 04688                                   | TCL SW846 Semivolatiles Soil      |                          |                   |            |                |          |
| 01105                                   | Phenol                            | 108-95-2                 | N.D.              | 38.        | ug/kg          | 1        |
| 01185                                   | 2-Chlorophenol                    | 95-57-8                  | N.D.              | 38.        | ug/kg          | 1        |
| 01186                                   | 1,4-Dichlorobenzene               | 106-46-7                 | N.D.              | 38.        | ug/kg          | 1        |
| 71187                                   | N-Nitroso-di-n-propylamine        | 621-64-7                 | N.D.              | 38.        | ug/kg<br>ug/kg | 1        |
| )1188                                   | 1.2.4-Trichlorobenzene            | 120-82-1                 | N.D.              | 38.        | ug/kg<br>ug/kg | 1        |
| 01189                                   | 4-Chloro-3-methylphenol           | 59-50-7                  | N.D.              | 78.        | ug/kg<br>ug/kg | 1        |
| 01190                                   |                                   | 88-75-5                  | N.D.              | 38.        | ug/kg<br>ug/kg | 1        |
| 03746                                   | 2-Nitrophenol                     | 105-67-9                 | N.D.              | 38.        | ug/kg<br>ug/kg | 1        |
| 03747                                   | 2,4-Dimethylphenol                |                          | N.D.<br>N.D.      | 38.        | ug/kg<br>ug/kg | 1        |
| 03748                                   | 2,4-Dichlorophenol                | 120-83-2                 |                   |            |                | 1        |
| 03749                                   | 2,4,6-Trichlorophenol             | 88-06-2                  | N.D.              | 38.        | ug/kg          |          |
| 03753                                   | bis(2-Chloroethyl)ether           | 111-44-4                 | N.D.              | 38.        | ug/kg          | 1        |
| 03754                                   | 1,3-Dichlorobenzene               | 541-73-1                 | N.D.              | 38.        | ug/kg          | 1        |
| 03755                                   | 1,2-Dichlorobenzene               | 95-50-1                  | N.D.              | 38.        | ug/kg          | 1        |
| 03757                                   | Hexachloroethane                  | 67-72-1                  | N.D.              | 38.        | ug/kg          | 1        |
| 03758                                   | Nitrobenzene                      | 98-95-3                  | N.D.              | 38.        | ug/kg          | 1        |
| 03759                                   | Isophorone                        | 78-59- <b>1</b>          | N.D.              | 38.        | ug/kg          | 1        |
| 03760                                   | bis(2-Chloroethoxy)methane        | 111-91-1                 | N.D.              | 38.        | ug/kg          | 1        |
| 03761                                   | Naphthalene                       | 91-20-3                  | N.D.              | 38.        | ug/kg          | 1        |
| 03762                                   | Hexachlorobutadiene               | 87-68-3                  | N.D.              | 78.        | ug/kg          | 1        |
| 03763                                   | Hexachlorocyclopentadiene         | 77-47-4                  | N.D.              | 200.       | ug/kg          | 1        |
| 03764                                   | 2-Chloronaphthalene               | 91-58-7                  | N.D.              | 38.        | ug/kg          | 1        |
| 03765                                   | Acenaphthylene                    | 208-96-8                 | N.D.              | 38.        | ug/kg          | 1        |
| 03766                                   | Dimethylphthalate                 | 131-11-3                 | N.D.              | 78.        | ug/kg          | 1        |
| 04690                                   | 2-Methylphenol                    | 95-48-7                  | N.D.              | 38.        | ug/kg          | 1        |
| 04691                                   | 2,2'-oxybis(1-Chloropropane)      | 108-60-1                 | N.D.              | 38.        | ug/kg          | 1        |
| 04692                                   | 4-Methylphenol                    | 106-44-5                 | N.D.              | 78.        | ug/kg          | 1        |
| • • • • • • • • • • • • • • • • • • • • | 3-Methylphenol and 4-methylpheno  |                          |                   |            | 3,3            | _        |
|                                         | chromatographic conditions used   |                          |                   | t reported |                |          |
|                                         | for 4-methylphenol represents th  | =                        | •                 | -          |                |          |
| 04693                                   | 4-Chloroaniline                   | 106-47-8                 | N.D.              | 38.        | ug/kg          | 1        |
| 04694                                   | 2-Methylnaphthalene               | 9 <b>1</b> -57- <b>6</b> | N.D.              | 38.        | ug/kg          | 1        |
| 14695                                   | 2,4,5-Trichlorophenol             | 95-95-4                  | N.D.              | 38.        | ug/kg          | 1        |
|                                         | •                                 |                          |                   |            |                |          |





Page 3 of 5

Lancaster Laboratories Sample No. SW 3933061

Collected:11/01/2002 10:00 Account Num

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:33

Discard: 12/26/2002

(1-3')7GP-1 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

Account Number: 11200

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

| 137-P SDG#: RAR01-0 | P SDG#: RAR01 | 7-P SDG | 17 - P | 137 |
|---------------------|---------------|---------|--------|-----|
|---------------------|---------------|---------|--------|-----|

| 13/-1 | SDG#: KARUI-UI                  |                 |                 | Dry          |                |          |
|-------|---------------------------------|-----------------|-----------------|--------------|----------------|----------|
| CAT   |                                 |                 | Dry             | Method       |                | Dilution |
| No.   | Analysis Name                   | CAS Number      | Result          | Detection    | Units          | Factor   |
| NO.   | Analysis Name                   | CAD MAIDEL      | Robuit          | Limit        | V.1.2 U.D      | - 4000   |
| 04696 | 2-Nitroaniline                  | 88-74-4         | N.D.            | 38.          | ug/kg          | 1        |
| 04689 | TCL SW846 Semivolatiles/Soil    |                 |                 |              |                |          |
| 01191 | Acenaphthene                    | 83-32-9         | N.D.            | 38.          | ug/kg          | 1        |
| 01192 | 4-Nitrophenol                   | 100-02-7        | N.D.            | 200.         | ug/kg          | 1        |
| 01193 | 2,4-Dinitrotoluene              | 121-14-2        | N.D.            | 78 <i>.</i>  | ug/kg          | 1        |
| 01194 | Pentachlorophenol               | 87-86-5         | N.D.            | 200.         | ug/kg          | 1        |
| J1195 | Pyrene                          | 129-00-0        | N.D.            | 38.          | ug/kg          | 1        |
| 03750 | 2,4-Dinitrophenol               | 51-28-5         | N.D.            | 780.         | ug/kg          | 1        |
| 03751 | 4,6-Dinitro-2-methylphenol      | 534-52-1        | N.D.            | 200.         | ug/kg          | 1        |
| 03767 | 2,6-Dinitrotoluene              | 606-20-2        | N.D.            | 38.          | ug/kg          | 1        |
| 03768 | Fluorene                        | 86-73-7         | N.D.            | 38.          | ug/kg          | 1        |
| 03769 | 4-Chlorophenyl-phenylether      | 7005-72-3       | N.D.            | 38.          | ug/kg          | 1        |
| 03770 | Diethylphthalate                | 84-66-2         | N.D.            | 78.          | ug/kg          | 1        |
| 03772 | N-Nitrosodiphenylamine          | 86-30-6         | N.D.            | 38.          | ug/kg          | 1        |
|       | N-nitrosodiphenylamine decompos | ses in the GC i | nlet forming di | phenylamine. |                |          |
|       | The result reported for N-nitro | sodiphenylamin  | e represents th | e combined   |                |          |
|       | total of both compounds.        |                 |                 |              |                |          |
| 03773 | 4-Bromophenyl-phenylether       | 101-55-3        | N.D.            | 38.          | ug/kg          | 1        |
| 03774 | Hexachlorobenzene               | 118-74-1        | N.D.            | 38.          | ug/kg          | 1        |
| 03775 | Phenanthrene                    | 85-01-8         | N.D.            | 38.          | ug/ <b>k</b> g | 1        |
| 03776 | Anthracene                      | 120-12-7        | N.D.            | 38.          | ug/kg          | 1        |
| 03777 | Di-n-butylphthalate             | 84-74-2         | N.D.            | 78.          | ug/kg          | 1        |
| 03778 | Fluoranthene                    | 206-44-0        | N.D.            | 38.          | ug/kg          | 1        |
| 03780 | Butylbenzylphthalate            | 85-68-7         | N.D.            | 78.          | ug/kg          | 1        |
| 03781 | Benzo(a)anthracene              | 56-55-3         | N.D.            | 38.          | ug/kg          | 1        |
| 03782 | Chrysene                        | 218-01-9        | N.D.            | 38.          | ug/kg          | 1        |
| 03783 | 3,3'-Dichlorobenzidine          | 91-94-1         | N.D.            | 78.          | ug/kg          | 1        |
| 03784 | bis(2-Ethylhexyl)phthalate      | 117-81-7        | N.D.            | 78.          | ug/kg          | 1        |
| 03785 | Di-n-octylphthalate             | 117-84-0        | N.D.            | 78.          | ug/kg          | 1        |
| 03786 | Benzo(b) fluoranthene           | 205-99-2        | N.D.            | 38.          | ug/kg          | 1        |
| 03787 | Benzo(k)fluoranthene            | 207-08-9        | N.D.            | 38.          | ug/kg          | 1        |
| 03788 | Benzo(a)pyrene                  | 50-32-8         | N.D.            | 38.          | ug/kg          | 1        |
| 03789 | Indeno(1,2,3-cd)pyrene          | 193-39-5        | N.D.            | 38.          | ug/kg          | 1        |
| 03790 | Dibenz (a, h) anthracene        | 53-70-3         | N.D.            | 38.          | ug/kg          | 1        |
| 13791 | Benzo(g,h,i)perylene            | 191-24-2        | N.D.            | 38.          | ug/kg          | 1        |
|       |                                 |                 |                 |              | Ŧ: <b>5</b>    |          |





Page 4 of 5

Lancaster Laboratories Sample No. SW 3933061

Collected:11/01/2002 10:00 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper
Reported: 11/25/2002 at 14:33 2206 S

Discard: 12/26/2002

(1-3')7GP-1 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

| 137-P | SDG#: | RAR01 | -01 |
|-------|-------|-------|-----|
|-------|-------|-------|-----|

| 13/-F | SDG# . KAKUI UI           |             |        | Dry                |       |          |
|-------|---------------------------|-------------|--------|--------------------|-------|----------|
| CAT   |                           |             | Dry    | Method             |       | Dilution |
| No.   | Analysis Name             | CAS Number  | Result | Detection<br>Limit | Units | Factor   |
| 04697 | 3-Nitroaniline            | 99-09-2     | N.D.   | 78.                | ug/kg | 1        |
| 04698 | Dibenzofuran              | 132-64-9    | N.D.   | 38.                | ug/kg | 1        |
| 04700 | 4-Nitroaniline            | 100-01-6    | N.D.   | 78.                | ug/kg | 1        |
| 04702 | Carbazole                 | 86-74-8     | N.D.   | 38.                | ug/kg | 1        |
| 06292 | TCL by 8260 (soil)        |             |        |                    |       |          |
| 25444 | Chloromethane             | 74-87-3     | N.D.   | 2.                 | ug/kg | 0.88     |
| 05445 | Vinyl Chloride            | 75-01-4     | N.D.   | 1.                 | ug/kg | 0.88     |
| 05446 | Bromomethane              | 74-83-9     | N.D.   | 2.                 | ug/kg | 0.88     |
| 05447 | Chloroethane              | 75-00-3     | N.D.   | 2.                 | ug/kg | 0.88     |
| 05449 | 1,1-Dichloroethene        | 75 - 35 - 4 | N.D.   | 1.                 | ug/kg | 0.88     |
| 05450 | Methylene Chloride        | 75-09-2     | N.D.   | 2.                 | ug/kg | 0.88     |
| 05451 | trans-1,2-Dichloroethene  | 156-60-5    | N.D.   | 1.                 | ug/kg | 0.88     |
| 05452 | 1,1-Dichloroethane        | 75-34-3     | N.D.   | 1.                 | ug/kg | 0.88     |
| 05454 | cis-1,2-Dichloroethene    | 156-59-2    | N.D.   | 1.                 | ug/kg | 0.88     |
| 05455 | Chloroform                | 67-66-3     | N.D.   | 1.                 | ug/kg | 0.88     |
| 05457 | 1,1,1-Trichloroethane     | 71-55-6     | N.D.   | 1.                 | ug/kg | 0.88     |
| 05458 | Carbon Tetrachloride      | 56-23-5     | N.D.   | 1.                 | ug/kg | 0.88     |
| 05460 | Benzene                   | 71-43-2     | N.D.   | 1.                 | ug/kg | 0.88     |
| 05461 | 1,2-Dichloroethane        | 107-06-2    | N.D.   | 1.                 | ug/kg | 0.88     |
| 05462 | Trichloroethene           | 79-01-6     | N.D.   | 1.                 | ug/kg | 0.88     |
| 05463 | 1,2-Dichloropropane       | 78-87-5     | N.D.   | 1.                 | ug/kg | 0.88     |
| 05465 | Bromodichloromethane      | 75-27-4     | N.D.   | 1.                 | ug/kg | 0.88     |
| 05466 | Toluene                   | 108-88-3    | N.D.   | 1.                 | ug/kg | 0.88     |
| 05467 | 1,1,2-Trichloroethane     | 79-00-5     | N.D.   | 1.                 | ug/kg | 0.88     |
| 05468 | Tetrachloroethene         | 127-18-4    | N.D.   | 1.                 | ug/kg | 0.88     |
| 05470 | Dibromochloromethane      | 124-48-1    | N.D.   | 1.                 | ug/kg | 0.88     |
| 05472 | Chlorobenzene             | 108-90-7    | N.D.   | 1.                 | ug/kg | 0.88     |
| 05474 | Ethylbenzene              | 100-41-4    | N.D.   | 1.                 | ug/kg | 0.88     |
| 05477 | Styrene                   | 100-42-5    | N.D.   | 1.                 | ug/kg | 0.88     |
| 05478 | Bromoform                 | 75-25-2     | N.D.   | 1.                 | ug/kg | 0.88     |
| 05480 | 1,1,2,2-Tetrachloroethane | 79-34-5     | N.D.   | 1.                 | ug/kg | 0.88     |
| 06293 | Acetone                   | 67-64-1     | N.D.   | 7.                 | ug/kg | 0.88     |
| 06294 | Carbon Disulfide          | 75-15-0     | N.D.   | 1.                 | ug/kg | 88.0     |
| 06296 | 2-Butanone                | 78-93-3     | N.D.   | 5.                 | ug/kg | 0.88     |
| 6297  | trans-1,3-Dichloropropene | 10061-02-6  | N.D.   | 1.                 | ug/kg | 0.88     |





Page 5 of 5

Lancaster Laboratories Sample No. SW 3933061

Collected:11/01/2002 10:00 Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:33

Discard: 12/26/2002

(1-3')7GP-1 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

137-P SDG#: RAR01-01

|                         |                                                         |                                                                                      | υ <b>ry</b>                                                                                                                            |              |              |
|-------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
|                         |                                                         | Dry                                                                                  | Method                                                                                                                                 |              | Dilution     |
| Analysis Name           | CAS Number                                              | Result                                                                               | Detection<br>Limit                                                                                                                     | Units        | Factor       |
| cis-1,3-Dichloropropene | 10061-01-5                                              | N.D.                                                                                 | 1.                                                                                                                                     | ug/kg        | 0.88         |
| 4-Methyl-2-pentanone    | 108-10-1                                                | N.D.                                                                                 | 3.                                                                                                                                     | ug/kg        | 0.88         |
| 2-Hexanone              | 591-78-6                                                | N.D.                                                                                 | 3.                                                                                                                                     | ug/kg        | 0.88         |
| Xylene (Total)          | 1330-20-7                                               | N.D.                                                                                 | 1.                                                                                                                                     | ug/kg        | 0.88         |
|                         | cis-1,3-Dichloropropene 4-Methyl-2-pentanone 2-Hexanone | cis-1,3-Dichloropropene 10061-01-5 4-Methyl-2-pentanone 108-10-1 2-Hexanone 591-78-6 | Analysis Name CAS Number Result  cis-1,3-Dichloropropene 10061-01-5 N.D.  4-Methyl-2-pentanone 108-10-1 N.D.  2-Hexanone 591-78-6 N.D. | Dry   Method | Dry   Method |

#### Laboratory Chronicle

| CAT   |                                   | 4                  | -      | Analysis         |                     | Dilution |
|-------|-----------------------------------|--------------------|--------|------------------|---------------------|----------|
| No.   | Analysis Name                     | Method             | Trial# | Date and Time    | Analyst             | Factor   |
| 00111 | Moisture                          | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer   | 1        |
| 01225 | TCL Pesticides in Solids          | SW-846 8081A/8082  | 1      | 11/06/2002 03:06 | Douglas D Seitz     | 1        |
| 04688 | TCL SW846 Semivolatiles<br>Soil   | SW-846 8270C       | 1      | 11/06/2002 04:33 | Linda M Hartenstine | 1        |
| 04689 | TCL SW846<br>Semivolatiles/Soil   | SW-846 8270C       | 1      | 11/06/2002 04:33 | Linda M Hartenstine | 1        |
| 06292 | TCL by 8260 (soil)                | SW-846 8260B       | 1      | 11/06/2002 02:11 | Ryan V Nolt         | 0.88     |
| 00381 | BNA Soil Extraction               | SW-846 3550B       | 1      | 11/05/2002 17:40 | Amy M Strocko       | 1        |
| 00819 | Solid Sample Pesticide<br>Extract | SW-846 3550B       | 1      | 11/05/2002 00:30 | Darin P Wagner      | 1        |
| 08389 | Low/High Encore Prep<br>Tracking  | SW-846 5035        | 1      | 11/05/2002 15:30 | Medina A Long       | n.a.     |
| 08389 | Low/High Encore Prep<br>Tracking  | SW-846 5035        | 2      | 11/02/2002 23:42 | Medina A Long       | n.a.     |
| 08389 | Low/High Encore Prep<br>Tracking  | SW-846 5035        | 3      | 11/02/2002 23:43 | Medina A Long       | n.a.     |



# Lancaster Laboratories Where quality is a science.

# REPRINT

Page 1 of 5

Lancaster Laboratories Sample No. SW 3933062

Collected:11/01/2002 10:40 Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:33

Discard: 12/26/2002

(8-12')7GP-2 Grab Soil Sample HWMU-5 & HWMU-7 Investigation Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

Dry

81272 SDG#: RAR01-02

|       |                                                                                            |            |        | DLy                |                |          |
|-------|--------------------------------------------------------------------------------------------|------------|--------|--------------------|----------------|----------|
| CAT   |                                                                                            |            | Dry    | Method             |                | Dilution |
| No.   | Analysis Name                                                                              | CAS Number | Result | Detection<br>Limit | Units          | Factor   |
| 00111 | Moisture                                                                                   | n.a.       | 15.9   | 0.50               | 8              | 1        |
|       | "Moisture" represents the loss :<br>103 - 105 degrees Celsius. The r<br>as-received basis. | -          | -      |                    |                |          |
| 01225 | TCL Pesticides in Solids                                                                   |            |        |                    |                |          |
| )1218 | Gamma BHC - Lindane                                                                        | 58-89-9    | N.D.   | 0.20               | ug/kg          | 1        |
| 01219 | Heptachlor                                                                                 | 76-44-8    | N.D.   | 0.20               | ug/kg          | 1        |
| 01220 | Aldrin                                                                                     | 309-00-2   | N.D.   | 0.20               | ug/kg          | 1        |
| 01221 | p,p-DDT                                                                                    | 50-29-3    | N.D.   | 0.43               | ug/kg          | 1        |
| 01222 | Dieldrin                                                                                   | 60-57-1    | N.D.   | 0.39               | ug/kg          | 1        |
| 01223 | Endrin                                                                                     | 72-20-8    | N.D.   | 0.42               | ug/kg          | 1        |
| 01859 | Methoxychlor                                                                               | 72-43-5    | N.D.   | 4.8                | ug/kg          | 1        |
| 01981 | Alpha BHC                                                                                  | 319-84-6   | N.D.   | 0.20               | ug/kg          | 1        |
| 01982 | Beta BHC                                                                                   | 319-85-7   | N.D.   | 0.20               | ug/kg          | 1        |
| 01983 | Delta BHC                                                                                  | 319-86-8   | N.D.   | 0.20               | ug/kg          | 1        |
| 01984 | Heptachlor Epoxide                                                                         | 1024-57-3  | N.D.   | 0.20               | ug/kg          | 1        |
| 01985 | p,p-DDE                                                                                    | 72-55-9    | N.D.   | 0.39               | ug/kg          | 1        |
| 01986 | p,p-DDD                                                                                    | 72-54-8    | 0.75 J | 0.39               | ug/kg          | 1        |
| 01988 | Toxaphene                                                                                  | 8001-35-2  | N.D.   | 13.                | ug/kg          | 1        |
| 01989 | Endosulfan I                                                                               | 959-98-8   | N.D.   | 0.20               | ug/kg          | 1        |
| 01990 | Endosulfan II                                                                              | 33213-65-9 | N.D.   | 0.39               | ug/kg          | 1        |
| 01991 | Endosulfan Sulfate                                                                         | 1031-07-8  | N.D.   | 0.39               | ug/kg          | 1        |
| 01992 | Endrin Aldehyde                                                                            | 7421-93-4  | 1.9 J  | 1.2                | ug/kg          | 1        |
| 01993 | PCB-1016                                                                                   | 12674-11-2 | N.D.   | 5.7                | ug/kg          | 1        |
| 01994 | PCB-1221                                                                                   | 11104-28-2 | N.D.   | 12.                | ug/kg          | 1        |
| 01995 | PCB-1232                                                                                   | 11141-16-5 | N.D.   | 5.1                | ug/kg          | 1        |
| 01996 | PCB-1242                                                                                   | 53469-21-9 | N.D.   | 5.9                | ug/kg          | 1        |
| 01997 | PCB-1248                                                                                   | 12672-29-6 | N.D.   | 5.8                | ug/kg          | 1        |
| 01998 | PCB-1254                                                                                   | 11097-69-1 | N.D.   | 6.8                | ug/kg          | 1        |
| 01999 | PCB-1260                                                                                   | 11096-82-5 | N.D.   | 5.2                | ug/kg          | 1        |
| 03017 | Endrin Ketone                                                                              | 53494-70-5 | N.D.   | 0.39               | ug/kg          | 1        |
| 03025 | Alpha Chlordane                                                                            | 5103-71-9  | N.D.   | 0.20               | u <b>g/k</b> g | 1        |
| 03026 | Gamma Chlordane                                                                            | 5103-74-2  | N.D.   | 0.20               | ug/kg          | 1        |
|       |                                                                                            |            |        |                    |                |          |

Heptachlor was detected in the method blank above the method detection





Page 2 of 5

Lancaster Laboratories Sample No. SW 3933062

Collected:11/01/2002 10:40

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:33

Discard: 12/26/2002

(8-12')7GP-2 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

Account Number: 11200

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

Dry

|       |                                                                                                       |                 |                | Dry                |                |          |
|-------|-------------------------------------------------------------------------------------------------------|-----------------|----------------|--------------------|----------------|----------|
| CAT   |                                                                                                       |                 | Dry            | Method             |                | Dilution |
| No.   | Analysis Name                                                                                         | CAS Number      | Result         | Detection<br>Limit | Units          | Factor   |
|       | limit. No heptachlor was detect reported.                                                             | ed in the samp  | ole, therefore | the data is        |                |          |
| 04688 | TCL SW846 Semivolatiles Soil                                                                          |                 |                |                    |                |          |
| 01185 | Phenol                                                                                                | 108-95-2        | N.D.           | 39.                | ug/kg          | 1        |
| 01186 | 2-Chlorophenol                                                                                        | 95-57-8         | N.D.           | 39.                | ug/kg          | 1        |
| 01187 | 1,4-Dichlorobenzene                                                                                   | 106-46-7        | N.D.           | 39.                | ug/kg          | 1        |
| J1188 | N-Nitroso-di-n-propylamine                                                                            | 621-64-7        | N.D.           | 39.                | ug/kg          | 1        |
| 01189 | 1,2,4-Trichlorobenzene                                                                                | 120-82-1        | N.D.           | 39.                | ug/kg          | 1        |
| 01190 | 4-Chloro-3-methylphenol                                                                               | 59-50-7         | N.D.           | 80.                | ug/kg          | 1        |
| 03746 |                                                                                                       | 88-75-5         | N.D.           | 39.                | ug/kg          | 1        |
| 03747 |                                                                                                       | 105-67-9        | N.D.           | 39.                | ug/kg          | 1        |
| 03748 | 2,4-Dichlorophenol                                                                                    | 120-83-2        | N.D.           | 39.                | ug/kg          | 1        |
| 03749 | 2,4,6-Trichlorophenol                                                                                 | 88-06-2         | N.D.           | 39.                | ug/kg          | 1        |
| 03753 | bis(2-Chloroethyl)ether                                                                               | 111-44-4        | N.D.           | 39.                | ug/kg          | 1        |
| 03754 | 1,3-Dichlorobenzene                                                                                   | 541-73-1        | N.D.           | 39.                | ug/ <b>kg</b>  | 1        |
| 03755 | 1,2-Dichlorobenzene                                                                                   | 95-50-1         | N.D.           | 39.                | ug/kg          | 1        |
| 03757 | Hexachloroethane                                                                                      | 67-72-1         | N.D.           | 39.                | ug/kg          | 1        |
| 03758 | Nitrobenzene                                                                                          | 98-95-3         | N.D.           | 39.                | ug/kg          | 1        |
| 03759 | Isophorone                                                                                            | 78-59-1         | N.D.           | 39.                | ug/kg          | 1        |
| 03760 | bis(2-Chloroethoxy)methane                                                                            | 111-91-1        | N.D.           | 39.                | ug/kg          | 1        |
| 03761 | Naphthalene                                                                                           | 91-20-3         | N.D.           | 39.                | ug/kg          | 1        |
| 03762 | Hexachlorobutadiene                                                                                   | 87-68-3         | N.D.           | 80.                | ug/kg          | 1        |
| 03763 | Hexachlorocyclopentadiene                                                                             | 77-47-4         | N.D.           | 200.               | ug/kg          | 1        |
| 03764 | 2-Chloronaphthalene                                                                                   | 91-58-7         | N.D.           | 39.                | ug/ <b>k</b> g | 1        |
| 03765 | Acenaphthylene                                                                                        | 208-96-8        | N.D.           | 39.                | ug/kg          | 1        |
| 03766 | Dimethylphthalate                                                                                     | 131-11-3        | N.D.           | 80.                | ug/ <b>k</b> g | 1        |
| 04690 | 2-Methylphenol                                                                                        | 95-48-7         | N.D.           | 39.                | ug/ <b>k</b> g | 1        |
| 04691 | 2,2'-oxybis(1-Chloropropane)                                                                          | 108-60-1        | N.D.           | 39.                | ug/kg          | 1        |
| 04692 | 4-Methylphenol                                                                                        | 106-44-5        | N.D.           | 80.                | ug/kg          | 1        |
|       | 3-Methylphenol and 4-methylphen<br>chromatographic conditions used<br>for 4-methylphenol represents t | l for sample an | alysis. The r  | esult reported     |                |          |
| 04693 | • • •                                                                                                 | 106-47-8        | N.D.           | 39.                | ug/kg          | 1        |
| 04694 |                                                                                                       | 91-57-6         | N.D.           | <b>3</b> 9.        | ug/kg          | 1        |
| 04695 | 2,4,5-Trichlorophenol                                                                                 | 95-95-4         | N.D.           | 39.                | ug/kg          | 1        |
|       |                                                                                                       |                 |                |                    |                |          |



Blacksburg VA 24060

Page 3 of 5

Lancaster Laboratories Sample No. SW 3933062

Collected:11/01/2002 10:40 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc. Reported: 11/25/2002 at 14:33 2206 South Main Street

Discard: 12/26/2002

(8-12')7GP-2 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

|             |                                 |                 |                  | Dry          |        |          |
|-------------|---------------------------------|-----------------|------------------|--------------|--------|----------|
| CAT         |                                 |                 | Dry              | Method       |        | Dilution |
| No.         | Analysis Name                   | CAS Number      | Result           | Detection    | Units  | Factor   |
|             |                                 |                 |                  | Limit        | ,,     |          |
| 04696       | 2-Nitroaniline                  | 88-74-4         | N.D.             | 39.          | ug/kg  | 1        |
| 04689       | TCL SW846 Semivolatiles/Soil    |                 |                  |              |        |          |
| 01191       | Acenaphthene                    | 83-32-9         | N.D.             | 39.          | ug/kg  | 1        |
| 01191       | 4-Nitrophenol                   | 100-02-7        | N.D.             | 200.         | ug/kg  | 1        |
| 01192       | 2,4-Dinitrotoluene              | 121-14-2        | N.D.             | 80.          | ug/kg  | 1        |
| 01194       | Pentachlorophenol               | 87-86-5         | N.D.             | 200.         | ug/kg  | 1        |
| 01195       | Pyrene                          | 129-00-0        | N.D.             | 39.          | ug/kg  | 1        |
| 03750       | 2,4-Dinitrophenol               | 51-28-5         | N.D.             | 800.         | ug/kg  | 1        |
| 03750       | 4.6-Dinitro-2-methylphenol      | 534-52-1        | N.D.             | 200.         | ug/kg  | 1        |
| 03767       | 2,6-Dinitrotoluene              | 606-20-2        | N.D.             | 39.          | ug/kg  | 1        |
| 03768       | Fluorene                        | 86-73-7         | N.D.             | 39.          | ug/kg  | 1        |
| 03769       | 4-Chlorophenyl-phenylether      | 7005-72-3       | N.D.             | 39.          | ug/kg  | 1        |
| 03779       | Diethylphthalate                | 84-66-2         | N.D.             | 80.          | ug/kg  | 1        |
| 03770       | N-Nitrosodiphenylamine          | 86-30-6         | N.D.             | 39.          | ug/kg  | 1        |
| 03/12       | N-nitrosodiphenylamine decompos | -               |                  |              | ug/ kg | 1        |
|             | The result reported for N-nitro |                 |                  |              |        |          |
|             | total of both compounds.        | sourpheny ramin | e represents the | Companied    |        |          |
| 03773       | 4-Bromophenyl-phenylether       | 101-55-3        | N.D.             | 39.          | ug/kg  | 1        |
| 03774       | Hexachlorobenzene               | 118-74-1        | N.D.             | 39.          | uq/kg  | 1        |
| 03775       | Phenanthrene                    | 85-01-8         | N.D.             | 39.          | ug/kg  | 1        |
| 03776       | Anthracene                      | 120-12-7        | N.D.             | 39.          | ug/kg  | 1        |
| 03777       | Di-n-butylphthalate             | 84-74-2         | N.D.             | 80.          | ug/kg  | 1        |
| 03778       | Fluoranthene                    | 206-44-0        | N.D.             | 39.          | ug/kg  | 1        |
| 03780       | Butylbenzylphthalate            | 85-68-7         | N.D.             | 80.          | ug/kg  | 1        |
| 03781       | Benzo(a) anthracene             | 56-55-3         | N.D.             | 39.          | ug/kg  | 1        |
| 03782       | Chrysene                        | 218-01-9        | N.D.             | 39.          | ug/kg  | 1        |
| 03783       | 3,3'-Dichlorobenzidine          | 91- <b>94-1</b> | N.D.             | 80.          | ug/kg  | 1        |
| 03784       | bis(2-Ethylhexyl)phthalate      | 117-81-7        | N.D.             | 80.          | ug/kg  | 1        |
| 03785       | Di-n-octylphthalate             | 117-84-0        | N.D.             | 80.          | ug/kg  | 1        |
| 03786       | Benzo(b) fluoranthene           | 205-99-2        | N.D.             | 39.          | ug/kg  | 1        |
| 03787       | Benzo(k) fluoranthene           | 207-08-9        | N.D.             | 39.          | ug/kg  | 1        |
| 03788       | Benzo(a) pyrene                 | 50-32-8         | N.D.             | 39.          | ug/kg  | 1        |
| 03789       | Indeno(1,2,3-cd)pyrene          | 193-39-5        | N.D.             | 39.          | ug/kg  | 1        |
| 03790       | Dibenz (a, h) anthracene        | 53-70-3         | N.D.             | 39.          | ug/kg  | 1        |
| 03791       | Benzo(g,h,i)perylene            | 191-24-2        | N.D.             | 39.          | ug/kg  | 1        |
| , , , , , , | (5,, 1, per j zene              |                 |                  | <i>J J</i> . | 49/ 49 | -        |





Page 4 of 5

Lancaster Laboratories Sample No. SW 3933062

Collected:11/01/2002 10:40 Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:33

Discard: 12/26/2002

(8-12')7GP-2 Grab Soil Sample HWMU-5 & HWMU-7 Investigation Draper Aden Associates, Inc. 2206 South Main Street

Blacksburg VA 24060

| 012/2 | SDG#. RARUI 02            |                    |        | Dry                |                |          |
|-------|---------------------------|--------------------|--------|--------------------|----------------|----------|
| CAT   |                           |                    | Dry    | Method             |                | Dilution |
| No.   | Analysis Name             | CAS Number         | Result | Detection<br>Limit | Units          | Factor   |
| 04697 | 3-Nitroaniline            | 99-09-2            | N.D.   | 80.                | ug/kg          | 1        |
| 04698 | Dibenzofuran              | 132-64-9           | N.D.   | 39.                | ug/kg          | 1        |
| 04700 | 4-Nitroaniline            | 100-01-6           | N.D.   | 80.                | ug/kg          | 1        |
| 04702 | Carbazole                 | 86-74-8            | N.D.   | 39.                | ug/kg          | 1        |
| 06292 | TCL by 8260 (soil)        |                    |        |                    |                |          |
| 05444 | Chloromethane             | 74 - 87 - 3        | N.D.   | 2.                 | ug/kg          | 0.98     |
| 05445 | Vinyl Chloride            | <b>75 - 01 - 4</b> | N.D.   | 1.                 | ug/kg          | 0.98     |
| 05446 | Bromomethane              | 74 - 83 - 9        | N.D.   | 2.                 | ug/kg          | 0.98     |
| 05447 | Chloroethane              | 75-00-3            | N.D.   | 2.                 | ug/kg          | 0.98     |
| 05449 | 1,1-Dichloroethene        | 75-35-4            | N.D.   | 1.                 | ug/kg          | 0.98     |
| 05450 | Methylene Chloride        | 75-09-2            | N.D.   | 2.                 | ug/kg          | 0.98     |
| 05451 | trans-1,2-Dichloroethene  | 156-60-5           | N.D.   | 1.                 | ug/kg          | 0.98     |
| 05452 | 1,1-Dichloroethane        | 75-34-3            | N.D.   | 1.                 | ug/kg          | 0.98     |
| 05454 | cis-1,2-Dichloroethene    | 156-59-2           | N.D.   | 1.                 | ug/kg          | 0.98     |
| 05455 | Chloroform                | 67-66-3            | N.D.   | 1.                 | ug/kg          | 0.98     |
| 05457 | 1,1,1-Trichloroethane     | 71-55-6            | N.D.   | 1.                 | ug/kg          | 0.98     |
| 05458 | Carbon Tetrachloride      | 56-23-5            | N.D.   | 1.                 | ug/kg          | 0.98     |
| 05460 | Benzene                   | 71-43-2            | N.D.   | 1.                 | ug/kg          | 0.98     |
| 05461 | 1,2-Dichloroethane        | 107-06-2           | N.D.   | 1.                 | ug/kg          | 0.98     |
| 05462 | Trichloroethene           | 79-01-6            | N.D.   | 1.                 | ug/kg          | 0.98     |
| 05463 | 1,2-Dichloropropane       | 78-87-5            | N.D.   | 1.                 | ug/kg          | 0.98     |
| 05465 | Bromodichloromethane      | 75-27-4            | N.D.   | 1.                 | ug/kg          | 0.98     |
| 05466 | Toluene                   | 108-88-3           | N.D.   | 1.                 | ug/ <b>k</b> g | 0.98     |
| 05467 | 1,1,2-Trichloroethane     | 79-00-5            | N.D.   | 1.                 | ug/kg          | 0.98     |
| 05468 | Tetrachloroethene         | 127-18-4           | N.D.   | 1.                 | ug/kg          | 0.98     |
| 05470 | Dibromochloromethane      | 124-48-1           | N.D.   | 1.                 | ug/kg          | 0.98     |
| 05472 | Chlorobenzene             | 108-90-7           | N.D.   | 1.                 | ug/kg          | 0.98     |
| 05474 | Ethylbenzene              | 100-41-4           | N.D.   | 1.                 | ug/kg          | 0.98     |
| 05477 | Styrene                   | 100-42-5           | N.D.   | 1.                 | ug/kg          | 0.98     |
| 05478 | Bromoform                 | 75-25-2            | N.D.   | 1.                 | ug/kg          | 0.98     |
| 05480 | 1,1,2,2-Tetrachloroethane | 79-34-5            | N.D.   | 1.                 | ug/kg          | 0.98     |
| 06293 | Acetone                   | 67-64-1            | N.D.   | 8.                 | ug/kg          | 0.98     |
| 06294 | Carbon Disulfide          | 75-15-0            | N.D.   | 1.                 | ug/kg          | 0.98     |
| 06296 | 2-Butanone                | 78 <b>-9</b> 3-3   | N.D.   | 5.                 | ug/kg          | 0.98     |
| 76297 | trans-1,3-Dichloropropene | 10061-02-6         | N.D.   | 1.                 | ug/kg          | 0.98     |





Page 5 of 5

Lancaster Laboratories Sample No. SW 3933062

Collected:11/01/2002 10:40

Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:33 Draper Aden Associates, Inc.

Discard: 12/26/2002

2206 South Main Street Blacksburg VA 24060

(8-12')7GP-2 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

81272 SDG#: RAR01-02

|       |                         |            |        | Dry                |       |          |
|-------|-------------------------|------------|--------|--------------------|-------|----------|
| CAT   |                         |            | Dry    | Method             |       | Dilution |
| No.   | Analysis Name           | CAS Number | Result | Detection<br>Limit | Units | Factor   |
| 06298 | cis-1,3-Dichloropropene | 10061-01-5 | N.D.   | 1.                 | ug/kg | 0.98     |
| 06299 | 4-Methyl-2-pentanone    | 108-10-1   | N.D.   | 4.                 | ug/kg | 0.98     |
| 06300 | 2-Hexanone              | 591-78-6   | N.D.   | 4.                 | ug/kg | 0.98     |
| 06301 | Xylene (Total)          | 1330-20-7  | N.D.   | 1.                 | ug/kg | 0.98     |

#### Laboratory Chronicle

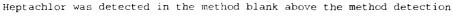
|               |                                   | Daboratory         | CIIIO  | 111-01-0         |                     |          |
|---------------|-----------------------------------|--------------------|--------|------------------|---------------------|----------|
| CAT           |                                   |                    |        | Analysis         |                     | Dilution |
| No.           | Analysis Name                     | Method             | Trial# | Date and Time    | Analyst             | Factor   |
| 00111         | Moisture                          | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer   | 1        |
| 01225         | TCL Pesticides in Solids          | SW-846 8081A/8082  | 1      | 11/06/2002 03:26 | Douglas D Seitz     | 1        |
| 04688         | TCL SW846 Semivolatiles<br>Soil   | SW-846 8270C       | 1      | 11/06/2002 05:31 | Linda M Hartenstine | 1        |
| 04689         | TCL SW846<br>Semivolatiles/Soil   | SW-846 8270C       | 1      | 11/06/2002 05:31 | Linda M Hartenstine | 1        |
| 06292         | TCL by 8260 (soil)                | SW-846 8260B       | 1      | 11/05/2002 23:58 | Ryan V Nolt         | 0.98     |
| 00381         | BNA Soil Extraction               | SW-846 3550B       | 1      | 11/05/2002 17:40 | Amy M Strocko       | 1        |
| 00819         | Solid Sample Pesticide<br>Extract | SW-846 3550B       | 1      | 11/05/2002 00:30 | Darin P Wagner      | 1        |
| 08389         | Low/High Encore Prep<br>Tracking  | SW-846 5035        | 1      | 11/05/2002 15:29 | Medina A Long       | n.a.     |
| <b>0838</b> 9 | Low/High Encore Prep<br>Tracking  | SW-846 5035        | 2      | 11/02/2002 23:44 | Medina A Long       | n.a.     |
| 08389         | Low/High Encore Prep<br>Tracking  | SW-846 5035        | 3      | 11/02/2002 23:45 | Medina A Long       | n.a.     |



Blacksburg VA 24060

Page 1 of 5

Lancaster Laboratories Sample No. SW 3933063


Collected:11/01/2002 11:05 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc. Reported: 11/25/2002 at 14:33 2206 South Main Street

Discard: 12/26/2002

(13.5-14.5')7GP-2 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

|       |                                |                             |            |           | Dry       |       |          |
|-------|--------------------------------|-----------------------------|------------|-----------|-----------|-------|----------|
| CAT   |                                |                             | Dry        |           | Method    |       | Dilution |
| No.   | Analysis Name                  | CAS Number                  | Resul      | t         | Detection | Units | Factor   |
|       |                                |                             |            |           | Limit     |       | _        |
| 00111 | Moisture                       | n.a.                        | 17.2       |           | 0.50      | 8     | 1        |
|       | "Moisture" represents the loss |                             |            |           |           |       |          |
|       | 103 - 105 degrees Celsius. The | moisture resul              | t report   | ted above | is on an  |       |          |
|       | as-received basis.             |                             |            |           |           |       |          |
| 01225 | TCL Pesticides in Solids       |                             |            |           |           |       |          |
| 01223 | 102 100020200                  |                             |            |           |           |       |          |
| 1218  | Gamma BHC - Lindane            | 58-89-9                     | N.D.       |           | 0.21      | ug/kg | 1        |
| 01219 | Heptachlor                     | 76-44-8                     | N.D.       |           | 0.21      | ug/kg | 1        |
| 01220 | Aldrin                         | 309-00-2                    | N.D.       |           | 0.21      | ug/kg | 1        |
| 01221 | p,p-DDT                        | 50-29-3                     | 0.67       | J         | 0.43      | ug/kg | 1        |
| 01222 | Dieldrin                       | 60-57-1                     | N.D.       |           | 0.40      | ug/kg | 1        |
| 01223 | Endrin                         | 72-20-8                     | N.D.       |           | 0.42      | ug/kg | 1        |
| 01859 | Methoxychlor                   | 72-43-5                     | N.D.       |           | 4.8       | ug/kg | 1        |
| 01981 | Alpha BHC                      | 319-84-6                    | N.D.       |           | 0.21      | ug/kg | 1        |
| 01982 | Beta BHC                       | 319-85-7                    | N.D.       |           | 0.21      | ug/kg | 1        |
| 01983 | Delta BHC                      | 319-86-8                    | N.D.       |           | 0.21      | ug/kg | 1        |
| 01984 | Heptachlor Epoxide             | 1024-57-3                   | N.D.       |           | 0.21      | ug/kg | 1        |
| 01985 | p,p-DDE                        | 72-55-9                     | N.D.       |           | 0.40      | ug/kg | 1        |
| 01986 | p,p-DDD                        | 72-54-8                     | 3.5        |           | 0.40      | ug/kg | 1        |
| 01988 | Toxaphene                      | 8001-35-2                   | N.D.       |           | 13.       | ug/kg | 1        |
| 01989 | Endosulfan I                   | 959-98-8                    | N.D.       |           | 0.21      | ug/kg | 1        |
| 01990 | Endosulfan II                  | 33213-65-9                  | N.D.       |           | 0.40      | ug/kg | 1        |
| 01991 | Endosulfan Sulfate             | 1031-07-8                   | N.D.       |           | 0.40      | ug/kg | 1        |
| 01992 | Endrin Aldehyde                | 7421-93-4                   | 3.1        | J         | 1.2       | ug/kg | 1        |
| 01993 | PCB-1016                       | 12674-11-2                  | N.D.       |           | 5.8       | ug/kg | 1        |
| 01994 | PCB-1221                       | 11104-28-2                  | N.D.       |           | 12.       | ug/kg | 1        |
| 01995 | PCB-1232                       | 11141-16-5                  | N.D.       |           | 5.2       | ug/kg | 1        |
| 01996 | PCB-1242                       | 53469-21-9                  | N.D.       |           | 6.0       | ug/kg | 1        |
| 01997 | PCB-1248                       | 12672-29-6                  | N.D.       |           | 5.9       | ug/kg | 1        |
| 01998 | PCB-1254                       | 11097-69-1                  | N.D.       |           | 6.9       | ug/kg | 1        |
| 01999 | PCB-1260                       | 11096-82-5                  | N.D.       |           | 5.3       | ug/kg | 1        |
| 03017 | Endrin Ketone                  | 53494- <b>70</b> -5         | N.D.       |           | 0.40      | ug/kg | 1        |
| 03025 | Alpha Chlordane                | 5 <b>10</b> 3- <b>7</b> 1~9 | N.D.       |           | 0.21      | ug/kg | 1        |
| 03026 | Gamma Chlordane                | 5103-74-2                   | N.D.       |           | 0.21      | ug/kg | 1        |
|       | Montachlor was detected in the | method blank a              | horro + he | mothed d  | otostion  |       |          |







Dry

Page 2 of 5

Lancaster Laboratories Sample No. 3933063

Collected:11/01/2002 11:05 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc.

2206 South Main Street Reported: 11/25/2002 at 14:33 Discard: 12/26/2002 Blacksburg VA 24060

(13.5-14.5')7GP-2 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

| CAT   |                                           |                          | Dry                | Method             |        | Dilution |
|-------|-------------------------------------------|--------------------------|--------------------|--------------------|--------|----------|
| No.   | Analysis Name                             | CAS Number               | Result             | Detection<br>Limit | Units  | Factor   |
|       | limit. No heptachlor was detect reported. | ed in the samp           | ole, therefore the | data is            |        |          |
|       | 20002000                                  |                          |                    |                    |        |          |
| 04688 | TCL SW846 Semivolatiles Soil              |                          |                    |                    |        |          |
|       |                                           |                          |                    |                    |        |          |
| 01185 | Phenol                                    | 108-95-2                 | N.D.               | 40.                | ug/kg  | 1        |
| 01186 | 2-Chlorophenol                            | 95-57-8                  | N.D.               | 40.                | ug/kg  | 1        |
| 21187 | 1,4-Dichlorobenzene                       | 106-46-7                 | N.D.               | 40.                | ug/kg  | 1        |
| 01188 | N-Nitroso-di-n-propylamine                | 621-64-7                 | N.D.               | 40.                | ug/kg  | 1        |
| 01189 | 1,2,4-Trichlorobenzene                    | 120-82-1                 | N.D.               | 40.                | ug/kg  | 1        |
| 01190 | 4-Chloro-3-methylphenol                   | 59-50-7                  | N.D.               | 81.                | ug/kg  | 1        |
| 03746 | 2-Nitrophenol                             | 88-75-5                  | N.D.               | 40.                | ug/kg  | 1        |
| 03747 | 2,4-Dimethylphenol                        | 105-67-9                 | N.D.               | 40.                | ug/kg  | 1        |
| 03748 | 2,4-Dichlorophenol                        | 120-83-2                 | N.D.               | 40.                | ug/kg  | 1        |
| 03749 | 2,4,6-Trichlorophenol                     | 88-06-2                  | N.D.               | 40.                | ug/kg  | 1        |
| 03753 | bis(2-Chloroethyl)ether                   | 111-44-4                 | N.D.               | 40.                | ug/kg  | 1        |
| 03754 | 1,3-Dichlorobenzene                       | 541-73-1                 | N.D.               | 40.                | ug/kg  | 1        |
| 03755 | 1,2-Dichlorobenzene                       | 95-50-1                  | N.D.               | 40.                | ug/kg  | 1        |
| 03757 | Hexachloroethane                          | 67 <b>-</b> 72- <b>1</b> | N.D.               | 40.                | ug/kg  | 1        |
| 03758 | Nitrobenzene                              | 98-95-3                  | N.D.               | 40.                | ug/kg  | 1        |
| 03759 | Isophorone                                | 78-59-1                  | N.D.               | 40.                | ug/kg  | 1        |
| 03760 | bis(2-Chloroethoxy)methane                | 111-91-1                 | N.D.               | 40.                | ug/kg  | 1        |
| 03761 | Naphthalene                               | 91-20-3                  | N.D.               | 40.                | ug/kg  | 1        |
| 03762 | Hexachlorobutadiene                       | 87-68-3                  | N.D.               | 81.                | ug/kg  | 1        |
| 03763 | Hexachlorocyclopentadiene                 | 77-47-4                  | N.D.               | 210.               | ug/kg  | 1        |
| 03764 | 2-Chloronaphthalene                       | 91-58-7                  | N.D.               | 40.                | ug/kg  | 1        |
| 03765 | Acenaphthylene                            | 208-96-8                 | N.D.               | 40.                | ug/kg  | 1        |
| 03766 | Dimethylphthalate                         | 131-11-3                 | N.D.               | 81.                | ug/kg  | 1        |
| 04690 | 2-Methylphenol                            | 95-48-7                  | N.D.               | 40.                | ug/kg  | 1        |
| 04691 | 2,2'-oxybis(1-Chloropropane)              | 108-60-1                 | N.D.               | 40.                | ug/kg  | 1        |
| 04692 | 4-Methylphenol                            | 106-44-5                 | N.D.               | 81.                | ug/kg  | 1        |
| 01052 | 3-Methylphenol and 4-methylphen           |                          |                    |                    | 49/119 | -        |
|       | chromatographic conditions used           |                          |                    |                    |        |          |
|       | for 4-methylphenol represents t           |                          |                    |                    |        |          |
| 04693 | 4-Chloroaniline                           | 106-47-8                 | N.D.               | 40.                | ug/kg  | 1        |
| 04694 | 2-Methylnaphthalene                       | 91-57-6                  | N.D.               | 40.                | ug/kg  | 1        |
| 04695 | 2,4,5-Trichlorophenol                     | 95-95-4                  | N.D.               | 40.                | ug/kg  | 1        |
|       |                                           |                          |                    |                    | _      |          |





Page 3 of 5

Lancaster Laboratories Sample No. SW 3933063

Collected:11/01/2002 11:05 Account

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:33

Discard: 12/26/2002

(13.5-14.5')7GP-2 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

Account Number: 11200

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

|       |                                                                                              |                  |        | Dry                |       |          |
|-------|----------------------------------------------------------------------------------------------|------------------|--------|--------------------|-------|----------|
| CAT   |                                                                                              |                  | Dry    | Method             |       | Dilution |
| No.   | Analysis Name                                                                                | CAS Number       | Result | Detection<br>Limit | Units | Factor   |
| 04696 | 2-Nitroaniline                                                                               | 88-74-4          | N.D.   | 40.                | ug/kg | 1        |
| 04689 | TCL SW846 Semivolatiles/Soil                                                                 |                  |        |                    |       |          |
| 01191 | Acenaphthene                                                                                 | 83-32-9          | N.D.   | 40.                | ug/kg | 1        |
| 01192 | 4-Nitrophenol                                                                                | 100-02-7         | N.D.   | 210.               | ug/kg | 1        |
| 01193 | 2,4-Dinitrotoluene                                                                           | 121-14-2         | N.D.   | 81.                | ug/kg | 1        |
| 11194 | Pentachlorophenol                                                                            | 87-86-5          | N.D.   | 210.               | ug/kg | 1        |
| 01195 | Pyrene                                                                                       | 129-00-0         | N.D.   | 40.                | ug/kg | 1        |
| 03750 | 2,4-Dinitrophenol                                                                            | 5 <b>1-28</b> -5 | N.D.   | 810.               | ug/kg | 1        |
| 03751 | 4,6-Dinitro-2-methylphenol                                                                   | 534-52-1         | N.D.   | 210.               | ug/kg | 1        |
| 03767 | 2,6-Dinitrotoluene                                                                           | 606-20-2         | N.D.   | 40.                | ug/kg | 1        |
| 03768 | Fluorene                                                                                     | 86-73-7          | N.D.   | 40.                | ug/kg | 1        |
| 03769 | 4-Chlorophenyl-phenylether                                                                   | 7005-72-3        | N.D.   | 40.                | ug/kg | 1        |
| 03770 | Diethylphthalate                                                                             | 84-66-2          | N.D.   | 81.                | ug/kg | 1        |
| 03772 | N-Nitrosodiphenylamine                                                                       | 86-30-6          | N.D.   | 40.                | ug/kg | 1        |
|       | N-nitrosodiphenylamine decompo<br>The result reported for N-nitr<br>total of both compounds. |                  | _      |                    |       |          |
| 03773 | 4-Bromophenyl-phenylether                                                                    | 101-55-3         | N.D.   | 40.                | ug/kg | 1        |
| 03774 | Hexachlorobenzene                                                                            | 118-74-1         | N.D.   | 40.                | ug/kg | 1        |
| 03775 | Phenanthrene                                                                                 | 85-01-8          | N.D.   | 40.                | ug/kg | 1        |
| 03776 | Anthracene                                                                                   | 120-12-7         | N.D.   | 40.                | ug/kg | 1        |
| 03777 | Di-n-butylphthalate                                                                          | 84-74-2          | N.D.   | 81.                | ug/kg | 1        |
| 03778 | Fluoranthene                                                                                 | 206-44-0         | N.D.   | 40.                | ug/kg | 1        |
| 03780 | Butylbenzylphthalate                                                                         | 85-68-7          | N.D.   | 81                 | ug/kg | 1        |
| 03781 | Benzo(a)anthracene                                                                           | 56-55-3          | N.D.   | 40.                | ug/kg | 1        |
| 03782 | Chrysene                                                                                     | 218-01-9         | N.D.   | 40.                | ug/kg | 1        |
| 03783 | 3,3'-Dichlorobenzidine                                                                       | 91 <b>-</b> 94-1 | N.D.   | 81.                | ug/kg | 1        |
| 03784 | bis(2-Ethylhexyl)phthalate                                                                   | 117-81-7         | N.D.   | 81.                | ug/kg | 1        |
| 03785 | Di-n-octylphthalate                                                                          | 117-84-0         | N.D.   | 81.                | ug/kg | 1        |
| 03786 | Benzo(b) fluoranthene                                                                        | 205-99-2         | N.D.   | 40.                | ug/kg | 1        |
| 03787 | Benzo(k)fluoranthene                                                                         | 207-08-9         | N.D.   | 40.                | ug/kg | 1        |
| 03788 | Benzo(a)pyrene                                                                               | 50-32-8          | N.D.   | 40.                | ug/kg | 1        |
| 03789 | Indeno(1,2,3-cd)pyrene                                                                       | 193-39-5         | N.D.   | 40.                | ug/kg | 1        |
| 03790 | Dibenz(a,h)anthracene                                                                        | 53 - 70 - 3      | N.D.   | 40.                | ug/kg | 1        |
| 3791د | Benzo(g,h,i)perylene                                                                         | 191-24-2         | N.D.   | 40.                | ug/kg | 1        |
|       |                                                                                              |                  |        |                    |       |          |



Page 4 of 5

Lancaster Laboratories Sample No. SW 3933063

Collected:11/01/2002 11:05 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc.
Reported: 11/25/2002 at 14:33 2206 South Main Street

Reported: 11/25/2002 at 14:33 2206 South Main Street Discard: 12/26/2002 Blacksburg VA 24060

(13.5-14.5')7GP-2 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

| 13372 | BDG#: KAKUI US            |                          |        | Dry                |                |               |
|-------|---------------------------|--------------------------|--------|--------------------|----------------|---------------|
| CAT   |                           |                          | Dry    | Method             |                | Dilution      |
| No.   | Analysis Name             | CAS Number               | Result | Detection<br>Limit | Units          | Factor        |
| 04697 | 3-Nitroaniline            | 99-09-2                  | N.D.   | 81.                | ug/kg          | 1             |
| 04698 | Dibenzofuran              | 132-64-9                 | N.D.   | 40.                | ug/kg          | 1             |
| 04700 | 4-Nitroaniline            | 100-01-6                 | N.D.   | 81.                | ug/kg          | 1             |
| 04702 | Carbazole                 | 86-74-8                  | N.D.   | 40.                | ug/kg          | 1             |
| 06292 | TCL by 8260 (soil)        |                          |        |                    |                |               |
| 15444 | Chloromethane             | 74-87-3                  | N.D.   | 2.                 | ug/kg          | 0.95          |
| 05445 | Vinyl Chloride            | 75-01-4                  | N.D.   | 1.                 | ug/kg          | 0.95          |
| 05446 | Bromomethane              | 74-83-9                  | N.D.   | 2.                 | ug/kg          | 0.95          |
| 05447 | Chloroethane              | 75-00-3                  | N.D.   | 2.                 | ug/kg          | 0.95          |
| 05449 | 1,1-Dichloroethene        | 75-35-4                  | N.D.   | 1.                 | ug/kg          | 0.95          |
| 05450 | Methylene Chloride        | <b>7</b> 5- <b>09-2</b>  | N.D.   | 2.                 | ug/kg          | 0.95          |
| 05451 | trans-1,2-Dichloroethene  | 156-60-5                 | N.D.   | 1.                 | ug/kg          | 0.95          |
| 05452 | 1,1-Dichloroethane        | 75-34-3                  | N.D.   | 1.                 | ug/kg          | 0.95          |
| 05454 | cis-1,2-Dichloroethene    | 156-59-2                 | N.D.   | 1.                 | ug/kg          | 0.95          |
| 05455 | Chloroform                | 67-66-3                  | N.D.   | 1.                 | ug/kg          | 0.95          |
| 05457 | 1,1,1-Trichloroethane     | 71-55-6                  | N.D.   | 1.                 | ug/kg          | 0.95          |
| 05458 | Carbon Tetrachloride      | 56-23-5                  | N.D.   | 1.                 | ug/kg          | 0.95          |
| 05460 | Benzene                   | 71-43-2                  | N.D.   | 1.                 | ug/kg          | 0.95          |
| 05461 | 1,2-Dichloroethane        | 107-06-2                 | N.D.   | 1.                 | ug/kg          | 0.95          |
| 05462 | Trichloroethene           | 79-01-6                  | N.D.   | 1.                 | ug/kg          | 0.95          |
| 05463 | 1,2-Dichloropropane       | 78-87-5                  | N.D.   | 1.                 | ug/kg          | 0.95          |
| 05465 | Bromodichloromethane      | 75-27-4                  | N.D.   | 1.                 | ug/kg          | 0.95          |
| 05466 | Toluene                   | 108-88-3                 | N.D.   | 1.                 | ug/kg          | 0.95          |
| 05467 | 1,1,2-Trichloroethane     | 79-00-5                  | N.D.   | 1.                 | ug/kg          | 0.95          |
| 05468 | Tetrachloroethene         | 127-18-4                 | N.D.   | 1.                 | ug/kg          | 0.95          |
| 05470 | Dibromochloromethane      | 124-48-1                 | N.D.   | 1.                 | ug/kg          | 0.95          |
| 05472 | Chlorobenzene             | 108-90-7                 | N.D.   | 1.                 | ug/kg          | 0.95          |
| 05474 | Ethylbenzene              | 100-41-4                 | N.D.   | 1.                 | u <b>g</b> /kg | 0.95          |
| 05477 | Styrene                   | 100-42-5                 | N.D.   | 1.                 | ug/kg          | 0.95          |
| 05478 | Bromoform                 | 75-25-2                  | N.D.   | 1.                 | ug/kg          | 0.95          |
| 05480 | 1,1,2,2-Tetrachloroethane | 79-34-5                  | N.D.   | 1.                 | ug/kg          | 0.95          |
| 06293 | Acetone                   | 67-64-1                  | N.D.   | 8.                 | ug/kg          | 0.95          |
| 06294 | Carbon Disulfide          | 75- <b>1</b> 5- <b>0</b> | N.D.   | 1.                 | ug/kg          | 0 . <b>95</b> |
| 06296 | 2-But anone               | 78 - 93 - 3              | N.D.   | 5.                 | ug/kg          | 0.95          |
| 6297  | trans-1,3-Dichloropropene | 10061-02-6               | N.D.   | 1.                 | ug/kg          | 0.95          |
|       |                           |                          |        |                    |                |               |





Page 5 of 5

Lancaster Laboratories Sample No. SW 3933063

Collected:11/01/2002 11:05 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:33 2206 South Main Street

Discard: 12/26/2002 Blacksburg VA 24060 (13.5-14.5') 7GP-2 Grab Soil Sample

13572 SDG#: RAR01-03

HWMU-5 & HWMU-7 Investigation

|       |                         |            |        | Dry                |       |          |
|-------|-------------------------|------------|--------|--------------------|-------|----------|
| CAT   |                         |            | Dry    | Method             |       | Dilution |
| No.   | Analysis Name           | CAS Number | Result | Detection<br>Limit | Units | Factor   |
| 06298 | cis-1,3-Dichloropropene | 10061-01-5 | N.D.   | 1.                 | ug/kg | 0.95     |
| 06299 | 4-Methyl-2-pentanone    | 108-10-1   | N.D.   | 4.                 | ug/kg | 0.95     |
| 06300 | 2-Hexanone              | 591-78-6   | N.D.   | 4.                 | ug/kg | 0.95     |
| 06301 | Xvlene (Total)          | 1330-20-7  | N.D.   | 1.                 | ug/kg | 0.95     |

#### Laboratory Chronicle

|       |                                         | <u> Laboracor</u> j | CIII     | 111010           |                     |          |
|-------|-----------------------------------------|---------------------|----------|------------------|---------------------|----------|
| CAT   |                                         |                     | Analysis |                  |                     | Dilution |
| No.   | Analysis Name                           | Method              | Trial#   | Date and Time    | Analyst             | Factor   |
| 00111 | Moisture                                | EPA 160.3 modified  | 1        | 11/05/2002 08:39 | Helen L Schaeffer   | 1        |
| 01225 | TCL Pesticides in Solids                | SW-846 8081A/8082   | 1        | 11/06/2002 03:47 | Douglas D Seitz     | 1 ·      |
| 04688 | TCL SW846 Semivolatiles                 | SW-846 8270C        | 1        | 11/06/2002 06:30 | Linda M Hartenstine | 1 .      |
| 04689 | Soil<br>TCL SW846<br>Semivolatiles/Soil | SW-846 8270C        | 1        | 11/06/2002 06:30 | Linda M Hartenstine | 1        |
| 06292 | TCL by 8260 (soil)                      | SW-846 8260B        | 1        | 11/06/2002 00:31 | Ryan V Nolt         | 0.95     |
| 00381 | BNA Soil Extraction                     | SW-846 3550B        | 1        | 11/05/2002 17:40 | Amy M Strocko       | 1        |
| 00819 | Solid Sample Pesticide<br>Extract       | SW-846 3550B        | 1        | 11/05/2002 00:30 | Darin P Wagner      | 1        |
| 08389 | Low/High Encore Prep<br>Tracking        | SW-846 5035         | 1        | 11/05/2002 15:28 | Medina A Long       | n.a.     |
| 08389 | Low/High Encore Prep<br>Tracking        | SW-846 5035         | 2        | 11/02/2002 23:40 | Medina A Long       | n.a.     |
| 08389 | Low/High Encore Prep<br>Tracking        | SW-846 5035         | 3        | 11/02/2002 20:41 | Medina A Long       | n.a.     |



Page 1 of 5

Lancaster Laboratories Sample No. SW 3933064

Collected:11/01/2002 11:25 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:33 2206 South Main Street Discard: 12/26/2002 Blacksburg VA 24060

(10-11')7GP-3 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

10-73 SDG#: RAR01-04

|               |                                |                 |                  | Dry       |                |          |
|---------------|--------------------------------|-----------------|------------------|-----------|----------------|----------|
| CAT           |                                |                 | Dry              | Method    |                | Dilution |
| No.           | Analysis Name                  | CAS Number      | Result           | Detection | Units          | Factor   |
|               |                                |                 |                  | Limit     |                |          |
| 00111         | Moisture                       | n.a.            | 20.8             | 0.50      | 8              | 1        |
|               | "Moisture" represents the loss | _               | _                |           |                |          |
|               | 103 - 105 degrees Celsius. The | moisture resul  | t reported above | is on an  |                |          |
|               | as-received basis.             |                 |                  |           |                |          |
| 01225         | TCL Pesticides in Solids       |                 |                  |           |                |          |
| 01000         |                                |                 |                  |           |                |          |
| 1218          | Gamma BHC - Lindane            | <b>58</b> -89-9 | N.D.             | 0.21      | ug/kg          | 1        |
| 01219         | Heptachlor                     | 76-44-8         | N.D.             | 0.21      | ug/kg          | 1        |
| 01220         | Aldrin                         | 309-00-2        | N.D.             | 0.21      | ug/kg          | 1        |
| 01221         | p,p-DDT                        | 50-29-3         | N.D.             | 0.45      | ug/kg          | 1        |
| 01222         | Dieldrin                       | 60-57-1         | N.D.             | 0.42      | ug/kg          | 1        |
| 01223         | Endrin                         | 72-20-8         | N.D.             | 0.44      | ug/kg          | 1        |
| 01859         | Methoxychlor                   | 72-43-5         | N.D.             | 5.1       | ug/kg          | 1        |
| 01981         | Alpha BHC                      | 319-84-6        | N.D.             | 0.21      | ug/kg          | 1        |
| 01982         | Beta BHC                       | 319-85-7        | N.D.             | 0.21      | ug/kg          | 1        |
| 01983         | Delta BHC                      | 319-86-8        | N.D.             | 0.21      | ug/kg          | 1        |
| 01984         | Heptachlor Epoxide             | 1024-57-3       | N.D.             | 0.21      | ug/kg          | 1        |
| 01985         | p,p-DDE                        | 72-55-9         | 2.5              | 0.42      | ug/kg          | 1        |
| 01986         | p,p-DDD                        | 72-54-8         | N.D.             | 0.42      | ug/kg          | 1        |
| 01988         | Toxaphene                      | 8001-35-2       | N.D.             | 14.       | ug/kg          | 1        |
| 01989         | Endosulfan I                   | 959-98-8        | N.D.             | 0.21      | ug/kg          | 1        |
| 01990         | Endosulfan II                  | 33213-65-9      | N.D.             | 0.42      | ug/kg          | 1        |
| 01991         | Endosulfan Sulfate             | 1031-07-8       | N.D.             | 0.42      | ug/kg          | 1        |
| 01992         | Endrin Aldehyde                | 7421-93-4       | N.D.             | 1.3       | ug/kg          | 1        |
| 01993         | PCB-1016                       | 12674-11-2      | N.D.             | 6.1       | ug/ <b>k</b> g | 1        |
| 01994         | PCB-1221                       | 11104-28-2      | N.D.             | 13.       | ug/kg          | 1        |
| 01995         | PCB-1232                       | 11141-16-5      | N.D.             | 5.4       | ug/ <b>kg</b>  | 1        |
| 01996         | PCB-1242                       | 53469-21-9      | N.D.             | 6.3       | ug/kg          | 1        |
| 01997         | PCB-1248                       | 12672-29-6      | N.D.             | 6.2       | ug/ <b>k</b> g | 1        |
| 01998         | PCB-1254                       | 11097-69-1      | N.D.             | 7.2       | ug/kg          | 1        |
| 01999         | PCB-1260                       | 11096-82-5      | N.D.             | 5.6       | ug/kg          | 1        |
| 03017         | Endrin Ketone                  | 53494-70-5      | N.D.             | 0.42      | ug/kg          | 1        |
| 03025         | Alpha Chlordane                | 5103-71-9       | N.D.             | 0.21      | ug/kg          | 1        |
| <b>0</b> 3026 | Gamma Chlordane                | 5103-74-2       | <b>N</b> .D.     | 0.21      | ug/kg          | 1        |
|               |                                |                 |                  |           |                |          |

Heptachlor was detected in the method blank above the method detection



Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681



Page 2 of 5

3933064 Lancaster Laboratories Sample No.

Account Number: 11200 Collected:11/01/2002 11:25

Draper Aden Associates, Inc. Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:33

Discard: 12/26/2002

(10-11')7GP-3 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

2206 South Main Street Blacksburg VA 24060

Dry

10-73 SDG#: RAR01-04

| Dry   Method   Dilut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tion |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| reported.  04688 TCL SW846 Semivolatiles Soil  01185 Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or   |
| 01185       Phenol       108-95-2       N.D.       42.       ug/kg       1         01186       2-Chlorophenol       95-57-8       N.D.       42.       ug/kg       1         01187       1,4-Dichlorobenzene       106-46-7       N.D.       42.       ug/kg       1         01188       N-Nitroso-di-n-propylamine       621-64-7       N.D.       42.       ug/kg       1         01189       1,2,4-Trichlorobenzene       120-82-1       N.D.       42.       ug/kg       1         01190       4-Chloro-3-methylphenol       59-50-7       N.D.       85.       ug/kg       1         03746       2-Nitrophenol       88-75-5       N.D.       42.       ug/kg       1 |      |
| 01186       2-Chlorophenol       95-57-8       N.D.       42.       ug/kg       1         01187       1,4-Dichlorobenzene       106-46-7       N.D.       42.       ug/kg       1         01188       N-Nitroso-di-n-propylamine       621-64-7       N.D.       42.       ug/kg       1         01189       1,2,4-Trichlorobenzene       120-82-1       N.D.       42.       ug/kg       1         01190       4-Chloro-3-methylphenol       59-50-7       N.D.       85.       ug/kg       1         03746       2-Nitrophenol       88-75-5       N.D.       42.       ug/kg       1                                                                                    |      |
| 01187     1,4-Dichlorobenzene     106-46-7     N.D.     42.     ug/kg     1       01188     N-Nitroso-di-n-propylamine     621-64-7     N.D.     42.     ug/kg     1       01189     1,2,4-Trichlorobenzene     120-82-1     N.D.     42.     ug/kg     1       01190     4-Chloro-3-methylphenol     59-50-7     N.D.     85.     ug/kg     1       03746     2-Nitrophenol     88-75-5     N.D.     42.     ug/kg     1                                                                                                                                                                                                                                                  |      |
| N-Nitroso-di-n-propylamine   621-64-7   N.D.   42.   ug/kg   1   01189   1,2,4-Trichlorobenzene   120-82-1   N.D.   42.   ug/kg   1   01190   4-Chloro-3-methylphenol   59-50-7   N.D.   85.   ug/kg   1   03746   2-Nitrophenol   88-75-5   N.D.   42.   ug/kg   1                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| 01189       1,2,4-Trichlorobenzene       120-82-1       N.D.       42.       ug/kg       1         01190       4-Chloro-3-methylphenol       59-50-7       N.D.       85.       ug/kg       1         03746       2-Nitrophenol       88-75-5       N.D.       42.       ug/kg       1                                                                                                                                                                                                                                                                                                                                                                                     |      |
| 01190 4-Chloro-3-methylphenol 59-50-7 N.D. 85. ug/kg 1<br>03746 2-Nitrophenol 88-75-5 N.D. 42. ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| 03746 2-Nitrophenol 88-75-5 N.D. 42. ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 5, 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| 02747 2 4-Dimethylphenol 105-67-9 N.D. 42 yg/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| 05/4/ 2,4-Dimeenyiphenot 103 0/-5 m.b. 45. ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| 03748 2,4-Dichlorophenol 120-83-2 N.D. 42. ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| 03749 2,4,6-Trichlorophenol 88-06-2 N.D. 42. ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| 03753 bis(2-Chloroethyl)ether 111-44-4 N.D. 42. ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| 03754 1,3-Dichlorobenzene 541-73-1 N.D. 42. ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| 03755 1,2-Dichlorobenzene 95-50-1 N.D. 42. ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| 03757 Hexachloroethane 67-72-1 N.D. 42. ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| 03758 Nitrobenzene 98-95-3 N.D. 42. ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 03759 Isophorone 78-59-1 N.D. 42. ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| 03760 bis(2-Chloroethoxy)methane 111-91-1 N.D. 42. ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| 03761 Naphthalene 91-20-3 N.D. 42. ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| 03762 Hexachlorobutadiene 87-68-3 N.D. 85. ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| 03763 Hexachlorocyclopentadiene 77-47-4 N.D. 210. ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| 03764 2-Chloronaphthalene 91-58-7 N.D. 42. ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| 03765 Acenaphthylene 208-96-8 N.D. 42. ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| 03766 Dimethylphthalate 131-11-3 N.D. 85. $ug/kg$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| 04690 2-Methylphenol 95-48-7 N.D. 42. ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| 04691 2,2'-oxybis(1-Chloropropane) 108-60-1 N.D. 42. ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 04692 4-Methylphenol 106-44-5 N.D. 85. ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| 3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 04693 4-Chloroaniline 106-47-8 N.D. 42. ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| 04694 2-Methylnaphthalene 91-57-6 N.D. 42. ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| 04695 2,4,5-Trichlorophenol 95-95-4 N.D. 42. ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |





Page 3 of 5

Lancaster Laboratories Sample No. 3933064

Collected:11/01/2002 11:25 Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:33

Discard: 12/26/2002

(10-11') 7GP-3 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

10-73 SDG#: RAR01-04

| 10 /3 | BBC#: Idikor 04                                                                                |                                  |                                       | Dry                     |       |          |
|-------|------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------|-------------------------|-------|----------|
| CAT   |                                                                                                |                                  | Dry                                   | Method                  |       | Dilution |
| No.   | Analysis Name                                                                                  | CAS Number                       | Result                                | Detection<br>Limit      | Units | Factor   |
| 04696 | 2-Nitroaniline                                                                                 | 88-74-4                          | N.D.                                  | 42.                     | ug/kg | 1        |
| 04689 | TCL SW846 Semivolatiles/Soil                                                                   |                                  |                                       |                         |       |          |
| 01191 | Acenaphthene                                                                                   | 83-32-9                          | N.D.                                  | 42.                     | ug/kg | 1        |
| 01192 | 4-Nitrophenol                                                                                  | 100-02-7                         | N.D.                                  | 210.                    | ug/kg | 1        |
| 01193 | 2,4-Dinitrotoluene                                                                             | 121-14-2                         | N.D.                                  | 85.                     | ug/kg | 1        |
| 71194 | Pentachlorophenol                                                                              | 87-86-5                          | N.D.                                  | 210.                    | ug/kg | 1        |
| J1195 | Pyrene                                                                                         | 129-00-0                         | N.D.                                  | 42.                     | ug/kg | 1        |
| 03750 | 2,4-Dinitrophenol                                                                              | 51-28-5                          | N.D.                                  | 850.                    | ug/kg | 1        |
| 03751 | 4,6-Dinitro-2-methylphenol                                                                     | 534-52-1                         | N.D.                                  | 210.                    | ug/kg | 1        |
| 03767 | 2,6-Dinitrotoluene                                                                             | 606-20-2                         | N.D.                                  | 42.                     | ug/kg | 1        |
| 03768 | Fluorene                                                                                       | 86-73-7                          | N.D.                                  | 42.                     | ug/kg | 1        |
| 03769 | 4-Chlorophenyl-phenylether                                                                     | 7005-72-3                        | N.D.                                  | 42.                     | ug/kg | 1        |
| 03770 | Diethylphthalate                                                                               | 84-66-2                          | N.D.                                  | 85.                     | ug/kg | 1        |
| 03772 | N-Nitrosodiphenylamine                                                                         | 86-30-6                          | 750.                                  | 42.                     | ug/kg | 1        |
|       | N-nitrosodiphenylamine decompos<br>The result reported for N-nitro<br>total of both compounds. | es in the GC i<br>sodiphenylamin | nlet forming dipl<br>e represents the | henylamine.<br>combined |       |          |
| 03773 | 4-Bromophenyl-phenylether                                                                      | 101-55-3                         | N.D.                                  | 42.                     | ug/kg | 1        |
| 03774 | Hexachlorobenzene                                                                              | 118-74-1                         | N.D.                                  | 42.                     | ug/kg | 1        |
| 03775 | Phenanthrene                                                                                   | 85-01-8                          | N.D.                                  | 42.                     | ug/kg | 1        |
| 03776 | Anthracene                                                                                     | 120-12-7                         | N.D.                                  | 42.                     | ug/kg | 1        |
| 03777 | Di-n-butylphthalate                                                                            | 84-74-2                          | N.D.                                  | 85.                     | ug/kg | 1        |
| 03778 | Fluoranthene                                                                                   | 206-44-0                         | N.D.                                  | 42.                     | ug/kg | 1        |
| 03780 | Butylbenzylphthalate                                                                           | 85-68-7                          | N.D.                                  | 85.                     | ug/kg | 1        |
| 03781 | Benzo(a) anthracene                                                                            | 56-55-3                          | N.D.                                  | 42.                     | ug/kg | 1        |
| 03782 | Chrysene                                                                                       | 218-01-9                         | N.D.                                  | 42.                     | ug/kg | 1        |
| 03783 | 3,3'-Dichlorobenzidine                                                                         | 91-94-1                          | N.D.                                  | 85.                     | ug/kg | 1        |
| 03784 | bis(2-Ethylhexyl)phthalate                                                                     | 117-81-7                         | 90. J                                 | 85.                     | ug/kg | 1        |
| 03785 | Di-n-octylphthalate                                                                            | 117-84-0                         | N.D.                                  | 85.                     | ug/kg | 1        |
| 03786 | Benzo(b) fluoranthene                                                                          | 205-99-2                         | N.D.                                  | 42.                     | ug/kg | 1        |
| 03787 | Benzo(k) fluoranthene                                                                          | 207-08-9                         | N.D.                                  | 42.                     | ug/kg | 1        |
| 03788 | Benzo(a)pyrene                                                                                 | 50-32-8                          | N.D.                                  | 42.                     | ug/kg | 1        |
| 03789 | Indeno(1,2,3-cd)pyrene                                                                         | 193-39-5                         | N.D.                                  | 42.                     | ug/kg | 1        |
| 03790 | Dibenz(a,h)anthracene                                                                          | 53-70-3                          | N.D.                                  | 42.                     | ug/kg | 1        |
| 03791 | Benzo(g,h,i)perylene                                                                           | 191-24-2                         | N.D.                                  | 42.                     | ug/kg | 1        |
|       |                                                                                                |                                  |                                       |                         |       |          |







Page 4 of 5

n/1.../

Lancaster Laboratories Sample No. SW 3933064

Collected:11/01/2002 11:25

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:33

Discard: 12/26/2002

(10-11')7GP-3 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

Account Number: 11200

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

Dry

10-73 SDG#: RAR01-04

| CAT   |                           |                  | Dry          | Method             |       | Dilution |
|-------|---------------------------|------------------|--------------|--------------------|-------|----------|
| No.   | Analysis Name             | CAS Number       | Result       | Detection<br>Limit | Units | Factor   |
| 04697 | 3-Nitroaniline            | 99-09-2          | N.D.         | 85.                | ug/kg | 1        |
| 04698 | Dibenzofuran              | 132-64-9         | N.D.         | 42.                | ug/kg | 1        |
| 04700 | 4-Nitroaniline            | 100-01-6         | N.D.         | 85.                | ug/kg | 1        |
| 04702 | Carbazole                 | 86-74-8          | <b>N</b> .D. | 42.                | ug/kg | 1        |
| 06292 | TCL by 8260 (soil)        |                  |              |                    |       |          |
| 75444 | Chloromethane             | 74-87-3          | N.D.         | 3.                 | ug/kg | 0.95     |
| J5445 | Vinyl Chloride            | 75-01-4          | N.D.         | 1.                 | ug/kg | 0.95     |
| 05446 | Bromomethane              | 74-83-9          | N.D.         | 3.                 | ug/kg | 0.95     |
| 05447 | Chloroethane              | 75-00-3          | N.D.         | 3.                 | ug/kg | 0.95     |
| 05449 | 1,1-Dichloroethene        | 75-35-4          | N.D.         | 1.                 | ug/kg | 0.95     |
| 05450 | Methylene Chloride        | 75-09-2          | N.D.         | 3.                 | ug/kg | 0.95     |
| 05451 | trans-1,2-Dichloroethene  | 156-60-5         | N.D.         | 1.                 | ug/kg | 0.95     |
| 05452 | 1,1-Dichloroethane        | 75-34-3          | N.D.         | 1.                 | ug/kg | 0.95     |
| 05454 | cis-1,2-Dichloroethene    | 156-59-2         | N.D.         | 1.                 | ug/kg | 0.95     |
| 05455 | Chloroform                | 67-66-3          | N.D.         | 1.                 | ug/kg | 0.95     |
| 05457 | 1,1,1-Trichloroethane     | 71 <b>-5</b> 5-6 | N.D.         | 1.                 | ug/kg | 0.95     |
| 05458 | Carbon Tetrachloride      | 56-23-5          | N.D.         | 1.                 | ug/kg | 0.95     |
| 05460 | Benzene                   | 71-43-2          | N.D.         | 1.                 | ug/kg | 0.95     |
| 05461 | 1,2-Dichloroethane        | 107-06-2         | N.D.         | 1.                 | ug/kg | 0.95     |
| 05462 | Trichloroethene           | 79-01-6          | N.D.         | 1.                 | ug/kg | 0.95     |
| 05463 | 1,2-Dichloropropane       | 78-87-5          | N.D.         | 1.                 | ug/kg | 0.95     |
| 05465 | Bromodichloromethane      | 75-27-4          | N.D.         | 1.                 | ug/kg | 0.95     |
| 05466 | Toluene                   | 108-88-3         | N.D.         | 1.                 | ug/kg | 0.95     |
| 05467 | 1,1,2-Trichloroethane     | 79-00-5          | N.D.         | 1.                 | ug/kg | 0.95     |
| 05468 | Tetrachloroethene         | 127-18-4         | N.D.         | 1.                 | ug/kg | 0.95     |
| 05470 | Dibromochloromethane      | 124-48-1         | N.D.         | 1.                 | ug/kg | 0.95     |
| 05472 | Chlorobenzen <b>e</b>     | 108-90-7         | N.D.         | 1.                 | ug/kg | 0.95     |
| 05474 | Ethylbenzene              | 100-41-4         | N.D.         | 1.                 | ug/kg | 0.95     |
| 05477 | Styrene                   | 100-42-5         | N.D.         | 1.                 | ug/kg | 0.95     |
| 05478 | Bromoform                 | 75-25-2          | N.D.         | 1.                 | ug/kg | 0.95     |
| 05480 | 1,1,2,2-Tetrachloroethane | 79-34-5          | N.D.         | 1.                 | ug/kg | 0.95     |
| 06293 | Acetone                   | 67-64-1          | N.D.         | 9.                 | ug/kg | 0.95     |
| 06294 | Carbon Disulfide          | 75-15-0          | N.D.         | 1.                 | ug/kg | 0.95     |
| 06296 | 2-Butanone                | 78-9 <b>3</b> -3 | N.D.         | 5.                 | ug/kg | 0.95     |
| 16297 | trans-1,3-Dichloropropene | 10061-02-6       | N.D.         | 1.                 | ug/kg | 0.95     |



Page 5 of 5

Lancaster Laboratories Sample No. SW 3933064

Collected:11/01/2002 11:25

Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:33 Draper Aden Associates, Inc.

Discard: 12/26/2002

2206 South Main Street Blacksburg VA 24060

(10-11')7GP-3 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

10-73 SDG#: RAR01-04

| CAT   |                         |            | Dry    | Method             |       | Dilution |
|-------|-------------------------|------------|--------|--------------------|-------|----------|
| No.   | Analysis Name           | CAS Number | Result | Detection<br>Limit | Units | Factor   |
| 06298 | cis-1,3-Dichloropropene | 10061-01-5 | N.D.   | 1.                 | ug/kg | 0.95     |
| 06299 | 4-Methyl-2-pentanone    | 108-10-1   | N.D.   | 4.                 | ug/kg | 0.95     |
| 06300 | 2-Hexanone              | 591-78-6   | N.D.   | 4.                 | ug/kg | 0.95     |
| 06301 | . Xylene (Total)        | 1330-20-7  | N.D.   | 1.                 | ug/kg | 0.95     |

#### Laboratory Chronicle

|       |                                         | Haboracory         | CIII   | 111010           |                   |          |
|-------|-----------------------------------------|--------------------|--------|------------------|-------------------|----------|
| CAT   |                                         |                    |        | Analysis         |                   | Dilution |
| No.   | Analysis Name                           | Method             | Trial# | Date and Time    | Analyst           | Factor   |
| 00111 | Moisture                                | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer | 1        |
| 01225 | TCL Pesticides in Solids                | SW-846 8081A/8082  | 1      | 11/06/2002 04:08 | Douglas D Seitz   | 1        |
| 04688 | TCL SW846 Semivolatiles                 | SW-846 8270C       | 1      | 11/06/2002 08:44 | Brian K Graham    | 1        |
| 04689 | Soil<br>TCL SW846<br>Semivolatiles/Soil | SW-846 8270C       | 1      | 11/06/2002 08:44 | Brian K Graham    | 1        |
| 06292 | TCL by 8260 (soil)                      | SW-846 8260B       | 1      | 11/06/2002 01:04 | Ryan V Nolt       | 0.95     |
| 00381 | BNA Soil Extraction                     | SW-846 3550B       | 1      | 11/05/2002 17:40 | Amy M Strocko     | 1        |
| 00819 | Solid Sample Pesticide<br>Extract       | SW-846 3550B       | 1      | 11/05/2002 00:30 | Darin P Wagner    | 1        |
| 08389 | Low/High Encore Prep<br>Tracking        | SW-846 5035        | 1      | 11/05/2002 15:26 | Medina A Long     | n.a.     |
| 08389 | Low/High Encore Prep<br>Tracking        | SW-846 5035        | 2      | 11/02/2002 23:38 | Medina A Long     | n.a.     |
| 08389 | Low/High Encore Prep<br>Tracking        | SW-846 5035        | 3      | 11/02/2002 23:39 | Medina A Long     | n.a.     |





Page 1 of 5

Lancaster Laboratories Sample No. SW 3933065

Collected:11/01/2002 12:15 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:34 2206 South Main Street Discard: 12/26/2002 Blacksburg VA 24060

(5-8')7GP-8 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

58-78 SDG#: RAR01-05

|       |                                |                |          |          | Dry                |                |          |
|-------|--------------------------------|----------------|----------|----------|--------------------|----------------|----------|
| CAT   |                                |                | Dry      |          | Method             |                | Dilution |
| No.   | Analysis Name                  | CAS Number     | Result   | 1        | Detection<br>Limit | Units          | Factor   |
| 00111 | Moisture                       | n.a.           | 17.7     |          | 0.50               | 8              | 1        |
|       | "Moisture" represents the loss |                |          |          |                    |                | •        |
|       | 103 - 105 degrees Celsius. The | moisture resul | t report | ed above | is on an           |                |          |
|       | as-received basis.             |                |          |          |                    |                |          |
| 01225 | TCL Pesticides in Solids       |                |          |          |                    |                |          |
| 1218  | Gamma BHC - Lindane            | 58-89-9        | N.D.     |          | 0.21               | ug/kg          | 1        |
| 01219 | Heptachlor                     | 76-44-8        | N.D.     |          | 0.21               | ug/kg          | 1        |
| 01220 | Aldrin                         | 309-00-2       | N.D.     |          | 0.21               | ug/kg          | 1        |
| 01221 | p,p-DDT                        | 50-29-3        | N.D.     |          | 0.44               | ug/kg          | 1        |
| 01222 | Dieldrin                       | 60-57-1        | N.D.     |          | 0.40               | ug/kg          | 1        |
| 01223 | Endrin                         | 72-20-8        | N.D.     |          | 0.43               | ug/kg          | 1        |
| 01859 | Methoxychlor                   | 72-43-5        | N.D.     |          | 4.9                | ug/kg          | 1        |
| 01981 | Alpha BHC                      | 319-84-6       | N.D.     |          | 0.21               | ug/kg          | 1        |
| 01982 | Beta BHC                       | 319-85-7       | N.D.     |          | 0.21               | ug/kg          | 1        |
| 01983 | Delta BHC                      | 319-86-8       | N.D.     |          | 0.21               | ug/kg          | 1        |
| 01984 | Heptachlor Epoxide             | 1024-57-3      | N.D.     |          | 0.21               | ug/kg          | 1        |
| 01985 | p,p-DDE                        | 72-55-9        | N.D.     |          | 0.40               | ug/kg          | 1        |
| 01986 | p,p-DDD                        | 72-54-8        | 0.49     | J        | 0.40               | ug/kg          | 1        |
| 01988 | Toxaphene                      | 8001-35-2      | N.D.     |          | 13.                | ug/kg          | 1        |
| 01989 | Endosulfan I                   | 959-98-8       | N.D.     |          | 0.21               | ug/kg          | 1        |
| 01990 | Endosulfan II                  | 33213-65-9     | N.D.     |          | 0.40               | ug/kg          | 1        |
| 01991 | Endosulfan Sulfate             | 1031-07-8      | N.D.     |          | 0.40               | ug/kg          | 1        |
| 01992 | Endrin Aldehyde                | 7421-93-4      | N.D.     |          | 1.2                | ug/kg          | 1        |
| 01993 | PCB-1016                       | 12674-11-2     | N.D.     |          | 5. <b>8</b>        | u <b>g/k</b> g | 1        |
| 01994 | PCB-1221                       | 11104-28-2     | N.D.     |          | 12.                | ug/kg          | 1        |
| 01995 | PCB-1232                       | 11141-16-5     | N.D.     |          | 5.2                | ug/kg          | 1        |
| 01996 | PCB-1242                       | 53469-21-9     | N.D.     |          | 6.1                | ug/kg          | 1        |
| 01997 | PCB-1248                       | 12672-29-6     | N.D.     |          | 6.0                | ug/kg          | 1        |
| 01998 | PCB-1254                       | 11097-69-1     | N.D.     |          | 6.9                | ug/kg          | 1        |
| 01999 | PCB-1260                       | 11096-82-5     | N.D.     |          | 5.3                | ug/kg          | 1        |
| 03017 | Endrin Ketone                  | 53494-70-5     | N.D.     |          | 0.40               | ug/kg          | 1        |
| 03025 | Alpha Chlordane                | 5103-71-9      | N.D.     |          | 0.21               | ug/kg          | 1        |
| 03026 | Gamma Chlordane                | 5103-74-2      | 0.28     | J        | 0.21               | u <b>g/</b> kg | 1        |

Heptachlor was detected in the method blank above the method detection





Page 2 of 5

Lancaster Laboratories Sample No. SW 3933065

Collected:11/01/2002 12:15 Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:34

Discard: 12/26/2002

(5-8')7GP-8 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

Dry

58-78 SDG#: RAR01-05

|       |                                                                                                  |                |                  | DLY                |       |          |
|-------|--------------------------------------------------------------------------------------------------|----------------|------------------|--------------------|-------|----------|
| CAT   |                                                                                                  |                | Dry              | Method             |       | Dilution |
| No.   | Analysis Name                                                                                    | CAS Number     | Result           | Detection<br>Limit | Units | Factor   |
|       | limit. No heptachlor was detect reported.                                                        | ed in the samp | le, therefore th | ne data is         |       |          |
| 04688 | TCL SW846 Semivolatiles Soil                                                                     |                |                  |                    |       |          |
| 01185 | Phenol                                                                                           | 108-95-2       | N.D.             | 40.                | ug/kg | 1        |
| 01186 | 2-Chlorophenol                                                                                   | 95-57-8        | N.D.             | 40.                | ug/kg | 1        |
| 71187 | 1,4-Dichlorobenzene                                                                              | 106-46-7       | N.D.             | 40.                | ug/kg | 1        |
| /1188 | N-Nitroso-di-n-propylamine                                                                       | 621-64-7       | N.D.             | 40.                | ug/kg | 1        |
| 01189 | 1,2,4-Trichlorobenzene                                                                           | 120-82-1       | N.D.             | 40.                | ug/kg | 1        |
| 01190 | 4-Chloro-3-methylphenol                                                                          | 59-50-7        | N.D.             | 81.                | ug/kg | 1        |
| 03746 | 2-Nitrophenol                                                                                    | 88-75-5        | N.D.             | 40.                | ug/kg | 1        |
| 03747 | 2,4-Dimethylphenol                                                                               | 105-67-9       | N.D.             | 40.                | ug/kg | 1        |
| 03748 | 2,4-Dichlorophenol                                                                               | 120-83-2       | N.D.             | 40.                | ug/kg | 1        |
| 03749 | 2,4,6-Trichlorophenol                                                                            | 88-06-2        | N.D.             | 40.                | ug/kg | 1        |
| 03753 | bis(2-Chloroethyl)ether                                                                          | 111-44-4       | N.D.             | 40.                | ug/kg | 1        |
| 03754 | 1,3-Dichlorobenzene                                                                              | 541-73-1       | N.D.             | 40.                | ug/kg | 1        |
| 03755 | 1,2-Dichlorobenzene                                                                              | 95-50-1        | N.D.             | 40.                | ug/kg | 1        |
| 03757 | Hexachloroethane                                                                                 | 67-72-1        | N.D.             | 40.                | ug/kg | 1        |
| 03758 | Nitrobenzene                                                                                     | 98-95-3        | N.D.             | 40.                | ug/kg | 1        |
| 03759 | Isophorone                                                                                       | 78-59-1        | N.D.             | 40.                | ug/kg | 1        |
| 03760 | bis(2-Chloroethoxy)methane                                                                       | 111-91-1       | N.D.             | 40.                | ug/kg | 1        |
| 03761 | Naphthalene                                                                                      | 91-20-3        | N.D.             | 40.                | ug/kg | 1        |
| 03762 | Hexachlorobutadiene                                                                              | 87-68-3        | N.D.             | 81.                | ug/kg | 1        |
| 03763 | Hexachlorocyclopentadiene                                                                        | 77-47-4        | N.D.             | 210.               | ug/kg | 1        |
| 03764 | 2-Chloronaphthalene                                                                              | 91-58-7        | N.D.             | 40.                | ug/kg | 1        |
| 03765 | Acenaphthylene                                                                                   | 208-96-8       | N.D.             | 40.                | ug/kg | 1        |
| 03766 | Dimethylphthalate                                                                                | 131-11-3       | N.D.             | 81.                | ug/kg | 1        |
| 04690 | 2-Methylphenol                                                                                   | 95-48-7        | N.D.             | 40.                | ug/kg | 1        |
| 04691 | 2,2'-oxybis(1-Chloropropane)                                                                     | 108-60-1       | N.D.             | 40.                | ug/kg | 1        |
| 04692 | 4-Methylphenol                                                                                   | 106-44-5       | N.D.             | 81.                | ug/kg | 1        |
|       | 3-Methylphenol and 4-methylphenochromatographic conditions used for 4-methylphenol represents to | for sample an  | alysis. The resu | ılt reported       |       |          |
| 04693 | 4-Chloroaniline                                                                                  | 106-47-8       | N.D.             | 40.                | ug/kg | 1        |
| 04694 | 2-Methylnaphthalene                                                                              | 91-57-6        | N.D.             | 40.                | ug/kg | 1        |
| 04695 | 2,4,5-Trichlorophenol                                                                            | 95-95-4        | N.D.             | 40.                | ug/kg | 1        |



Page 3 of 5

Lancaster Laboratories Sample No. SW 3933065

Collected:11/01/2002 12:15

Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:34 Draper Aden Associates, Inc.

Discard: 12/26/2002

2206 South Main Street Blacksburg VA 24060

(5-8')7GP-8 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

58-78 SDG#: RAR01-05

|                |                                  |                   | _                 | Dry                |       |          |
|----------------|----------------------------------|-------------------|-------------------|--------------------|-------|----------|
| CAT            |                                  |                   | Dry               | Method             |       | Dilution |
| No.            | Analysis Name                    | CAS Number        | Result            | Detection<br>Limit | Units | Factor   |
| 04696          | 2-Nitroaniline                   | 88-74-4           | N.D.              | 40.                | ug/kg | 1        |
| 04689          | TCL SW846 Semivolatiles/Soil     |                   |                   |                    |       |          |
| 01191          | Acenaphthene                     | 83-32-9           | N.D.              | 40.                | ug/kg | 1        |
| 01192          | 4-Nitrophenol                    | 100-02-7          | N.D.              | 210.               | ug/kg | 1        |
| 01193          | 2,4-Dinitrotoluene               | 121-14-2          | N.D.              | 81.                | ug/kg | 1        |
| ገ1194          | Pentachlorophenol                | 87-86-5           | N.D.              | 210.               | ug/kg | 1        |
| J1195          | Pyrene                           | 129-00-0          | N.D.              | 40.                | ug/kg | 1        |
| 03 <b>7</b> 50 | 2,4-Dinitrophenol                | 51-28-5           | N.D.              | 810.               | ug/kg | 1        |
| 03751          | 4,6-Dinitro-2-methylphenol       | 534-52-1          | N.D.              | 210.               | ug/kg | 1        |
| 03767          | 2,6-Dinitrotoluene               | 606-20-2          | N.D.              | 40.                | ug/kg | 1        |
| 03768          | Fluorene                         | 86-73-7           | N.D.              | 40.                | ug/kg | 1        |
| 03769          | 4-Chlorophenyl-phenylether       | 7005-72-3         | N.D.              | 40.                | ug/kg | 1        |
| 03770          | Diethylphthalate                 | 84-66-2           | N.D.              | 81.                | ug/kg | 1        |
| 03772          | N-Nitrosodiphenylamine           | 86-30-6           | N.D.              | 40.                | ug/kg | 1        |
|                | N-nitrosodiphenylamine decompose | es in the GC i    | nlet forming diph | enylamine.         |       |          |
|                | The result reported for N-nitros | sodiphenylamin    | e represents the  | combined           |       |          |
|                | total of both compounds.         |                   |                   |                    |       |          |
| 03773          | 4-Bromophenyl-phenylether        | 1 <b>01-55-</b> 3 | N.D.              | 40.                | ug/kg | 1        |
| 03774          | Hexachlorobenzene                | 118-74-1          | N.D.              | 40.                | ug/kg | 1        |
| 03775          | Phenanthrene                     | 85-01-8           | N.D.              | 40.                | ug/kg | 1        |
| 03776          | Anthracene                       | 120-12-7          | N.D.              | 40.                | ug/kg | 1        |
| 03777          | Di-n-butylphthalate              | 84-74-2           | N.D.              | 81.                | ug/kg | 1        |
| 03778          | Fluoranthene                     | 206-44-0          | N.D.              | 40.                | ug/kg | 1        |
| 03780          | Butylbenzylphthalate             | 85-68-7           | N.D.              | 81.                | ug/kg | 1        |
| 03781          | Benzo(a) anthracene              | 56-55-3           | N.D.              | 40.                | ug/kg | 1        |
| 03782          | Chrysene                         | 218-01-9          | N.D.              | 40.                | ug/kg | 1        |
| 03783          | 3,3'-Dichlorobenzidine           | 91-94-1           | N.D.              | 81.                | ug/kg | 1        |
| 03784          | bis(2-Ethylhexyl)phthalate       | 117-81-7          | N.D.              | 81.                | ug/kg | 1        |
| 03785          | Di-n-octylphthalate              | 117-84-0          | N.D.              | 81.                | ug/kg | 1        |
| 03786          | Benzo(b) fluoranthene            | 205-99-2          | N.D.              | 40.                | ug/kg | 1        |
| 03787          | Benzo(k) fluoranthene            | 207-08-9          | N.D.              | 40.                | ug/kg | 1        |
| 03788          | Benzo(a)pyrene                   | 50-32-8           | <b>N</b> .D.      | 40.                | ug/kg | 1        |
| 03789          | Indeno(1,2,3-cd)pyrene           | 193-39-5          | N . D .           | 40.                | ug/kg | 1        |
| 03790          | Dibenz(a,h)anthracene            | 53-70-3           | N.D.              | 40.                | ug/kg | 1        |
| 13791          | Benzo(g,h,i)perylene             | 191-24-2          | N.D.              | 40.                | ug/kg | 1        |





Page 4 of 5

Lancaster Laboratories Sample No. SW 3933065

Collected:11/01/2002 12:15

Submitted: 11/02/2002 10:20

Reported: 11/25/2002 at 14:34

Discard: 12/26/2002

(5-8')7GP-8 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

Account Number: 11200

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

Dry

58-78 SDG#: RAR01-05

|               |                           |                  |        | nry                |       |          |
|---------------|---------------------------|------------------|--------|--------------------|-------|----------|
| CAT           |                           |                  | Dry    | Method             |       | Dilution |
| No.           | Analysis Name             | CAS Number       | Result | Detection<br>Limit | Units | Factor   |
| 04697         | 3-Nitroaniline            | 99-09-2          | N.D.   | 81.                | ug/kg | 1        |
| 04698         | Dibenzofuran              | 132-64-9         | N.D.   | 40.                | ug/kg | 1        |
| 04700         | 4-Nitroaniline            | 100-01-6         | N.D.   | 81.                | ug/kg | 1        |
| 04702         | Carbazole                 | 86-74-8          | N.D.   | 40.                | ug/kg | 1        |
| 06292         | TCL by 8260 (soil)        |                  |        |                    |       |          |
| 00232         | 102 27 0200 (3022)        |                  |        |                    |       |          |
| 15444         | Chloromethane             | 74-87-3          | N.D.   | 2.                 | ug/kg | 0.81     |
| J <b>5445</b> | Vinyl Chloride            | 75-0 <b>1</b> -4 | N.D.   | 1.                 | ug/kg | 0.81     |
| 05446         | Bromomethane              | 74-83-9          | N.D.   | 2.                 | ug/kg | 0.81     |
| 05447         | Chloroethane              | 75-00-3          | N.D.   | 2.                 | ug/kg | 0.81     |
| 05449         | 1,1-Dichloroethene        | 75-35-4          | N.D.   | 1.                 | ug/kg | 0.81     |
| 05450         | Methylene Chloride        | 75-09-2          | N.D.   | 2.                 | ug/kg | 0.81     |
| 05451         | trans-1,2-Dichloroethene  | 156-60-5         | N.D.   | 1.                 | ug/kg | 0.81     |
| 05452         | 1,1-Dichloroethane        | 75-34-3          | N.D.   | 1.                 | ug/kg | 0.81     |
| 05454         | cis-1,2-Dichloroethene    | 156-59-2         | N.D.   | 1.                 | ug/kg | 0.81     |
| 05455         | Chloroform                | 67-66-3          | N.D.   | 1.                 | ug/kg | 0.81     |
| 05457         | 1,1,1-Trichloroethane     | 71-55-6          | N.D.   | 1.                 | ug/kg | 0.81     |
| 05458         | Carbon Tetrachloride      | 56-23-5          | N.D.   | 1.                 | ug/kg | 0.81     |
| 05460         | Benzene                   | 71-43-2          | N.D.   | 1.                 | ug/kg | 0.81     |
| 05461         | 1,2-Dichloroethane        | 107-06-2         | N.D.   | 1.                 | ug/kg | 0.81     |
| 05462         | Trichloroethene           | 79-01-6          | N.D.   | 1.                 | ug/kg | 0.81     |
| 05463         | 1,2-Dichloropropane       | 78 <b>-</b> 87-5 | N.D.   | 1.                 | ug/kg | 0.81     |
| 05465         | Bromodichloromethane      | 75-27-4          | N.D.   | 1.                 | ug/kg | 0.81     |
| 05466         | Toluene                   | 108-88-3         | N.D.   | 1.                 | ug/kg | 0.81     |
| 05467         | 1,1,2-Trichloroethane     | 79-00-5          | N.D.   | 1.                 | ug/kg | 0.81     |
| 05468         | Tetrachloroethene         | 127-18-4         | N.D.   | 1.                 | ug/kg | 0.81     |
| 05470         | Dibromochloromethane      | 124-48-1         | N.D.   | 1.                 | ug/kg | 0.81     |
| 05472         | Chlorobenzene             | 108-90-7         | N.D.   | 1.                 | ug/kg | 0.81     |
| 05474         | Ethylbenzene              | 100-41-4         | N.D.   | 1.                 | ug/kg | 0.81     |
| 05477         | Styrene                   | 100-42-5         | N.D.   | 1.                 | ug/kg | 0.81     |
| 05478         | Bromoform                 | 75-25-2          | N.D.   | 1.                 | ug/kg | 0.81     |
| 05480         | 1,1,2,2-Tetrachloroethane | 79-34-5          | N.D.   | 1.                 | ug/kg | 0.81     |
| 06293         | Acetone                   | 67-64-1          | N.D.   | 7.                 | ug/kg | 0.81     |
| 06294         | Carbon Disulfide          | 75-15-0          | N.D.   | 1.                 | ug/kg | 0.81     |
| 06296         | 2-Butanone                | 78-93-3          | N.D.   | 4.                 | ug/kg | 0.81     |
| 6297          | trans-1,3-Dichloropropene | 10061-02-6       | N.D.   | 1.                 | ug/kg | 0.81     |
|               |                           |                  |        |                    |       |          |



Page 5 of 5

Lancaster Laboratories Sample No. SW 3933065

Collected:11/01/2002 12:15 Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:34

Discard: 12/26/2002

(5-8')7GP-8 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

Account Number: 11200

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

58-78 SDG#: RAR01-05

|       |                         |            |        | Dry                |       |          |
|-------|-------------------------|------------|--------|--------------------|-------|----------|
| CAT   |                         |            | Dry    | Method             |       | Dilution |
| No.   | Analysis Name           | CAS Number | Result | Detection<br>Limit | Units | Factor   |
| 06298 | cis-1,3-Dichloropropene | 10061-01-5 | N.D.   | 1.                 | ug/kg | 0.81     |
| 06299 | 4-Methyl-2-pentanone    | 108-10-1   | N.D.   | 2.                 | ug/kg | 0.81     |
| 06300 | 2-Hexanone              | 591-78-6   | N.D.   | 2.                 | ug/kg | 0.81     |
| 06301 | Xylene (Total)          | 1330-20-7  | N.D.   | 1.                 | ug/kg | 0.81     |

#### Laboratory Chronicle

| CAT           |                                   | _                  |        | Analysis         |                   | Dilution |
|---------------|-----------------------------------|--------------------|--------|------------------|-------------------|----------|
| No.           | Analysis Name                     | Method             | Trial# | Date and Time    | Analyst           | Factor   |
| 00111         | Moisture                          | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer | 1        |
| 01225         | TCL Pesticides in Solids          | SW-846 8081A/8082  | 1      | 11/06/2002 04:29 | Douglas D Seitz   | 1        |
| 04688         | TCL SW846 Semivolatiles Soil      | SW-846 8270C       | 1      | 11/06/2002 09:37 | Brìan K Graham    | 1        |
| 04689         | TCL SW846                         | SW-846 8270C       | 1      | 11/06/2002 09:37 | Brian K Graham    | 1        |
|               | Semivolatiles/Soil                |                    |        |                  |                   |          |
| 06292         | TCL by 8260 (soil)                | SW-846 8260B       | 1      | 11/06/2002 01:37 | Ryan V Nolt       | 0.81     |
| 00381         | BNA Soil Extraction               | SW-846 3550B       | 1      | 11/05/2002 17:40 | Amy M Strocko     | 1        |
| 00819         | Solid Sample Pesticide<br>Extract | SW-846 3550B       | 1      | 11/05/2002 00:30 | Darin P Wagner    | 1        |
| 0 <b>8389</b> | Low/High Encore Prep<br>Tracking  | SW-846 5035        | 1      | 11/05/2002 15:25 | Medina A Long     | n.a.     |
| 08389         | Low/High Encore Prep<br>Tracking  | SW-846 5035        | 2      | 11/02/2002 23:36 | Medina A Long     | n.a.     |
| 08389         | Low/High Encore Prep<br>Tracking  | SW-846 5035        | 3      | 11/02/2002 23:37 | Medina A Long     | n.a.     |



Dry

Page 1 of 5

Lancaster Laboratories Sample No. SW 3933066

Collected:11/01/2002 12:50 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:34 2206 South Main Street Discard: 12/26/2002 Blacksburg VA 24060

(6-11')7GP-5 Unspiked Grab Soil Sample

HWMU-5 & HWMU-7 Investigation

61175 SDG#: RAR01-06BKG

|       |                                                                                      |                  |       |   | υry                |       |          |
|-------|--------------------------------------------------------------------------------------|------------------|-------|---|--------------------|-------|----------|
| CAT   |                                                                                      |                  | Dry   |   | Method             |       | Dilution |
| No.   | Analysis Name                                                                        | CAS Number       | Resul | : | Detection<br>Limit | Units | Factor   |
| 00111 | Moisture                                                                             | n.a.             | 16.0  |   | 0.50               | 8     | 1        |
|       | "Moisture" represents the loss in 103 - 105 degrees Celsius. The mas-received basis. |                  |       |   |                    |       |          |
| 01225 | TCL Pesticides in Solids                                                             |                  |       |   |                    |       |          |
| 01218 | Gamma BHC - Lindane                                                                  | 58-89 <b>-</b> 9 | N.D.  |   | 0.20               | ug/kg | 1        |
| 01219 | Heptachlor                                                                           | 76-44-8          | N.D.  |   | 0.20               | ug/kg | 1        |
| 01220 | Aldrin                                                                               | 309-00-2         | N.D.  |   | 0.20               | ug/kg | 1        |
| 01221 | p,p-DDT                                                                              | 50-29-3          | N.D.  |   | 0.43               | ug/kg | 1        |
| 01222 | Dieldrin                                                                             | 60-57- <b>1</b>  | N.D.  |   | 0.39               | ug/kg | 1        |
| 01223 | Endri <b>n</b>                                                                       | 72-20-8          | N.D.  |   | 0.42               | ug/kg | 1        |
| 01859 | Methoxychlor                                                                         | 72-43-5          | N.D.  |   | 4.8                | ug/kg | 1        |
| 01981 | Alpha BHC                                                                            | 319-84-6         | N.D.  |   | 0.20               | ug/kg | 1        |
| 01982 | Beta BHC                                                                             | 319-85-7         | N.D.  |   | 0.20               | ug/kg | 1        |
| 01983 | Delta BHC                                                                            | 319-86-8         | N.D.  |   | 0.20               | ug/kg | 1        |
| 01984 | Heptachlor Epoxide                                                                   | 1024-57-3        | N.D.  |   | 0.20               | ug/kg | 1        |
| 01985 | p,p-DDE                                                                              | 72-55-9          | N.D.  |   | 0.39               | ug/kg | 1        |
| 01986 | p,p-DDD                                                                              | 72-54-8          | 0.60  | J | 0.39               | ug/kg | 1        |
| 01988 | Toxaphene                                                                            | 8001-35-2        | N.D.  |   | 13.                | ug/kg | 1        |
| 01989 | Endosulfan I                                                                         | 959-98-8         | N.D.  |   | 0.20               | ug/kg | 1        |
| 01990 | Endosulfan II                                                                        | 33213-65-9       | N.D.  |   | 0.39               | ug/kg | 1        |
| 01991 | Endosulfan Sulfate                                                                   | 1031-07-8        | N.D.  |   | 0.39               | ug/kg | 1        |
| 01992 | Endrin Aldehyde                                                                      | 7421-93-4        | N.D.  |   | 1.2                | ug/kg | 1        |
| 01993 | PCB-1016                                                                             | 12674-11-2       | N.D.  |   | 5.7                | ug/kg | 1        |
| 01994 | PCB-1221                                                                             | 11104-28-2       | N.D.  |   | 12.                | ug/kg | 1        |
| 01995 | PCB-1232                                                                             | 11141-16-5       | N.D.  |   | 5.1                | ug/kg | 1        |
| 01996 | PCB-1242                                                                             | 53469-21-9       | N.D.  |   | 6.0                | ug/kg | 1        |
| 01997 | PCB-1248                                                                             | 12672-29-6       | N.D.  |   | 5.8                | ug/kg | 1        |
| 01998 | PCB-1254                                                                             | 11097-69-1       | N.D.  |   | 6.8                | ug/kg | 1        |
| 01999 | PCB-1260                                                                             | 11096-82-5       | N.D.  |   | 5.2                | ug/kg | 1        |
| 03017 | Endrin Ketone                                                                        | 53494-70-5       | N.D.  |   | 0.39               | ug/kg | 1        |
| 03025 | Alpha Chlordane                                                                      | 5103-71-9        | N.D.  |   | 0.20               | ug/kg | 1        |
| 03026 | Gamma Chlordane                                                                      | 5103-74-2        | 0.23  | J | 0.20               | ug/kg | 1        |
|       |                                                                                      |                  |       |   |                    |       |          |

Heptachlor was detected in the method blank above the method detection







Blacksburg VA 24060

Dry

Page 2 of 5

Lancaster Laboratories Sample No. SW 3933066

Collected:11/01/2002 12:50 Account Number: 11200

 Submitted: 11/02/2002 10:20
 Draper Aden Associates, Inc.

 Reported: 11/25/2002 at 14:34
 2206 South Main Street

Discard: 12/26/2002

(6-11')7GP-5 Unspiked Grab Soil Sample

HWMU-5 & HWMU-7 Investigation

61175 SDG#: RAR01-06BKG

|        |                                           |                          |                   | DIY                |               |          |
|--------|-------------------------------------------|--------------------------|-------------------|--------------------|---------------|----------|
| CAT    |                                           |                          | Dry               | Method             |               | Dilution |
| No.    | Analysis Name                             | CAS Number               | Result            | Detection<br>Limit | Units         | Factor   |
|        | limit. No heptachlor was detectereported. | ed in the samp           | le, therefore the | data is            |               |          |
| 04688  | TCL SW846 Semivolatiles Soil              |                          |                   |                    |               |          |
| 01185  | Phenol                                    | 108-95-2                 | N.D.              | 39.                | ug/kg         | 1        |
| 01186  | 2-Chlorophenol                            | 95-57-8                  | N.D.              | 39.                | ug/kg         | 1        |
| 01187  | 1,4-Dichlorobenzene                       | 106-46-7                 | N.D.              | 39.                | ug/kg         | 1        |
| 01188  | N-Nitroso-di-n-propylamine                | 621-64-7                 | N.D.              | 39.                | ug/kg         | 1        |
| 01189  | 1,2,4-Trichlorobenzene                    | 120-82-1                 | N.D.              | 39.                | ug/kg         | 1        |
| 01190  | 4-Chloro-3-methylphenol                   | 59-50-7                  | N.D.              | 80.                | ug/kg         | 1        |
| 03746  | 2-Nitrophenol                             | 88-75-5                  | N.D.              | 39.                | ug/kg         | 1        |
| 03747  | 2,4-Dimethylphenol                        | 105-67-9                 | N.D.              | 39.                | ug/kg         | 1        |
| 03748  | 2,4-Dichlorophenol                        | 120-83-2                 | N.D.              | 39.                | ug/kg         | 1        |
| 03749  | 2,4,6-Trichlorophenol                     | 88-06-2                  | N.D.              | 39.                | ug/kg         | 1        |
| 03753  | bis(2-Chloroethyl)ether                   | 111-44-4                 | N.D.              | 39.                | ug/kg         | 1        |
| 03754  | 1,3-Dichlorobenzene                       | 541-73-1                 | N.D.              | 39.                | ug/kg         | 1        |
| 03755  | 1,2-Dichlorobenzene                       | 95-50-1                  | N.D.              | 39.                | ug/kg         | 1        |
| 03757  | Hexachloroethane                          | 67-72-1                  | N.D.              | 39.                | ug/kg         | 1        |
| .03758 | Nitrobenzene                              | 98-95-3                  | N.D.              | 39.                | ug/kg         | 1        |
| 03759  | Isophorone                                | 78-59-1                  | N.D.              | 39.                | ug/kg         | 1        |
| 03760  | bis(2-Chloroethoxy)methane                | 111-91-1                 | N.D.              | 39.                | ug/kg         | 1        |
| 03761  | Naphthalene                               | 91-20-3                  | N.D.              | 39.                | ug/kg         | 1        |
| 03762  | Hexachlorobutadiene                       | 87-68-3                  | N.D.              | 80.                | ug/kg         | 1        |
| 03763  | Hexachlorocyclopentadiene                 | 77-47-4                  | N.D.              | 200.               | ug/kg         | 1        |
| 03764  | 2-Chloronaphthalene                       | 91-58-7                  | N.D.              | 39.                | ug/kg         | 1        |
| 03765  | Acenaphthylene                            | 208-96-8                 | N.D.              | 39.                | ug/kg         | 1        |
| 03766  | Dimethylphthalate                         | 131-11-3                 | N.D.              | 80.                | ug/kg         | 1        |
| 04690  | 2-Methylphenol                            | 95-48-7                  | N.D.              | 39.                | ug/kg         | 1        |
| 04691  | 2,2'-oxybis(1-Chloropropane)              | 108-60-1                 | N.D.              | 39.                | ug/kg         | 1        |
| 04692  | 4-Methylphenol                            | 106-44-5                 | N.D.              | 80.                | ug/kg         | 1        |
|        | 3-Methylphenol and 4-methylpheno          | ol cannot be r           | esolved under the |                    |               |          |
|        | chromatographic conditions used           | -                        | -                 | _                  |               |          |
|        | for 4-methylphenol represents th          |                          | -                 |                    |               |          |
| 04693  | 4-Chloroaniline                           | 106-47-8                 | N.D.              | 39.                | ug/kg         | 1        |
| 04694  | 2-Methylnaphthalene                       | 9 <b>1-</b> 57- <b>6</b> | N.D.              | <b>39</b> .        | ug/ <b>kg</b> | 1        |
| 04695  | 2,4,5-Trichlor <b>o</b> phenol            | 95-95-4                  | N.D.              | 39.                | ug/kg         | 1        |



Page 3 of 5

Lancaster Laboratories Sample No. SW 3933066

Collected:11/01/2002 12:50

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:34

Discard: 12/26/2002

(6-11')7GP-5 Unspiked Grab Soil Sample

HWMU-5 & HWMU-7 Investigation

Account Number: 11200

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

| 61175 | SDG#:     | RAR01-06BKG  |
|-------|-----------|--------------|
| 0111  | OD O 11 . | TOTAL COPICO |

| 011/3         | SDOW. KARUI-UUDKO                                                                      |                  |              | Dry                |                |          |
|---------------|----------------------------------------------------------------------------------------|------------------|--------------|--------------------|----------------|----------|
| CAT           |                                                                                        |                  | Dry          | Method             |                | Dilution |
| No.           | Analysis Name                                                                          | CAS Number       | Result       | Detection<br>Limit | Units          | Factor   |
| 04696         | 2-Nitroaniline                                                                         | 88-74-4          | N.D.         | 39.                | ug/kg          | 1        |
| 04689         | TCL SW846 Semivolatiles/Soil                                                           |                  |              |                    |                |          |
| 01191         | Acenaphthene                                                                           | 83-32-9          | N.D.         | 39.                | ug/kg          | 1        |
| 01192         | 4-Nitrophenol                                                                          | 100-02-7         | N.D.         | 200.               | ug/kg          | 1        |
| 01193         | 2,4-Dinitrotoluene                                                                     | 121-14-2         | N.D.         | 80.                | ug/kg          | 1        |
| 01194         | Pentachlorophenol                                                                      | 87-86 <b>-</b> 5 | N.D.         | 200.               | ug/kg          | 1        |
| 01195         | Pyrene                                                                                 | 129-00-0         | N.D.         | 39.                | ug/kg          | 1        |
| 03750         | 2,4-Dinitrophenol                                                                      | 51-28-5          | N.D.         | 800.               | ug/kg          | 1        |
| 03751         | 4,6-Dinitro-2-methylphenol                                                             | 534-52-1         | N.D.         | 200.               | ug/kg          | 1        |
| 03767         | 2,6-Dinitrotoluene                                                                     | 606-20-2         | N.D.         | 39.                | ug/kg          | 1        |
| 03768         | Fluorene                                                                               | 86-73-7          | N.D.         | 39.                | ug/kg          | 1        |
| 03769         | 4-Chlorophenyl-phenylether                                                             | 7005-72-3        | N.D.         | 39.                | ug/kg          | 1        |
| 03770         | Diethylphthalate                                                                       | 84-66-2          | N.D.         | 80.                | ug/kg          | 1        |
| 03772         | N-Nitrosodiphenylamine                                                                 | 86-30-6          | N.D.         | 39.                | ug/kg          | 1        |
|               | N-nitrosodiphenylamine decompositive result reported for N-nitrotal of both compounds. |                  |              |                    |                |          |
| 03773         | 4-Bromophenyl-phenylether                                                              | 101-55-3         | N.D.         | 39.                | ug/kg          | 1        |
| 03774         | Hexachlorobenzene                                                                      | 118-74-1         | N.D.         | 39.                | ug/kg          | 1        |
| 03775         | Phenanthrene                                                                           | 85-01-8          | N.D.         | 39.                | ug/kg          | 1        |
| 03776         | Anthracene                                                                             | 120-12-7         | N.D.         | 39.                | ug/kg          | 1        |
| 03777         | Di-n-butylphthalate                                                                    | 84-74-2          | N.D.         | 80.                | ug/kg          | 1        |
| 03778         | Fluoranthene                                                                           | 206-44-0         | N.D.         | 39.                | ug/kg          | 1        |
| 03780         | Butylbenzylphthalate                                                                   | 85-68-7          | N.D.         | 80.                | ug/kg          | 1        |
| 03781         | Benzo(a) anthracene                                                                    | 56-55-3          | N.D.         | 39.                | ug/kg          | 1        |
| 03782         | Chrysene                                                                               | 218-01-9         | N.D.         | 39.                | ug/kg          | 1        |
| 03783         | 3,3'-Dichlorobenzidine                                                                 | 91-94-1          | N.D.         | 80.                | ug/ <b>k</b> g | 1        |
| 03784         | bis(2-Ethylhexyl)phthalate                                                             | 117-81-7         | N.D.         | 80.                | ug/kg          | 1        |
| 03785         | Di-n-octylphthalate                                                                    | 117-84-0         | N.D.         | 80.                | ug/kg          | 1        |
| 03786         | Benzo(b) fluoranthene                                                                  | 205-99-2         | N.D.         | 39.                | ug/kg          | 1        |
| 03787         | Benzo(k) fluoranthene                                                                  | 207-08-9         | <b>N</b> .D. | 39.                | ug/kg          | 1        |
| 03788         | Benzo(a)pyrene                                                                         | 50-32-8          | N.D.         | 39.                | ug/kg          | 1        |
| 03 <b>789</b> | Indeno(1,2,3-cd)pyrene                                                                 | 193-39-5         | N.D.         | 39.                | ug/kg          | 1        |
| 03790         | Dibenz(a,h)anthracene                                                                  | 53-70- <b>3</b>  | N.D.         | 39.                | u <b>g/k</b> g | 1        |
| 03791         | Benzo(g,h,i)perylene                                                                   | 191-24-2         | N.D.         | 39.                | ug/kg          | 1        |



Page 4 of 5

Lancaster Laboratories Sample No. SW 3933066

Collected:11/01/2002 12:50

Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:34 Draper Aden Associates, Inc.

Discard: 12/26/2002

2206 South Main Street Blacksburg VA 24060

Dry

(6-11')7GP-5 Unspiked Grab Soil Sample

HWMU-5 & HWMU-7 Investigation

61175 SDG#: RAR01-06BKG

| CAT   |                           |              | Dry          | Method    |        | Dilution |
|-------|---------------------------|--------------|--------------|-----------|--------|----------|
| No.   | Analysis Name             | CAS Number   | Result       | Detection | Units  | Factor   |
| NO.   | Analysis Name             | CVD MUMBEL   | resuic       | Limit     | UIIICS | ractor   |
| 04697 | 3-Nitroaniline            | 99-09-2      | N.D.         | 80.       | ug/kg  | 1        |
| 04698 | Dibenzofuran              | 132-64-9     | N.D.         | 39.       | ug/kg  | 1        |
| 04700 | 4-Nitroaniline            | 100-01-6     | N.D.         | 80.       | ug/kg  | 1        |
| 04702 | Carbazole                 | 86-74-8      | N.D.         | 39.       | ug/kg  | 1        |
|       |                           |              |              |           |        |          |
| 06292 | TCL by 8260 (soil)        |              |              |           |        |          |
|       |                           |              |              |           |        |          |
| 05444 | Chloromethane             | 74-87-3      | N.D.         | 2.        | ug/kg  | 0.97     |
| 05445 | Vinyl Chloride            | 75-01-4      | N.D.         | 1.        | ug/kg  | 0.97     |
| 05446 | Bromomethane              | 74-83-9      | N.D.         | 2.        | ug/kg  | 0.97     |
| 05447 | Chloroethane              | 75-00-3      | N.D.         | 2.        | ug/kg  | 0.97     |
| 05449 | 1,1-Dichloroethene        | 75-35-4      | N.D.         | 1.        | ug/kg  | 0.97     |
| 05450 | Methylene Chloride        | 75-09-2      | N.D.         | 2.        | ug/kg  | 0.97     |
| 05451 | trans-1,2-Dichloroethene  | 156-60-5     | N.D.         | 1.        | ug/kg  | 0.97     |
| 05452 | 1,1-Dichloroethane        | 75-34-3      | N.D.         | 1.        | ug/kg  | 0.97     |
| 05454 | cis-1,2-Dichloroethene    | 156-59-2     | N.D.         | 1.        | ug/kg  | 0.97     |
| 05455 | Chloroform                | 67-66-3      | N.D.         | 1.        | ug/kg  | 0.97     |
| 05457 | 1,1,1-Trichloroethane     | 71-55-6      | N.D.         | 1.        | ug/kg  | 0.97     |
| 05458 | Carbon Tetrachloride      | 56-23-5      | N.D.         | 1.        | ug/kg  | 0.97     |
| 05460 | Benzene                   | 71-43-2      | N.D.         | 1.        | ug/kg  | 0.97     |
| 05461 | 1,2-Dichloroethane        | 107-06-2     | N.D.         | 1.        | ug/kg  | 0.97     |
| 05462 | Trichloroethene           | 79-01-6      | N.D.         | 1.        | ug/kg  | 0.97     |
| 05463 | 1,2-Dichloropropane       | 78-87-5      | N.D.         | 1.        | ug/kg  | 0.97     |
| 05465 | Bromodichloromethane      | 75-27-4      | N.D.         | 1.        | ug/kg  | 0.97     |
| 05466 | Toluene                   | 108-88-3     | N.D.         | 1.        | ug/kg  | 0.97     |
| 05467 | 1,1,2-Trichloroethane     | 79-00-5      | N.D.         | 1.        | ug/kg  | 0.97     |
| 05468 | Tetrachloroethene         | 127-18-4     | N.D.         | 1.        | ug/kg  | 0.97     |
| 05470 | Dibromochloromethane      | 124 - 48 - 1 | N.D.         | 1.        | ug/kg  | 0.97     |
| 05472 | Chlorobenzene             | 108-90-7     | N.D.         | 1.        | ug/kg  | 0.97     |
| 05474 | Ethylbenzene              | 100-41-4     | N.D.         | 1.        | ug/kg  | 0.97     |
| 05477 | Styrene                   | 100-42-5     | N.D.         | 1.        | ug/kg  | 0.97     |
| 05478 | Bromoform                 | 75-25-2      | N.D.         | 1.        | ug/kg  | 0.97     |
| 05480 | 1,1,2,2-Tetrachloroethane | 79-34-5      | N.D.         | 1.        | ug/kg  | 0.97     |
| 06293 | Acetone                   | 67-64-1      | N.D.         | 8.        | ug/kg  | 0.97     |
| 06294 | Carbon Disulfide          | 75-15-0      | N.D.         | 1.        | ug/kg  | 0.97     |
| 06296 | 2-Butanone                | 78-93-3      | <b>N</b> .D. | 5.        | ug/kg  | 0.97     |
| 06297 | trans-1,3-Dichloropropene | 10061-02-6   | N.D.         | 1.        | ug/kg  | 0.97     |





Page 5 of 5

Lancaster Laboratories Sample No. SW 3933066

Collected:11/01/2002 12:50

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:34

Discard: 12/26/2002

(6-11')7GP-5 Unspiked Grab Soil Sample

HWMU-5 & HWMU-7 Investigation

Account Number: 11200

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

61175 SDG#: RAR01-06BKG

|       |                         |            |        | Dry       |       |          |
|-------|-------------------------|------------|--------|-----------|-------|----------|
| CAT   |                         |            | Dry    | Method    |       | Dilution |
| No.   | Analysis Name           | CAS Number | Result | Detection | Units | Factor   |
|       |                         |            |        | Limit     |       |          |
| 06298 | cis-1,3-Dichloropropene | 10061-01-5 | N.D.   | 1.        | ug/kg | 0.97     |
| 06299 | 4-Methyl-2-pentanone    | 108-10-1   | N.D.   | 4.        | ug/kg | 0.97     |
| 06300 | 2-Hexanone              | 591-78-6   | N.D.   | 4.        | ug/kg | 0.97     |
| 06301 | Xylene (Total)          | 1330-20-7  | N.D.   | 1.        | ug/kg | 0.97     |

Laboratory Chronicle

| CAT   |                                   | _                  | •      | Analysis         |                     | Dilution |
|-------|-----------------------------------|--------------------|--------|------------------|---------------------|----------|
| No.   | Analysis Name                     | Method             | Trial# | Date and Time    | Analyst             | Factor   |
| 00111 | Moisture                          | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer   | 1        |
| 01225 | TCL Pesticides in Solids          | SW-846 8081A/8082  | 1      | 11/06/2002 02:04 | Douglas D Seitz     | 1        |
| 04688 | TCL SW846 Semivolatiles Soil      | SW-846 8270C       | 1      | 11/06/2002 01:37 | Linda M Hartenstine | 1        |
| 04689 | TCL SW846<br>Semivolatiles/Soil   | SW-846 8270C       | 1      | 11/06/2002 01:37 | Linda M Hartenstine | 1        |
| 06292 | TCL by 8260 (soil)                | SW-846 8260B       | 1      | 11/05/2002 20:40 | Ryan V Nolt         | 0.97     |
| 00381 | BNA Soil Extraction               | SW-846 3550B       | 1      | 11/05/2002 17:40 | Amy M Strocko       | 1        |
| 00819 | Solid Sample Pesticide<br>Extract | SW-846 3550B       | 1      | 11/05/2002 00:30 | Darin P Wagner      | 1        |
| 08389 | Low/High Encore Prep<br>Tracking  | SW-846 5035        | 1      | 11/05/2002 18:24 | Medina A Long       | n.a.     |
| 08389 | Low/High Encore Prep<br>Tracking  | SW-846 5035        | 2      | 11/02/2002 23:34 | Medina A Long       | n.a.     |
| 08389 | Low/High Encore Prep<br>Tracking  | SW-846 5035        | 3      | 11/02/2002 23:35 | Medina A Long       | n.a.     |





Draper Aden Associates, Inc.

2206 South Main Street

Blacksburg VA 24060

Page 1 of 5

Lancaster Laboratories Sample No. SW 3933067

Collected:11/01/2002 12:50

Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:34

Discard: 12/26/2002

(6-11') 7GP-5 Matrix Spike Grab Soil Sample

HWMU-5 & HWMU-7 Investigation

61175 SDG#: RAR01-06MS

|       |                          |            |        | Dry         |         |          |
|-------|--------------------------|------------|--------|-------------|---------|----------|
| CAT   |                          |            | Dry    | Method      |         | Dilution |
| No.   | Analysis Name            | CAS Number | Result | Detection   | Units   | Factor   |
|       |                          |            |        | Limit       |         |          |
| 00118 | Moisture                 | n.a.       | 16.0   | 0.50        | · 8     | 1        |
| 01225 | TCL Pesticides in Solids |            |        |             |         |          |
| 01223 | ich resticides in boilds |            |        |             |         |          |
| 01218 | Gamma BHC - Lindane      | 58-89-9    | 4.0    | 0.20        | ug/kg   | 1        |
| 01219 | Heptachlor               | 76-44-8    | 4.0    | 0.20        | ug/kg   | 1        |
| 01220 | Aldrin                   | 309-00-2   | 3.9    | 0.20        | ug/kg   | 1        |
| 01221 | p,p-DDT                  | 50-29-3    | 9.2    | 0.43        | ug/kg   | 1        |
| 01222 | Dieldrin                 | 60-57-1    | 8.1    | 0.39        | ug/kg   | 1        |
| 01223 | Endrin                   | 72-20-8    | 8.3    | 0.42        | ug/kg   | 1        |
| 01859 | Methoxychlor             | 72-43-5    | 43.    | 4.8         | ug/kg   | 1        |
| 01981 | Alpha BHC                | 319-84-6   | 3.8    | 0.20        | ug/kg   | 1        |
| 01982 | Beta BHC                 | 319-85-7   | 4.0    | 0.20        | ug/kg   | 1        |
| 01983 | Delta BHC                | 319-86-8   | 4.4    | 0.20        | ug/kg   | 1        |
| 01984 | Heptachlor Epoxide       | 1024-57-3  | 4.0    | 0.20        | ug/kg   | 1        |
| 01985 | p,p-DDE                  | 72-55-9    | 8.8    | 0.39        | ug/kg   | 1        |
| 01986 | p,p-DDD                  | 72-54-8    | 8.9    | 0.39        | ug/kg   | 1        |
| 01988 | Toxaphene                | 8001-35-2  | N.D.   | 13.         | ug/kg   | 1        |
| 01989 | Endosulfan I             | 959-98-8   | 3.9    | 0.20        | _ ug/kg | 1        |
| 01990 | Endosulfan II            | 33213-65-9 | 8.0    | 0.39        | ug/kg   | 1        |
| 01991 | Endosulfan Sulfate       | 1031-07-8  | 7.0    | 0.39        | ug/kg   | 1        |
| 01992 | Endrin Aldehyde          | 7421-93-4  | 6.2    | 1.2         | ug/kg   | 1        |
| 01993 | PCB-1016                 | 12674-11-2 | N.D.   | 5.7         | ug/kg   | 1        |
| 01994 | PCB-1221                 | 11104-28-2 | N.D.   | 12.         | ug/kg   | 1        |
| 01995 | PCB-1232                 | 11141-16-5 | N.D.   | 5.1         | ug/kg   | 1        |
| 01996 | PCB-1242                 | 53469-21-9 | N.D.   | 6.0         | ug/kg   | 1        |
| 01997 | PCB-1248                 | 12672-29-6 | N.D.   | 5.8         | ug/kg   | 1        |
| 01998 | PCB-1254                 | 11097-69-1 | N.D.   | 6.8         | ug/kg   | 1        |
| 01999 | PCB-1260                 | 11096-82-5 | N.D.   | 5.2         | ug/kg   | 1        |
| 03017 | Endrin Ketone            | 53494-70-5 | 7.9    | 0.39        | ug/kg   | 1        |
| 03025 | Alpha Chlordane          | 5103-71-9  | 4.2    | 0.20        | ug/kg   | 1        |
| 03026 | Gamma Chlordane          | 5103-74-2  | 4.2    | 0.20        | ug/kg   | 1        |
|       | ** 3.3 a.pa 3 a.y.       |            |        | . 4 . 4 . 5 | _       |          |

Heptachlor was detected in the method blank above the method detection limit. No heptachlor was detected in the sample, therefore the data is reported.





Page 2 of 5

Lancaster Laboratories Sample No. SW 3933067

Collected:11/01/2002 12:50 Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:34

Discard: 12/26/2002

(6-11')7GP-5 Matrix Spike Grab Soil Sample

HWMU-5 & HWMU-7 Investigation

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

Dry

61175 SDG#: RAR01-06MS

| CAT   |                                 |                | Dry               | Method      |       | Dilution |
|-------|---------------------------------|----------------|-------------------|-------------|-------|----------|
| No.   | Analysis Name                   | CAS Number     | Result            | Detection   | Units | Factor   |
| NO.   | Analysis Name                   | CAD Number     | KEBUIC            | Limit       | onics | 140001   |
| 04688 | TCL SW846 Semivolatiles Soil    |                |                   |             |       |          |
|       |                                 |                |                   |             |       |          |
| 01185 | Phenol                          | 108-95-2       | 3,400.            | 39.         | ug/kg | 1        |
| 01186 | 2-Chlorophenol                  | 95-57-8        | 3,500.            | 39.         | ug/kg | 1        |
| 01187 | 1,4-Dichlorobenzene             | 106-46-7       | 3,200.            | 39.         | ug/kg | 1        |
| 01188 | N-Nitroso-di-n-propylamine      | 621-64-7       | 3,500.            | 39.         | ug/kg | 1        |
| 01189 | 1,2,4-Trichlorobenzene          | 120-82-1       | 3,400.            | 39.         | ug/kg | 1        |
| 01190 | 4-Chloro-3-methylphenol         | 59-50-7        | 3,800.            | 80.         | ug/kg | 1        |
| 03746 | 2-Nitrophenol                   | 88-75-5        | 3,800.            | 39.         | ug/kg | 1        |
| 03747 | 2,4-Dimethylphenol              | 105-67-9       | 3,700.            | 39.         | ug/kg | 1        |
| 03748 | 2,4-Dichlorophenol              | 120-83-2       | 3,600.            | 39.         | ug/kg | 1        |
| 03749 | 2,4,6-Trichlorophenol           | 88-06-2        | 3,500.            | 39.         | ug/kg | 1        |
| 03753 | bis(2-Chloroethyl)ether         | 111-44-4       | 3,300.            | 39.         | ug/kg | 1        |
| 03754 | 1,3-Dichlorobenzene             | 541-73-1       | 3,300.            | 39.         | ug/kg | 1        |
| 03755 | 1,2-Dichlorobenzene             | 95-50-1        | 3,200.            | 39.         | ug/kg | 1        |
| 03757 | Hexachloroethane                | 67-72-1        | 3,300.            | 39.         | ug/kg | 1        |
| 03758 | Nitrobenzene                    | 98-95-3        | 3,800.            | 39.         | ug/kg | 1        |
| 03759 | Isophorone                      | 78-59-1        | 3,500.            | 39.         | ug/kg | 1        |
| 03760 | bis(2-Chloroethoxy)methane      | 111-91-1       | 3,800.            | 39.         | ug/kg | 1        |
| 03761 | Naphthalene                     | 91-20-3        | 3,500.            | 39.         | ug/kg | 1        |
| 03762 | Hexachlorobutadiene             | 87-68-3        | 3,700.            | 80.         | ug/kg | 1        |
| 03763 | Hexachlorocyclopentadiene       | 77-47-4        | 7,900.            | 200.        | ug/kg | 1        |
| 03764 | 2-Chloronaphthalene             | 91-58-7        | 3,600.            | 39.         | ug/kg | 1        |
| 03765 | Acenaphthylene                  | 208-96-8       | 3,400.            | 39.         | ug/kg | 1        |
| 03766 | Dimethylphthalate               | 131-11-3       | 3,800.            | 80.         | ug/kg | 1        |
| 04690 | 2-Methylphenol                  | 95-48-7        | 3,400.            | 39.         | ug/kg | 1        |
| 04691 | 2,2'-oxybis(1-Chloropropane)    | 108-60-1       | 4,100.            | 39.         | ug/kg | 1        |
| 04692 | 4-Methylphenol                  | 106-44-5       | 3,300.            | 80.         | ug/kg | 1        |
|       | 3-Methylphenol and 4-methylphen | ol cannot be r | esolved under the | e           |       |          |
|       | chromatographic conditions used | for sample an  | alysis. The resu  | lt reported |       |          |
|       | for 4-methylphenol represents t | he combined to | tal of both comp  | ounds.      |       |          |
| 04693 | 4-Chloroaniline                 | 106-47-8       | 2,800.            | 39.         | ug/kg | 1        |
| 04694 | 2-Methylnaphthalene             | 91-57-6        | 3,700.            | 39.         | ug/kg | 1        |
| 04695 | 2,4,5-Trichlorophenol           | 95-95-4        | 3,700.            | 39.         | ug/kg | 1        |
| 04696 | 2-Nitroaniline                  | 88-74-4        | 3,800.            | 39.         | ug/kg | 1        |
|       |                                 |                |                   |             |       |          |

74689 TCL SW846 Semivolatiles/Soil



Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681



Page 3 of 5

3933067 Lancaster Laboratories Sample No.

Collected:11/01/2002 12:50

Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:34 Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

Dry

Discard: 12/26/2002

(6-11')7GP-5 Matrix Spike Grab Soil Sample

HWMU-5 & HWMU-7 Investigation

61175 SDG#: RAR01-06MS

| as =          |                                  |                  | Dest          |       | Method              |               | Dilution |
|---------------|----------------------------------|------------------|---------------|-------|---------------------|---------------|----------|
| CAT           |                                  | CAS Number       | Dry<br>Result |       | Method<br>Detection | Units         | Factor   |
| No.           | Analysis Name                    | CAS Number       | Result        |       | Limit               | Units         | Factor   |
|               |                                  |                  |               |       | 22.20               |               |          |
| 01191         | Acenaphthene                     | 83-32-9          | 4,000.        |       | 39.                 | ug/kg         | 1        |
| 01192         | 4-Nitrophenol                    | 100-02-7         | 3,700.        |       | 200.                | ug/kg         | 1        |
| 01193         | 2,4-Dinitrotoluene               | 121-14-2         | 4,100.        |       | 80.                 | ug/kg         | 1        |
| 01194         | Pentachlorophenol                | 87-86-5          | 2,800.        |       | 200.                | ug/kg         | 1        |
| 01195         | Pyrene                           | 129-00-0         | 3,900.        |       | 39.                 | ug/kg         | 1        |
| 03750         | 2,4-Dinitrophenol                | 51-28-5          | 1,600.        | J     | 800.                | ug/kg         | 1        |
| 03751         | 4,6-Dinitro-2-methylphenol       | 534-52-1         | 2,500.        |       | 200.                | ug/kg         | 1        |
| 03767         | 2,6-Dinitrotoluene               | 606-20-2         | 3,600.        |       | 39.                 | ug/kg         | 1        |
| 03768         | Fluorene                         | 86-73-7          | 3,700.        |       | 39.                 | ug/kg         | 1        |
| 03769         | 4-Chlorophenyl-phenylether       | 7005-72-3        | 3,800.        |       | 39.                 | ug/kg         | 1        |
| 03770         | Diethylphthalate                 | 84-66-2          | 3,900.        |       | 80.                 | ug/kg         | 1        |
| 03772         | N-Nitrosodiphenylamine           | 86-30-6          | 3,400.        |       | 39.                 | ug/kg         | 1        |
|               | N-nitrosodiphenylamine decompose | es in the GC i   | nlet forming  | diphe | enylamine.          |               |          |
|               | The result reported for N-nitros | sodiphenylamin   | e represents  | the o | combined            |               |          |
|               | total of both compounds.         |                  |               |       |                     |               |          |
| 03773         | 4-Bromophenyl-phenylether        | 101-55-3         | 3,800.        |       | 39.                 | ug/kg         | 1        |
| 03774         | Hexachlorobenzene                | 118-74-1         | 3,900.        |       | 39.                 | ug/kg         | 1        |
| 03775         | Phenanthrene                     | 85-01-8          | 3,900.        |       | 39.                 | ug/kg         | 1        |
| 0377 <b>6</b> | Anthracene                       | 120-12-7         | 3,900.        |       | 39.                 | ug/kg         | 1        |
| 03777         | Di-n-butylphthalate              | 84-74-2          | 3,800.        |       | 80.                 | ug/ <b>kg</b> | 1        |
| 03778         | Fluoranthene                     | 206-44-0         | 3,600.        |       | 39.                 | ug/kg         | 1        |
| 03780         | Butylbenzylphthalate             | 85-68-7          | 3,800.        |       | 80.                 | ug/kg         | 1        |
| 03781         | Benzo(a) anthracene              | 56-55-3          | 3,800.        |       | 39.                 | ug/kg         | 1        |
| 03782         | Chrysene                         | 218-01-9         | 3,800.        |       | 39.                 | ug/kg         | 1        |
| 03783         | 3,3'-Dichlorobenzidine           | 91-94-1          | 2,600.        |       | 80.                 | ug/kg         | 1        |
| 03784         | bis(2-Ethylhexyl)phthalate       | 117-81-7         | 3,700.        |       | 80.                 | ug/kg         | 1        |
| 03785         | Di-n-octylphthalate              | 117-84-0         | 3,700.        |       | 80.                 | ug/kg         | 1        |
| 03786         | Benzo(b) fluoranthene            | 205-99-2         | 3,800.        |       | 39.                 | ug/kg         | 1        |
| 03787         | Benzo(k) fluoranthene            | <b>207-08-</b> 9 | 3,900.        |       | 39.                 | ug/kg         | 1        |
| 03788         | Benzo(a)pyrene                   | 50-32-8          | 4,000.        |       | 39.                 | ug/kg         | 1        |
| 03789         | Indeno(1,2,3-cd)pyrene           | 193-39-5         | 3,800.        |       | 39.                 | ug/kg         | 1        |
| 03790         | Dibenz(a,h)anthracene            | 53-70-3          | 4,100.        |       | 39.                 | ug/kg         | 1        |
| 03791         | Benzo(g,h,i)perylene             | 191-24-2         | 3,800.        |       | 39.                 | ug/kg         | 1        |
| 04697         | 3-Nitroaníline                   | 99-09-2          | 3,500.        |       | 80.                 | ug/ <b>kg</b> | 1        |
| 04698         | Dibenzofuran                     | 132-64-9         | 3,700.        |       | 39.                 | ug/kg         | 1        |
| 14700         | 4-Nitroaniline                   | 100-01-6         | 3,200.        |       | 80.                 | ug/k <b>g</b> | 1        |
|               |                                  |                  |               |       |                     |               |          |

# Analysis Report



135

# REPRINT

Page 4 of 5

Lancaster Laboratories Sample No. SW 3933067

Collected: 11/01/2002 12:50

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:34

Discard: 12/26/2002

(6-11')7GP-5 Matrix Spike Grab Soil Sample

HWMU-5 & HWMU-7 Investigation

Account Number: 11200

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

Dry

61175 SDG#: RAR01-06MS

|       |                           |            |        | DIY                |       |          |
|-------|---------------------------|------------|--------|--------------------|-------|----------|
| CAT   |                           |            | Dry    | Method             |       | Dilution |
| No.   | Analysis Name             | CAS Number | Result | Detection<br>Limit | Units | Factor   |
| 04702 | Carbazole                 | 86-74-8    | 3,700. | 39.                | ug/kg | 1        |
| 06292 | TCL by 8260 (soil)        |            |        |                    |       |          |
| 05444 | Chloromethane             | 74-87-3    | 22.    | 2.                 | ug/kg | 0.83     |
| 05445 | Vinyl Chloride            | 75-01-4    | 21.    | 1.                 | ug/kg | 0.83     |
| 05446 | Bromomethane              | 74-83-9    | 16.    | 2.                 | ug/kg | 0.83     |
| 05447 | Chloroethane              | 75-00-3    | 19.    | 2.                 | ug/kg | 0.83     |
| 05449 | 1,1-Dichloroethene        | 75~35-4    | 20.    | 1.                 | ug/kg | 0.83     |
| 05450 | Methylene Chloride        | 75-09-2    | 18.    | 2.                 | ug/kg | 0.83     |
| 05451 | trans-1,2-Dichloroethene  | 156-60-5   | 19.    | 1.                 | ug/kg | 0.83     |
| 05452 | 1,1-Dichloroethane        | 75-34-3    | 22.    | 1.                 | ug/kg | 0.83     |
| 05454 | cis-1,2-Dichloroethene    | 156-59-2   | 19.    | 1.                 | ug/kg | 0.83     |
| 05455 | Chloroform                | 67-66-3    | 20.    | 1.                 | ug/kg | 0.83     |
| 05457 | 1,1,1-Trichloroethane     | 71-55-6    | 21.    | 1.                 | ug/kg | 0.83     |
| 05458 | Carbon Tetrachloride      | 56-23-5    | 20.    | 1.                 | ug/kg | 0.83     |
| 05460 | Benzene                   | 71-43-2    | 20.    | 1.                 | ug/kg | 0.83     |
| 05461 | 1,2-Dichloroethane        | 107-06-2   | 22.    | 1.                 | ug/kg | 0.83     |
| 05462 | Trichloroethene           | 79-01-6    | 19.    | 1.                 | ug/kg | 0.83     |
| 05463 | 1,2-Dichloropropane       | 78-87-5    | 21.    | 1.                 | ug/kg | 0.83     |
| 05465 | Bromodichloromethane      | 75-27-4    | 19.    | 1.                 | ug/kg | 0.83     |
| 05466 | Toluene                   | 108-88-3   | 21.    | 1.                 | ug/kg | 0.83     |
| 05467 | 1,1,2-Trichloroethane     | 79-00-5    | 18.    | 1.                 | ug/kg | 0.83     |
| 05468 | Tetrachloroethene         | 127-18-4   | 21.    | 1.                 | ug/kg | 0.83     |
| 05470 | Dibromochloromethane      | 124-48-1   | 18.    | 1.                 | ug/kg | 0.83     |
| 05472 | Chlorobenzene             | 108-90-7   | 19.    | 1.                 | ug/kg | 0.83     |
| 05474 | Ethylbenzene              | 100-41-4   | 20.    | 1.                 | ug/kg | 0.83     |
| 05477 | Styrene                   | 100-42-5   | 18.    | 1.                 | ug/kg | 0.83     |
| 05478 | Bromoform                 | 75-25-2    | 15.    | 1.                 | ug/kg | 0.83     |
| 05480 | 1,1,2,2-Tetrachloroethane | 79-34-5    | 15.    | 1.                 | ug/kg | 0.83     |
| 06293 | Acetone                   | 67-64-1    | 110.   | 7.                 | ug/kg | 0.83     |
| 06294 | Carbon Disulfide          | 75-15-0    | 21.    | 1.                 | ug/kg | 0.83     |
| 06296 | 2-Butanone                | 78-93-3    | 100.   | 4.                 | ug/kg | 0.83     |
| 06297 | trans-1,3-Dichloropropene | 10061-02-6 | 20.    | 1.                 | ug/kg | 0.83     |
| 06298 | cis-1,3-Dichloropropene   | 10061-01-5 | 18.    | 1.                 | ug/kg | 0.83     |
| 06299 | 4-Methyl-2-pentanone      | 108-10-1   | 69.    | 2.                 | ug/kg | 0.83     |
| 06300 | 2-Hexanone                | 591-78-6   | 67.    | 2.                 | ug/kg | 0.83     |
|       |                           |            |        |                    |       |          |





Page 5 of 5

Lancaster Laboratories Sample No. SW 3933067

Collected:11/01/2002 12:50

Account Number: 11200

Submitted: 11/02/2002 10:20

Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:34

2206 South Main Street Blacksburg VA 24060

Discard: 12/26/2002

(6-11')7GP-5 Matrix Spike Grab Soil Sample

HWMU-5 & HWMU-7 Investigation

61175 SDG#: RAR01-06MS

|       |                | Dry        |        |                    |       |          |  |
|-------|----------------|------------|--------|--------------------|-------|----------|--|
| CAT   |                |            | Dry    | Method             |       | Dilution |  |
| No.   | Analysis Name  | CAS Number | Result | Detection<br>Limit | Units | Factor   |  |
| 06301 | Xylene (Total) | 1330-20-7  | 59.    | 1.                 | ug/kg | 0.83     |  |

Laboratory Chronicle

|               |                          |                    | Q11± 0. | 114040           |                     |          |
|---------------|--------------------------|--------------------|---------|------------------|---------------------|----------|
| 'AT           |                          |                    |         | Analysis         |                     | Dilution |
| .40.          | Analysis Name            | Method             | Trial#  | Date and Time    | Analyst             | Factor   |
| 00118         | Moisture                 | EPA 160.3 modified | 1       | 11/05/2002 08:39 | Helen L Schaeffer   | 1        |
| 01225         | TCL Pesticides in Solids | SW-846 8081A/8082  | 1       | 11/06/2002 02:24 | Douglas D Seitz     | 1        |
| 04688         | TCL SW846 Semivolatiles  | SW-846 8270C       | 1       | 11/06/2002 02:35 | Linda M Hartenstine | 1        |
|               | Soil                     |                    |         |                  |                     |          |
| 04689         | TCL SW846                | SW-846 8270C       | 1       | 11/06/2002 02:35 | Linda M Hartenstine | 1        |
|               | Semivolatiles/Soil       |                    |         |                  |                     |          |
| 06292         | TCL by 8260 (soil)       | SW-846 8260B       | 1       | 11/05/2002 21:13 | Ryan V Nolt         | 0.83     |
| 00381         | BNA Soil Extraction      | SW-846 3550B       | 1       | 11/05/2002 17:40 | Amy M Strocko       | 1        |
| 00819         | Solid Sample Pesticide   | SW-846 3550B       | 1       | 11/05/2002 00:30 | Darin P Wagner      | 1        |
|               | Extract                  |                    |         |                  |                     |          |
| 0838 <b>9</b> | Low/High Encore Prep     | SW-846 5035        | 1       | 11/05/2002 15:23 | Medina A Long       | n.a.     |
|               | Tracking                 |                    |         |                  |                     |          |
| 08389         | Low/High Encore Prep     | SW-846 5035        | 2       | 11/02/2002 23:32 | Medina A Long       | n.a.     |
|               | Tracking                 |                    |         |                  |                     |          |
| 0838 <i>9</i> | Low/High Encore Prep     | SW-846 5035        | 3       | 11/02/2002 23:33 | Medina A Long       | n.a.     |
|               | Tracking                 |                    |         |                  |                     |          |
|               |                          |                    |         |                  |                     |          |



Dry

Page 1 of 5

Lancaster Laboratories Sample No. SW 3933068

Collected:11/01/2002 12:50 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:35 2206 South Main Street Discard: 12/26/2002 Blacksburg VA 24060

(6-11')7GP-5 Matrix Spike Dup/Dup Grab Soil Sample

HWMU-5 & HWMU-7 Investigation

61175 SDG#: RAR01-06MSD

|       |                                  |                | Daren             | Method    |       | Dilution |
|-------|----------------------------------|----------------|-------------------|-----------|-------|----------|
| CAT   | Analysis Name                    | CAS Number     | Dry<br>Result     | Detection | Units | Factor   |
| No.   | Analysis Name                    | CAS Number     | Kesuit            | Limit     | onics | Factor   |
| 00118 | Moisture                         | n.a.           | 16.0              | 0.50      | *     | 1        |
| 00121 | Moisture Duplicate               | n.a.           | 16.2              | 0.50      | *     | 1        |
| 00151 | The duplicate moisture value is  | provided to a  | ssess the precisi |           |       |          |
|       | moisture test. For comparability | ty purposes, t | he initial moistu | re        |       |          |
|       | determination is the value used  | to perform dr  | y weight calculat | ions.     |       |          |
|       |                                  |                |                   |           |       |          |
| 01225 | TCL Pesticides in Solids         |                |                   |           |       |          |
|       |                                  | 50 00 0        | 3.0               | 0.00      | /1    |          |
| 01218 | Gamma BHC - Lindane              | 58-89-9        | 3.9               | 0.20      | ug/kg | 1        |
| 01219 | Heptachlor                       | 76-44-8        | 4.0               | 0.20      | ug/kg | 1        |
| 01220 | Aldrin                           | 309-00-2       | 3.8               | 0.20      | ug/kg | 1        |
| 01221 | p,p-DDT                          | 50-29-3        | 9.4               | 0.43      | ug/kg | 1        |
| 01222 | Dieldrin                         | 60-57-1        | 8.1               | 0.39      | ug/kg | 1        |
| 01223 | Endrin                           | 72-20-8        | 8.3               | 0.42      | ug/kg | 1        |
| 01859 | Methoxychlor                     | 72-43-5        | 44.               | 4.8       | ug/kg | 1        |
| 01981 | Alpha BHC                        | 319-84-6       | 3.6               | 0.20      | ug/kg | 1        |
| 01982 | Beta BHC                         | 319-85-7       | 4.0               | 0.20      | ug/kg | 1        |
| 01983 | Delta BHC                        | 319-86-8       | 4.3               | 0.20      | ug/kg | 1        |
| 01984 | Heptachlor Epoxide               | 1024-57-3      | 4.0               | 0.20      | ug/kg | 1        |
| 01985 | p,p-DDE                          | 72-55-9        | 8.8               | 0.39      | ug/kg | 1        |
| 01986 | p,p-DDD                          | 72-54-8        | 8.9               | 0.39      | ug/kg | 1        |
| 01988 | Toxaphene                        | 8001-35-2      | N.D.              | 13.       | ug/kg | 1        |
| 01989 | Endosulfan I                     | 959-98-8       | 3.8               | 0.20      | ug/kg | 1        |
| 01990 | Endosulfan II                    | 33213-65-9     | 8.1               | 0.39      | ug/kg | 1        |
| 01991 | Endosulfan Sulfate               | 1031-07-8      | 6.9               | 0.39      | ug/kg | 1        |
| 01992 | Endrin Aldehyde                  | 7421-93-4      | 7.5               | 1.2       | ug/kg | 1        |
| 01993 | PCB-1016                         | 12674-11-2     | N.D.              | 5.7       | ug/kg | 1        |
| 01994 | PCB-1221                         | 11104-28-2     | N.D.              | 12.       | ug/kg | 1        |
| 01995 | PCB-1232                         | 11141-16-5     | N.D.              | 5.1       | ug/kg | 1        |
| 01996 | PCB-1242                         | 53469-21-9     | N.D.              | 6.0       | ug/kg | 1        |
| 01997 | PCB-1248                         | 12672-29-6     | N.D.              | 5.8       | ug/kg | 1        |
| 01998 | PCB-1254                         | 11097-69-1     | N.D.              | 6.8       | ug/kg | 1        |
| 01999 | PCB-1260                         | 11096-82-5     | N.D.              | 5.2       | ug/kg | 1        |
| 03017 | Endrin Ketone                    | 53494-70-5     | 7.9               | 0.39      | ug/kg | 1        |
| 03025 | Alpha Chlordane                  | 5103-71-9      | 4.2               | 0.20      | ug/kg | 1        |
| 03026 | Gamma Cnlordane                  | 5103-74-2      | 4.3               | 0.20      | ug/kg | 1        |
|       |                                  |                |                   |           | 3. 3  |          |



Page 2 of 5

Lancaster Laboratories Sample No. SW 3933068

Collected:11/01/2002 12:50

Account Number: 11200

Submitted: 11/02/2002 10:20

Reported: 11/25/2002 at 14:35

Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:35

2206 South Main Street Blacksburg VA 24060

Dry

Discard: 12/26/2002

(6-11')7GP-5 Matrix Spike Dup/Dup Grab Soil Sample

HWMU-5 & HWMU-7 Investigation

61175 SDG#: RAR01-06MSD

|       |                                  |                               |                  | P11                |       |          |
|-------|----------------------------------|-------------------------------|------------------|--------------------|-------|----------|
| CAT   |                                  |                               | Dry              | Method             |       | Dilution |
| No.   | Analysis Name                    | CAS Number                    | Result           | Detection<br>Limit | Units | Factor   |
|       | Heptachlor was detected in the   | method blank a                | bove the method  | detection          |       |          |
|       | limit. No heptachlor was detecte |                               |                  |                    |       |          |
|       | reported.                        |                               |                  |                    |       |          |
|       | -                                |                               |                  |                    |       |          |
| 04688 | TCL SW846 Semivolatiles Soil     |                               |                  |                    |       |          |
|       |                                  |                               |                  |                    |       |          |
| 01185 | Phenol                           | 108-95-2                      | 3,400.           | 39.                | ug/kg | 1        |
| J1186 | 2-Chlorophenol                   | 95-57-8                       | 3,600.           | 39.                | ug/kg | 1        |
| 01187 | 1,4-Dichlorobenzene              | 106-46-7                      | 3,200.           | 39.                | ug/kg | 1        |
| 01188 | N-Nitroso-di-n-propylamine       | 621-64-7                      | 3,400.           | 39.                | ug/kg | 1        |
| 01189 | 1,2,4-Trichlorobenzene           | 120-82-1                      | 3,400.           | 39.                | ug/kg | 1        |
| 01190 | 4-Chloro-3-methylphenol          | 59-50-7                       | 3,800.           | 80.                | ug/kg | 1        |
| 03746 | 2-Nitrophenol                    | 88-75-5                       | 3,700.           | 39.                | ug/kg | 1        |
| 03747 | 2,4-Dimethylphenol               | 105-67-9                      | 3,600.           | 39.                | ug/kg | 1        |
| 03748 | 2,4-Dichlorophenol               | 120-83-2                      | 3,500.           | 39.                | ug/kg | 1        |
| 03749 | 2,4,6-Trichlorophenol            | 88-06-2                       | 3,400.           | 39.                | ug/kg | 1        |
| 03753 | bis(2-Chloroethyl)ether          | 111-44-4                      | 3,200.           | 39.                | ug/kg | 1        |
| 03754 | 1,3-Dichlorobenzene              | 541-73-1                      | 3,300.           | 39.                | ug/kg | 1        |
| 03755 | 1,2-Dichlorobenzene              | 95-50-1                       | 3,300.           | 39.                | ug/kg | 1        |
| 03757 | Hexachloroethane                 | 67-72-1                       | 3,300.           | 39.                | ug/kg | 1        |
| 03758 | Nitrobenzene                     | 98-95-3                       | 3,600.           | 39.                | ug/kg | 1        |
| 03759 | Isophorone                       | 78-59 <b>-1</b>               | 3,500.           | 39.                | ug/kg | 1        |
| 03760 | bis(2-Chloroethoxy)methane       | 111-91-1                      | 3,800.           | 39.                | ug/kg | 1        |
| 03761 | Naphthalene                      | 91-20-3                       | 3,400.           | 39.                | ug/kg | 1        |
| 03762 | Hexachlorobutadiene              | 87-68-3                       | 3,700.           | 80.                | ug/kg | 1        |
| 03763 | Hexachlorocyclopentadiene        | 77-47-4                       | 7,600.           | 200.               | ug/kg | 1        |
| 03764 | 2-Chloronaphthalene              | 91-58-7                       | 3,600.           | 39.                | ug/kg | 1        |
| 03765 | Acenaphthylene                   | 208-96-8                      | 3,300.           | 39.                | ug/kg | 1        |
| 03766 | Dimethylphthalate                | 131-11-3                      | 3,700.           | 80.                | ug/kg | 1        |
| 04690 | 2-Methylphenol                   | 95-48-7                       | 3,400.           | 39.                | ug/kg | 1        |
| 04691 | 2,2'-oxybis(1-Chloropropane)     | 108-60-1                      | 4,200.           | 39.                | ug/kg | 1        |
| 04692 | 4-Methylphenol                   | 106-44-5                      | 3,300.           | 80.                | ug/kg | 1        |
|       | 3-Methylphenol and 4-methylpheno | ol cannot be r                | esolved under th | ie                 | 3. 3  |          |
|       | chromatographic conditions used  |                               |                  |                    |       |          |
|       | for 4-methylphenol represents th | he combin <mark>e</mark> d to | tal of both comp | ounds.             |       |          |
| 04693 | 4-Chloroaniline                  | 106-47-8                      | 3,000.           | 39.                | ug/kg | 1        |
| 04694 | 2-Methylnaphthalene              | 91 - 57 - 6                   | 3,600.           | 39.                | ug/kg | 1        |
|       |                                  |                               |                  |                    |       |          |





Page 3 of 5

Lancaster Laboratories Sample No. SW 3933068

Collected:11/01/2002 12:50 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:35 2206 South Main Street Discard: 12/26/2002 Blacksburg VA 24060

(6-11')7GP-5 Matrix Spike Dup/Dup Grab Soil Sample

HWMU-5 & HWMU-7 Investigation

| 61 <b>1</b> 75 | SDG#: | RAR01-06MSD   |
|----------------|-------|---------------|
| 011/2          | SDG#: | KAKUI - UUMAD |

|       |                                 |                  |              |       | Dry                |        |          |
|-------|---------------------------------|------------------|--------------|-------|--------------------|--------|----------|
| CAT   |                                 |                  | Dry          |       | Method             |        | Dilution |
| No.   | Analysis Name                   | CAS Number       | Result       |       | Detection<br>Limit | Units  | Factor   |
| 04695 | 2,4,5-Trichlorophenol           | 95-95-4          | 3,600.       |       | 39.                | ug/kg  | 1        |
| 04696 | 2-Nitroaniline                  | 88-74-4          | 3,900.       |       | 39.                | ug/kg  | 1        |
| 04689 | TCL SW846 Semivolatiles/Soil    |                  |              |       |                    |        |          |
| 01191 | Acenaphthene                    | 83-32 <b>-</b> 9 | 3,900.       |       | 39.                | ug/kg  | ı        |
| 01192 | 4-Nitrophenol                   | 100-02-7         | 3,600.       |       | 200.               | ug/kg  | 1        |
| J1193 | 2,4-Dinitrotoluene              | 121-14-2         | 4,000.       |       | 80.                | ug/kg  | 1        |
| 01194 | Pentachlorophenol               | 87-86-5          | 2,800.       |       | 200.               | ug/kg  | 1        |
| 01195 | Pyrene                          | 129-00-0         | 3,900.       |       | 39.                | ug/kg  | 1        |
| 03750 | 2,4-Dinitrophenol               | 51-28-5          | 1,500.       | J     | 800.               | ug/kg  | 1        |
| 03751 | 4,6-Dinitro-2-methylphenol      | 534-52-1         | 2,500.       |       | 200.               | ug/kg  | 1        |
| 03767 | 2,6-Dinitrotoluene              | 606-20-2         | 3,700.       |       | 39.                | ug/kg  | 1        |
| 03768 | Fluorene                        | 86-73-7          | 3,600.       |       | 39.                | ug/kg  | 1        |
| 03769 | 4-Chlorophenyl-phenylether      | 7005-72-3        | 3,600.       |       | 39.                | ug/kg  | 1        |
| 03770 | Diethylphthalate                | 84-66-2          | 3,900.       |       | 80.                | ug/kg  | 1        |
| 03772 | N-Nitrosodiphenylamine          | 86-30-6          | 3,400.       |       | 39.                | ug/kg  | . 1      |
|       | N-nitrosodiphenylamine decompos | es in the GC i   | nlet forming | diphe | enylamine.         |        |          |
|       | The result reported for N-nitro | sodiphenylamin   | e represents | the o | combined           |        |          |
|       | total of both compounds.        |                  |              |       |                    |        |          |
| 03773 | 4-Bromophenyl-phenylether       | 101-55-3         | 3,800.       |       | 39.                | ug/kgʻ | 1        |
| 03774 | Hexachlorobenzene               | 118-74-1         | 3,900.       |       | 39.                | ug/kg  | 1        |
| 03775 | Phenanthrene                    | 85-01-8          | 3,700.       |       | 39.                | ug/kg  | 1        |
| 03776 | Anthracene                      | 120-12-7         | 3,700.       |       | 39.                | ug/kg  | 1        |
| 03777 | Di-n-butylphthalate             | 84-74-2          | 3,700.       |       | 80.                | ug/kg  | 1        |
| 03778 | Fluoranthene                    | 206-44-0         | 3,400.       |       | 39.                | ug/kg  | 1        |
| 03780 | Butylbenzylphthalate            | 85-68-7          | 3,900.       |       | 80.                | ug/kg  | 1        |
| 03781 | Benzo(a) anthracene             | 56-55-3          | 3,800.       |       | 39.                | ug/kg  | 1        |
| 03782 | Chrysene                        | 218-01-9         | 3,900.       |       | 39.                | ug/kg  | 1        |
| 03783 | 3,3'-Dichlorobenzidine          | 91-94-1          | 2,900.       |       | 80.                | ug/kg  | 1        |
| 03784 | bis(2-Ethylhexyl)phthalate      | 117-81-7         | 3,800.       |       | 80.                | ug/kg  | 1        |
| 03785 | Di-n-octylphthalate             | 117-84-0         | 3,600.       |       | 80.                | ug/kg  | 1        |
| 03786 | Benzo(b)fluoranthene            | 205-99-2         | 4,000.       |       | 39.                | ug/kg  | 1        |
| 03787 | Benzo(k)fluoranthene            | 207-08-9         | 3,900.       |       | 39.                | ug/kg  | 1        |
| 03788 | Benzo(a)pyrene                  | 50-32-8          | 4,000.       |       | 39.                | ug/kg  | 1        |
| 03789 | Indeno(1,2,3-cd)pyrene          | 193-39-5         | 3,900.       |       | 39.                | ug/kg  | 1        |
| )3790 | Dibenz(a,h)anthracene           | 53-70-3          | 4,100.       |       | 39.                | ug/kg  | 1        |

# Analysis Report

200



#### REPRINT

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060 Page 4 of 5

Lancaster Laboratories Sample No. SW 3933068

Collected:11/01/2002 12:50 Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:35

Reported: 11/25/2002 at 14:35 Discard: 12/26/2002

(6-11')7GP-5 Matrix Spike Dup/Dup Grab Soil Sample

HWMU-5 & HWMU-7 Investigation

61175 SDG#: RAR01-06MSD

|       |                           |                 |        | Dry                |       |          |
|-------|---------------------------|-----------------|--------|--------------------|-------|----------|
| CAT   |                           |                 | Dry    | Method             |       | Dilution |
| No.   | Analysis Name             | CAS Number      | Result | Detection<br>Limit | Units | Factor   |
| 03791 | Benzo(g,h,i)perylene      | 191-24-2        | 3,800. | 39.                | ug/kg | 1        |
| 04697 | 3-Nitroaniline            | 99-09-2         | 3,500. | 80.                | ug/kg | 1        |
| 04698 | Dibenzofuran              | 132-64-9        | 3,600. | 39.                | ug/kg | 1        |
| 04700 | 4-Nitroaniline            | 100-01-6        | 3,400. | 80.                | ug/kg | 1        |
| 04702 | Carbazole                 | 86-74-8         | 3,600. | 39.                | ug/kg | 1        |
| 06292 | TCL by 8260 (soil)        |                 |        |                    |       |          |
| 05444 | Chloromethane             | 74-87-3         | 21.    | 2.                 | ug/kg | 0.86     |
| 05445 | Vinyl Chloride            | 75-01-4         | 20.    | 1.                 | ug/kg | 0.86     |
| 05446 | Bromomethane              | 74-83-9         | 15.    | 2.                 | ug/kg | 0.86     |
| 05447 | Chloroethane              | 75-00-3         | 18.    | 2.                 | ug/kg | 0.86     |
| 05449 | 1,1-Dichloroethene        | 75-35-4         | 21.    | 1.                 | ug/kg | 0.86     |
| 05450 | Methylene Chloride        | 75-09-2         | 19.    | 2.                 | ug/kg | 0.86     |
| 05451 | trans-1,2-Dichloroethene  | 156-60-5        | 19.    | 1.                 | ug/kg | 0.86     |
| 05452 | 1,1-Dichloroethane        | 75-34-3         | 22.    | 1.                 | ug/kg | 0.86     |
| 05454 | cis-1,2-Dichloroethene    | 156-59-2        | 20.    | 1.                 | ug/kg | 0.86     |
| 05455 | Chloroform                | <b>67-66-</b> 3 | 20.    | 1.                 | ug/kg | 0.86     |
| 05457 | 1,1,1-Trichloroethane     | 71-55-6         | 21.    | 1.                 | ug/kg | 0.86     |
| 05458 | Carbon Tetrachloride      | 56-23-5         | 20.    | 1.                 | ug/kg | 0.86     |
| 05460 | Benzene                   | 71-43-2         | 20.    | 1.                 | ug/kg | 0.86     |
| 05461 | 1,2-Dichloroethane        | 107-06-2        | 23.    | 1.                 | ug/kg | 0.86     |
| 05462 | Trichloroethene           | 79-01-6         | 20.    | 1.                 | ug/kg | 0.86     |
| 05463 | 1,2-Dichloropropane       | 78-87-5         | 21.    | 1.                 | ug/kg | 0.86     |
| 05465 | Bromodichloromethane      | 75-27-4         | 19.    | 1.                 | ug/kg | 0.86     |
| 05466 | Toluene                   | 108-88-3        | 21.    | 1.                 | ug/kg | 0.86     |
| 05467 | 1,1,2-Trichloroethane     | 79-00-5         | 18.    | 1.                 | ug/kg | 0.86     |
| 05468 | Tetrachloroethene         | 127-18-4        | 22.    | 1.                 | ug/kg | 0.86     |
| 05470 | Dibromochloromethane      | 124-48-1        | 18.    | 1.                 | ug/kg | 0.86     |
| 05472 | Chlorobenzene             | 108-90-7        | 20.    | 1.                 | ug/kg | 0.86     |
| 05474 | Ethylbenzene              | 100-41-4        | 21.    | 1.                 | ug/kg | 0.86     |
| 05477 | Styrene                   | 100-42-5        | 19.    | 1.                 | ug/kg | 0.86     |
| 05478 | Bromoform                 | 75-25-2         | 15.    | 1.                 | ug/kg | 0.86     |
| 05480 | 1,1,2,2-Tetrachloroethane | 79-34-5         | 15.    | 1.                 | ug/kg | 0.86     |
| 06293 | Acetone                   | 67-64-1         | 100.   | 7.                 | ug/kg | 0.86     |
| 06294 | Carbon Disulfide          | 75-15-0         | 21.    | 1.                 | ug/kg | 0.86     |
| 06296 | 2-Butanone                | 78 - 93 - 3     | 97.    | 4.                 | ug/kg | 0.86     |



# Analysis Report

w) (



### REPRINT

Desc

Page 5 of 5

Lancaster Laboratories Sample No. SW 3933068

Collected:11/01/2002 12:50 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:35 2206 South Main Street
Discard: 12/26/2002 Blacksburg VA 24060

(6-11')7GP-5 Matrix Spike Dup/Dup Grab Soil Sample

HWMU-5 & HWMU-7 Investigation

61175 SDG#: RAR01-06MSD

| CAT | ?                             |            | Dry    | Method             | thod  |        |  |
|-----|-------------------------------|------------|--------|--------------------|-------|--------|--|
| No. | Analysis Name                 | CAS Number | Result | Detection<br>Limit | Units | Factor |  |
| 062 | 297 trans-1,3-Dichloropropene | 10061-02-6 | 19.    | 1.                 | ug/kg | 0.86   |  |
| 062 | 298 cis-1,3-Dichloropropene   | 10061-01-5 | 19.    | 1.                 | ug/kg | 0.86   |  |
| 062 | 299 4-Methyl-2-pentanone      | 108-10-1   | 66.    | 4.                 | ug/kg | 0.86   |  |
| 063 | 300 2-Hexanone                | 591-78-6   | 67.    | 4.                 | ug/kg | 0.86   |  |
| 063 | 301 Xylene (Total)            | 1330-20-7  | 61.    | 1.                 | ug/kg | 0.86   |  |
|     |                               |            |        |                    |       |        |  |

#### Laboratory Chronicle

| CAT   |                                   |                    |        | Analysis         |                     | Dilution |
|-------|-----------------------------------|--------------------|--------|------------------|---------------------|----------|
| No.   | Analysis Name                     | Method             | Trial# | Date and Time    | Analyst             | Factor   |
| 00118 | Moisture                          | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer   | 1        |
| 00121 | Moisture Duplicate                | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer   | 1        |
| 01225 | TCL Pesticides in Solids          | SW-846 8081A/8082  | 1      | 11/06/2002 02:45 | Douglas D Seitz     | 1        |
| 04688 | TCL SW846 Semivolatiles Soil      | SW-846 8270C       | 1      | 11/06/2002 03:34 | Linda M Hartenstine | 1        |
| 04689 | TCL SW846<br>Semivolatiles/Soil   | SW-846 8270C       | 1      | 11/06/2002 03:34 | Linda M Hartenstine | 1        |
| 06292 | TCL by 8260 (soil)                | SW-846 8260B       | 1      | 11/05/2002 21:46 | Ryan V Nolt         | 0.86     |
| 00381 | BNA Soil Extraction               | SW-846 3550B       | 1      | 11/05/2002 17:40 | Amy M Strocko       | 1        |
| 00819 | Solid Sample Pesticide<br>Extract | SW-846 3550B       | 1      | 11/05/2002 00:30 | Darin P Wagner      | 1        |
| 08389 | Low/High Encore Prep<br>Tracking  | SW-846 5035        | 1      | 11/05/2002 15:22 | Medina A Long       | n.a.     |
| 08389 | Low/High Encore Prep<br>Tracking  | SW-846 5035        | 2      | 11/02/2002 23:30 | Medina A Long       | n.a.     |
| 08389 | Low/High Encore Prep<br>Tracking  | SW-846 5035        | 3      | 11/02/2002 23:31 | Medina A Long       | n.a.     |





Page 1 of 5

Lancaster Laboratories Sample No. SW 3933069

Collected:11/01/2002 13:30 Account Number: 11200

 Submitted: 11/02/2002 10:20
 Draper Aden Associates, Inc.

 Reported: 11/25/2002 at 14:35
 2206 South Main Street

Reported: 11/25/2002 at 14:35 2206 South Main Street
Discard: 12/26/2002 Blacksburg VA 24060

(3-4')7GP-16 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

34716 SDG#: RAR01-07

|               |                                |                |                   | Dry                |                |          |
|---------------|--------------------------------|----------------|-------------------|--------------------|----------------|----------|
| CAT           |                                |                | Dry               | Method             |                | Dilution |
| No.           | Analysis Name                  | CAS Number     | Result            | Detection<br>Limit | Units          | Factor   |
| 00111         | Moisture                       | n.a.           | 16.4              | 0.50               | 8              | 1        |
|               | "Moisture" represents the loss | in weight of t | he sample after o | ven drying at      |                |          |
|               | 103 - 105 degrees Celsius. The | moisture resul | t reported above  | is on an           |                |          |
|               | as-received basis.             |                |                   |                    |                |          |
|               |                                |                |                   |                    |                |          |
| 01225         | TCL Pesticides in Solids       |                |                   |                    |                |          |
| J1218         | Gamma BHC - Lindane            | 58-89-9        | N.D.              | 0.20               | ug/kg          | 1        |
| 01219         | Heptachlor                     | 76-44-8        | N.D.              | 0.20               | ug/kg          | 1        |
| 01220         | Aldrin                         | 309-00-2       | N.D.              | 0.20               | ug/kg          | 1        |
| 01221         | p,p-DDT                        | 50-29-3        | N.D.              | 0.43               | ug/kg          | 1        |
| 01222         | Dieldrin                       | 60-57-1        | N.D.              | 0.39               | ug/kg          | 1        |
| 01223         | Endrin                         | 72-20-8        | N.D.              | 0.42               | ug/kg          | 1        |
| 01859         | Methoxychlor                   | 72-43-5        | N.D.              | 4.8                | ug/kg          | 1        |
| 01981         | Alpha BHC                      | 319-84-6       | N.D.              | 0.20               | ug/kg          | 1        |
| 01982         | Beta BHC                       | 319-85-7       | N.D.              | 0.20               | ug/kg          | 1        |
| 01983         | Delta BHC                      | 319-86-8       | N.D.              | 0.20               | ug/kg          | 1        |
| 01984         | Heptachlor Epoxide             | 1024-57-3      | N.D.              | 0.20               | ug/kg          | 1        |
| 01985         | p,p-DDE                        | 72-55-9        | N.D.              | 0.39               | ug/kg          | 1        |
| 01986         | p,p-DDD                        | 72-54-8        | N.D.              | 0.39               | ug/kg          | 1        |
| 01988         | Toxaphene                      | 8001-35-2      | N.D.              | 13.                | ug/kg          | 1        |
| 01989         | Endosulfan I                   | 959-98-8       | N.D.              | 0.20               | ug/kg          | 1        |
| 01990         | Endosulfan II                  | 33213-65-9     | N.D.              | 0.39               | ug/kg          | 1        |
| 01991         | Endosulfan Sulfate             | 1031-07-8      | N.D.              | 0.39               | ug/kg          | 1        |
| 01992         | Endrin Aldehyde                | 7421-93-4      | N.D.              | 1.2                | ug/kg          | 1        |
| 01993         | PCB-1016                       | 12674-11-2     | N.D.              | 5.7                | ug/kg          | 1        |
| 01994         | PCB-1221                       | 11104-28-2     | N.D.              | 12.                | ug/kg          | 1        |
| 01995         | PCB-1232                       | 11141-16-5     | N.D.              | 5. <b>1</b>        | ug/kg          | 1        |
| 01996         | PCB-1242                       | 53469-21-9     | N.D.              | 6.0                | ug/kg          | 1 .      |
| 01997         | PCB-1248                       | 12672-29-6     | N.D.              | 5.9                | ug/kg          | 1        |
| 01998         | PCB-1254                       | 11097-69-1     | N.D.              | 6.8                | ug/kg          | 1        |
| 01999         | PCB-1260                       | 11096-82-5     | N.D.              | 5.3                | ug/kg          | 1        |
| 03 <b>017</b> | Endrin Ketone                  | 53494 - 70 - 5 | N.D.              | 0.39               | ug/kg          | 1        |
| 03025         | Alpha Chlordane                | 5103-71-9      | N.D.              | 0.20               | ug/kg          | 1        |
| 03026         | Gamma Chlordane                | 5103 74-2      | 0.26 J            | 0.20               | ug/ <b>k</b> g | 1        |
|               | Hentachlor was detected in the | method blank a | hove the method d | etection           |                |          |

Heptachlor was detected in the method blank above the method detection



203



# REPRINT

Page 2 of 5

Lancaster Laboratories Sample No. SW 3933069

Collected:11/01/2002 13:30

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:35

Discard: 12/26/2002

(3-4')7GP-16 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

Account Number: 11200

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

| 34716 SDG#: R | AROI: | - 07 |
|---------------|-------|------|
|---------------|-------|------|

| 34/10 | SDG#: KAROI-U/                                     |                            |                | _                  |                |          |
|-------|----------------------------------------------------|----------------------------|----------------|--------------------|----------------|----------|
|       |                                                    |                            | _              | Dry                |                |          |
| CAT   |                                                    |                            | Dry            | Method             | •.             | Dilution |
| No.   | Analysis Name                                      | CAS Number                 | Result         | Detection<br>Limit | Units          | Factor   |
|       | limit. No heptachlor was detect reported.          | ted in the samp            | ole, therefore | the data is        |                |          |
| 04688 | TCL SW846 Semivolatiles Soil                       |                            |                |                    |                |          |
| 01185 | Phenol                                             | 108-95-2                   | N.D.           | 39.                | ug/kg          | 1        |
| 01186 | 2-Chlorophenol                                     | 95-57-8                    | <b>N</b> .D.   | 39.                | ug/kg          | 1        |
| )1187 | 1,4-Dichlorobenzene                                | 106-46-7                   | N.D.           | 39.                | ug/kg          | 1        |
| 01188 | N-Nitroso-di-n-propylamine                         | 621-64-7                   | N.D.           | 39.                | ug/kg          | 1        |
| 01189 | 1,2,4-Trichlorobenzene                             | 120-82-1                   | N.D.           | 39.                | ug/kg          | 1        |
| 01190 | 4-Chloro-3-methylphenol                            | 59-50-7                    | N.D.           | 80.                | ug/kg          | 1        |
| 03746 | 2-Nitrophenol                                      | 88-75-5                    | N.D.           | 39.                | ug/kg          | 1        |
| 03747 | 2,4-Dimethylphenol                                 | 105-67-9                   | N.D.           | 39.                | ug/kg          | 1        |
| 03748 | 2,4-Dichlorophenol                                 | 120-83-2                   | N.D.           | 39.                | ug/kg          | 1        |
| 03749 | 2,4,6-Trichlorophenol                              | 88-06-2                    | N.D.           | 39.                | ug/kg          | 1        |
| 03753 | bis(2-Chloroethyl)ether                            | 111-44-4                   | N.D.           | 39.                | ug/kg          | 1        |
| 03754 | 1,3-Dichlorobenzene                                | 541-73-1                   | N.D.           | 39.                | ug/kg          | 1        |
| 03755 | 1,2-Dichlorobenzene                                | 95-50-1                    | N.D.           | 39.                | ug/kg          | 1        |
| 03757 | Hexachloroethane                                   | 67-72-1                    | N.D.           | 39.                | ug/kg          | 1        |
| 03758 | Nitrobenzene                                       | 98-95-3                    | N.D.           | 39.                | ug/kg          | 1        |
| 03759 | Isophorone                                         | 78-59- <b>1</b>            | N.D.           | 39.                | ug/kg          | 1        |
| 03760 | bis(2-Chloroethoxy)methane                         | 111-91-1                   | N.D.           | 39.                | ug/kg          | . 1      |
| 03761 | Naphthalene                                        | 91-20-3                    | N.D.           | 39.                | ug/kg          | 1        |
| 03762 | Hexachlorobutadiene                                | 87-68-3                    | N.D.           | 80.                | ug/kg          | 1        |
| 03763 | Hexachlorocyclopentadiene                          | 77-47-4                    | N.D.           | 200.               | ug/kg          | 1        |
| 03764 | 2-Chloronaphthalene                                | 91-58-7                    | N.D.           | 39.                | ug/kg          | 1        |
| 03765 | Acenaphthylene                                     | 208-96-8                   | N.D.           | 39.                | ug/kg          | 1        |
| 03766 | Dimethylphthalate                                  | 131-11-3                   | N.D.           | 80.                | ug/kg          | 1        |
| 04690 | 2-Methylphenol                                     | 95-48-7                    | N.D.           | 39.                | ug/kg          | 1        |
| 04691 | 2,2'-oxybis(1-Chloropropane)                       | 108-60-1                   | N.D.           | 39.                | ug/kg          | · 1      |
| 04692 | 4-Methylphenol                                     | 106-44-5                   | N.D.           | 80.                | ug/kg          | 1        |
|       | 3-Methylphenol and 4-methylpher                    | nol cannot be r            | esolved under  | the                |                |          |
|       | chromatographic conditions used                    |                            |                |                    |                |          |
| 04693 | for 4-methylphenol represents t<br>4-Chloroaniline | ne combined to<br>106-47-8 | N.D.           | ompounas.<br>39.   | ug/kg          | 1        |
| 04694 | 2-Methylnaphthalene                                | 91-57-6                    | N.D.           | 39.                | ug/kg<br>ug/kg | 1        |
| 14695 | 2,4,5.Trichlorophenol                              | 95-95-4                    | N.D.<br>N.D.   | 39.                | ug/kg<br>ug/kg | 1        |
| 14073 | z, 4, 5. If Ichitot ophenor                        | JJ- JJ- <b>4</b>           | 14 . D .       | 37.                | ug/kg          | 7        |





#### AEPRINT

Page 3 of 5

Lancaster Laboratories Sample No. SW 3933069

Collected:11/01/2002 13:30 Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:35

Discard: 12/26/2002

(3-4')7GP-16 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

Drv

34716 SDG#: RAR01-07

|                |                                                                                              |                           |              | Dry                |       |          |
|----------------|----------------------------------------------------------------------------------------------|---------------------------|--------------|--------------------|-------|----------|
| CAT            |                                                                                              |                           | Dry          | Method             |       | Dilution |
| No.            | Analysis Name                                                                                | CAS Number                | Result       | Detection<br>Limit | Units | Factor   |
| 04696          | 2-Nitroaniline                                                                               | 88-74-4                   | N.D.         | 39.                | ug/kg | 1        |
| 04689          | TCL SW846 Semivolatiles/Soil                                                                 |                           |              |                    |       |          |
| 01191          | Acenaphthene                                                                                 | 83-32-9                   | N.D.         | 39.                | ug/kg | 1        |
| 01192          | 4-Nitrophenol                                                                                | 100-02-7                  | N.D.         | 200.               | ug/kg | 1        |
| 01193          | 2,4-Dinitrotoluene                                                                           | 121-14-2                  | N.D.         | 80.                | ug/kg | 1        |
| 11194          | Pentachlorophenol                                                                            | 87-86-5                   | N.D.         | 200.               | ug/kg | 1        |
| 01195          | Pyrene                                                                                       | 129-00-0                  | N.D.         | 39.                | ug/kg | 1        |
| 03750          | 2,4-Dinitrophenol                                                                            | 51-28-5                   | N.D.         | 800.               | ug/kg | 1        |
| 03751          | 4,6-Dinitro-2-methylphenol                                                                   | 534-52-1                  | N.D.         | 200.               | ug/kg | 1        |
| 03767          | 2,6-Dinitrotoluene                                                                           | 606-20-2                  | N.D.         | 39.                | ug/kg | 1        |
| 03768          | Fluorene                                                                                     | 86-73-7                   | N.D.         | 39.                | ug/kg | 1        |
| 03769          | 4-Chlorophenyl-phenylether                                                                   | 7005-72-3                 | N.D.         | 39.                | ug/kg | 1        |
| 03770          | Diethylphthalate                                                                             | 84-66-2                   | N.D.         | 80.                | ug/kg | 1        |
| 03772          | N-Nitrosodiphenylamine                                                                       | 86-30-6                   | N.D.         | 39.                | ug/kg | 1        |
|                | N-nitrosodiphenylamine decompo<br>The result reported for N-nitr<br>total of both compounds. |                           | _            |                    |       |          |
| 03773          | 4-Bromophenyl-phenylether                                                                    | 101-55-3                  | N.D.         | 39.                | ug/kg | 1        |
| 03774          | Hexachlorobenzene                                                                            | 118-74-1                  | N.D.         | 39.                | ug/kg | . 1      |
| 03775          | Phenanthrene                                                                                 | 85-01-8                   | N.D.         | 39.                | ug/kg | 1        |
| 03776          | Anthracene                                                                                   | 120-12-7                  | N.D.         | 39.                | ug/kg | 1        |
| 03777          | Di-n-butylphthalate                                                                          | 84-74-2                   | N.D.         | 80.                | ug/kg | 1        |
| 03778          | Fluoranthene                                                                                 | 206-44-0                  | N.D.         | 39.                | ug/kg | 1        |
| 03780          | Butylbenzylphthalate                                                                         | 85-68-7                   | N.D.         | 80.                | ug/kg | 1        |
| 03781          | Benzo(a) anthracene                                                                          | 56-55-3                   | N.D.         | 39.                | ug/kg | 1        |
| 03782          | Chrysene                                                                                     | 218-01-9                  | N.D.         | 39.                | ug/kg | 1        |
| 03783          | 3,3'-Dichlorobenzidine                                                                       | 91-94-1                   | N.D.         | 80.                | ug/kg | 1        |
| 03784          | bis(2-Ethylhexyl)phthalate                                                                   | 117-81-7                  | N.D.         | 80.                | ug/kg | 1        |
| 03785          | Di-n-octylphthalate                                                                          | 117-84-0                  | N.D.         | 80.                | ug/kg | 1        |
| 03786          | Benzo(b)fluoranthene                                                                         | 205-99-2                  | N.D.         | 39.                | ug/kg | 1        |
| 03787          | Benzo(k) fluoranthene                                                                        | 207-08-9                  | N.D.         | 39.                | ug/kg | 1        |
| 03788          | Benzo(a)pyrene                                                                               | 50-32-8                   | N.D.         | 39.                | ug/kg | 1        |
| 03 <b>7</b> 89 | Indeno(1,2,3-cd)pyrene                                                                       | <b>19</b> 3- <b>3</b> 9-5 | <b>N</b> .D. | 39.                | ug/kg | 1        |
| 03790          | Dibenz(a,h)anthracene                                                                        | 53 - 70 - 3               | N.D.         | 39.                | ug/kg | 1        |
| 3791           | Benzo(g,h,i)perylene                                                                         | 191-24-2                  | N.D.         | 39.                | ug/kg | 1        |
|                |                                                                                              |                           |              |                    |       |          |



Page 4 of 5

Lancaster Laboratories Sample No. SW 3933069

Collected:11/01/2002 13:30

Submitted: 11/02/2002 10:20

Reported: 11/25/2002 at 14:35

Discard: 12/26/2002

(3-4')7GP-16 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

Account Number: 11200

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

Dry

34716 SDG#: RAR01-07

| 03 m          |                           |                  | Dry    | Method    |                | Dilution |
|---------------|---------------------------|------------------|--------|-----------|----------------|----------|
| CAT<br>No.    | Analysis Name             | CAS Number       | Result | Detection | Units          | Factor   |
| NO.           | Analysis Name             | CAD Number       | Resure | Limit     | 01111          |          |
| 04697         | 3-Nitroaniline            | 99-09-2          | N.D.   | 80.       | ug/kg          | 1        |
| 04698         | Dibenzofuran              | 132-64-9         | N.D.   | 39.       | ug/kg          | 1        |
| 04700         | 4-Nitroaniline            | 100-01-6         | N.D.   | 80.       | ug/kg          | 1        |
| 04702         | Carbazole                 | 86-74-8          | N.D.   | 39.       | ug/kg          | 1        |
|               |                           |                  |        |           |                |          |
| 06292         | TCL by 8260 (soil)        |                  |        |           |                |          |
|               |                           |                  |        |           |                |          |
| )5444         | Chloromethane             | 74-87-3          | N.D.   | 2.        | ug/kg          | 0.84     |
| 05445         | Vinyl Chloride            | 75-01-4          | N.D.   | 1.        | ug/kg          | 0.84     |
| 05446         | Bromomethane              | 74-83-9          | N.D.   | 2.        | ug/kg          | 0.84     |
| 05447         | Chloroethane              | 75-00-3          | N.D.   | 2.        | ug/kg          | 0.84     |
| 05449         | 1,1-Dichloroethene        | 75-35-4          | 1. J   | 1.        | ug/kg          | 0.84     |
| 05450         | Methylene Chloride        | 75-09-2          | N.D.   | 2.        | ug/kg          | 0.84     |
| 05451         | trans-1,2-Dichloroethene  | 156-60-5         | N.D.   | 1.        | ug/kg          | 0.84     |
| 05452         | 1,1-Dichloroethane        | 75-34-3          | N.D.   | 1.        | ug/kg          | 0.84     |
| 05454         | cis-1,2-Dichloroethene    | 156-59-2         | N.D.   | 1.        | ug/kg          | 0.84     |
| 05455         | Chloroform                | 67-66-3          | N.D.   | 1.        | ug/kg          | 0.84     |
| 05457         | 1,1,1-Trichloroethane     | 71-55-6          | N.D.   | 1.        | ug/kg          | 0.84     |
| 05458         | Carbon Tetrachloride      | 56-23-5          | N.D.   | 1.        | ug/kg          | 0.84     |
| 05460         | Benzene                   | 71-43-2          | N.D.   | 1.        | ug/kg          | 0.84     |
| 05461         | 1,2-Dichloroethane        | 107-06-2         | N.D.   | 1.        | ug/kg          | 0.84     |
| 05462         | Trichloroethene           | 79-01-6          | N.D.   | 1.        | ug/kg          | 0.84     |
| 05463         | 1,2-Dichloropropane       | 78- <b>87-</b> 5 | N.D.   | 1.        | ug/kg          | 0.84     |
| 05465         | Bromodichloromethane      | 75-27-4          | N.D.   | 1.        | ug/kg          | 0.84     |
| 05466         | Toluene                   | 108-88-3         | N.D.   | 1.        | ug/kg          | 0.84     |
| 05467         | 1,1,2-Trichloroethane     | 79-00-5          | N.D.   | 1.        | ug/kg          | 0.84     |
| 05468         | Tetrachloroethene         | 127-18-4         | N.D.   | 1.        | ug/kg          | 0.84     |
| 05470         | Dibromochloromethane      | 124-48-1         | N.D.   | 1.        | ug/kg          | 0.84     |
| 05472         | Chlorobenzene             | 108-90-7         | N.D.   | 1.        | ug/ <b>k</b> g | 0.84     |
| 05474         | Ethylbenzene              | 100-41-4         | N.D.   | 1.        | ug/kg          | 0.84     |
| 05477         | Styrene                   | 100-42-5         | N.D.   | 1.        | ug/kg          | 0.84     |
| 05478         | Bromoform                 | 75-25-2          | N.D.   | 1.        | ug/kg          | 0.84     |
| 05480         | 1,1,2,2-Tetrachloroethane | 79-34-5          | N.D.   | 1.        | ug/kg          | 0.84     |
| 0629 <b>3</b> | Acetone                   | 67-64-1          | N.D.   | 7.        | ug/kg          | 0.84     |
| 06294         | Carbon Disulfide          | 75-15-0          | N.D.   | 1.        | ug/kg          | 0.84     |
| 06296         | 2-But anone               | 78-93-3          | N.D.   | 4.        | ug/kg          | 0.84     |
| )6297         | trans-1,3-Dichloropropene | 10061-02-6       | N.D.   | 1.        | ug/kg          | 0.84     |





Page 5 of 5

Lancaster Laboratories Sample No. SW 3933069

Collected:11/01/2002 13:30

Account Number: 11200

Submitted: 11/02/2002 10:20

Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:35

2206 South Main Street Blacksburg VA 24060

Discard: 12/26/2002

(3-4')7GP-16 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

34716 SDG#: RAR01-07

| CAT   |                         |            | Dry    | Method             |       | Dilution |  |
|-------|-------------------------|------------|--------|--------------------|-------|----------|--|
| No.   | Analysis Name           | CAS Number | Result | Detection<br>Limit | Units | Factor   |  |
| 06298 | cis-1,3-Dichloropropene | 10061-01-5 | N.D.   | 1.                 | ug/kg | 0.84     |  |
| 06299 | 4-Methyl-2-pentanone    | 108-10-1   | N.D.   | 4.                 | ug/kg | 0.84     |  |
| 06300 | 2-Hexanone              | 591~78-6   | N.D.   | 4.                 | ug/kg | 0.84     |  |
| 06301 | Xylene (Total)          | 1330-20-7  | N.D.   | 1.                 | ug/kg | 0.84     |  |
|       |                         |            |        |                    |       |          |  |

#### Laboratory Chronicle

| CAT           |                                  | -                  |        | Analysis         |                   | Dilution |
|---------------|----------------------------------|--------------------|--------|------------------|-------------------|----------|
| No.           | Analysis Name                    | Method             | Trial# | Date and Time    | Analyst           | Factor   |
| 00111         | Moisture                         | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer | 1        |
| 01225         | TCL Pesticides in Solids         | SW-846 8081A/8082  | 1      | 11/06/2002 04:49 | Douglas D Seitz   | 1        |
| 04688         | TCL SW846 Semivolatiles Soil     | SW-846 8270C       | 1      | 11/06/2002 10:31 | Brian K Graham    | 1        |
| 04689         | TCL SW846<br>Semivolatiles/Soil  | SW-846 8270C       | . 1    | 11/06/2002 10:31 | Brian K Graham    | 1        |
| 06292         | TCL by 8260 (soil)               | SW-846 8260B       | 1      | 11/05/2002 22:19 | Ryan V Nolt       | 0.84     |
| 00381         | BNA Soil Extraction              | SW-846 3550B       | 1      | 11/05/2002 17:40 | Amy M Strocko     | 1        |
| 00819         | Solid Sample Pesticide Extract   | SW-846 3550B       | 1      | 11/05/2002 00:30 | Darin P Wagner    | 1        |
| 08389         | Low/High Encore Prep<br>Tracking | SW-846 5035        | 1      | 11/05/2002 15:21 | Medina A Long     | n.a.     |
| 08389         | Low/High Encore Prep<br>Tracking | SW-846 5035        | 2      | 11/02/2002 23:28 | Medina A Long     | n.a.     |
| 0838 <b>9</b> | Low/High Encore Prep<br>Tracking | SW-846 5035        | 3      | 11/02/2002 23:29 | Medina A Long     | n.a.     |



Page 1 of 5

Lancaster Laboratories Sample No. SW 3933070

Collected:11/01/2002 13:45

Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:35 Draper Aden Associates, Inc.

Discard: 12/26/2002

2206 South Main Street Blacksburg VA 24060

Dry

(3-4')7GP-4 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

3474- SDG#: RAR01-08

|       |                                |                |                  | 21        |       |          |
|-------|--------------------------------|----------------|------------------|-----------|-------|----------|
| CAT   |                                |                | Dry              | Method    |       | Dilution |
| No.   | Analysis Name                  | CAS Number     | Result           | Detection | Units | Factor   |
|       | _                              |                |                  | Limit     | _     | _        |
| 00111 | Moisture                       | n.a.           | 14.7             | 0.50      | 8     | 1        |
|       | "Moisture" represents the loss |                | •                |           |       |          |
|       | 103 - 105 degrees Celsius. The | moisture resul | t reported above | is on an  |       |          |
|       | as-received basis.             |                |                  |           |       |          |
| 01225 | TCL Pesticides in Solids       |                |                  |           |       |          |
| 0200  | 132 13301-4 131-4              |                |                  |           |       |          |
| 1218  | Gamma BHC - Lindane            | 58-89-9        | N.D.             | 0.20      | ug/kg | 1        |
| 01219 | Heptachlor                     | 76-44-8        | N.D.             | 0.20      | ug/kg | 1        |
| 01220 | Aldrin                         | 309-00-2       | N.D.             | 0.20      | ug/kg | 1        |
| 01221 | p,p-DDT                        | 50-29-3        | N.D.             | 0.42      | ug/kg | 1        |
| 01222 | Dieldrin                       | 60-57-1        | N.D.             | 0.39      | ug/kg | 1        |
| 01223 | Endrin                         | 72-20-8        | N.D.             | 0.41      | ug/kg | 1        |
| 01859 | Methoxychlor                   | 72-43-5        | N.D.             | 4.7       | ug/kg | 1        |
| 01981 | Alpha BHC                      | 319-84-6       | N.D.             | 0.20      | ug/kg | 1        |
| 01982 | Beta BHC                       | 319-85-7       | N.D.             | 0.20      | ug/kg | 1        |
| 01983 | Delta BHC                      | 319-86-8       | N.D.             | 0.20      | ug/kg | 1        |
| 01984 | Heptachlor Epoxide             | 1024-57-3      | N.D.             | 0.20      | ug/kg | 1        |
| 01985 | p,p-DDE                        | 72-55-9        | N.D.             | 0.39      | ug/kg | 1        |
| 01986 | p,p-DDD                        | 72-54-8        | N.D.             | 0.39      | ug/kg | 1        |
| 01988 | Toxaphene                      | 8001-35-2      | N.D.             | 13.       | ug/kg | 1        |
| 01989 | Endosulfan I                   | 959-98-8       | N.D.             | 0.20      | ug/kg | 1        |
| 01990 | Endosulfan II                  | 33213-65-9     | N.D.             | 0.39      | ug/kg | 1        |
| 01991 | Endosulfan Sulfate             | 1031-07-8      | N.D.             | 0.39      | ug/kg | 1        |
| 01992 | Endrin Aldehyde                | 7421-93-4      | N.D.             | 1.2       | ug/kg | 1        |
| 01993 | PCB-1016                       | 12674-11-2     | N.D.             | 5.6       | ug/kg | 1        |
| 01994 | PCB-1221                       | 11104-28-2     | N.D.             | 12.       | ug/kg | 1        |
| 01995 | PCB-1232                       | 11141-16-5     | N.D.             | 5.0       | ug/kg | 1        |
| 01996 | PCB-1242                       | 53469-21-9     | N.D.             | 5.9       | ug/kg | 1        |
| 01997 | PCB-1248                       | 12672-29-6     | N.D.             | 5.7       | ug/kg | 1        |
| 01998 | PCB-1254                       | 11097-69-1     | N.D.             | 6.7       | ug/kg | 1        |
| 01999 | PCB-1260                       | 11096-82-5     | N.D.             | 5.2       | ug/kg | 1        |
| 03017 | Endrin Ketone                  | 53494-70-5     | <b>N</b> .D.     | 0.39      | ug/kg | 1        |
| 03025 | Alpha Chlordane                | 5103-71-9      | N.D.             | 0.20      | ug/kg | 1        |
| 03026 | Gamma Chlordane                | 5103-74-2      | N.D.             | 0.20      | ug/kg | 1        |
|       |                                |                |                  |           |       |          |

Heptachlor was detected in the method blank above the method detection







Page 2 of 5

Lancaster Laboratories Sample No. SW 3933070

Collected:11/01/2002 13:45

Account Number: 11200

Submitted: 11/02/2002 10:20

Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:35

2206 South Main Street Blacksburg VA 24060

Dry

Discard: 12/26/2002

(3-4')7GP-4 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

3474- SDG#: RAR01-08

| CAT   |                                                                                                   |                | Dry               | Method             |       | Dilution |
|-------|---------------------------------------------------------------------------------------------------|----------------|-------------------|--------------------|-------|----------|
| No.   | Analysis Name                                                                                     | CAS Number     | Result            | Detection<br>Limit | Units | Factor   |
|       | limit. No heptachlor was detectoreported.                                                         | ed in the samp | le, therefore the | data is            |       |          |
| 04688 | TCL SW846 Semivolatiles Soil                                                                      |                |                   |                    |       |          |
| 01185 | Phenol                                                                                            | 108-95-2       | N.D.              | 39.                | ug/kg | 1        |
| 01186 | 2-Chlorophenol                                                                                    | 95-57-8        | N . D .           | 39.                | ug/kg | 1        |
| 01187 | 1,4-Dichlorobenzene                                                                               | 106-46-7       | N.D.              | 39.                | ug/kg | 1        |
| 11188 | N-Nitroso-di-n-propylamine                                                                        | 621-64-7       | N.D.              | 39.                | ug/kg | 1        |
| 01189 | 1,2,4-Trichlorobenzene                                                                            | 120-82-1       | N.D.              | 39.                | ug/kg | 1        |
| 01190 | 4-Chloro-3-methylphenol                                                                           | 59~50-7        | N.D.              | 79.                | ug/kg | 1        |
| 03746 | 2-Nitrophenol                                                                                     | 88-75-5        | N.D.              | 39.                | ug/kg | 1        |
| 03747 | 2,4-Dimethylphenol                                                                                | 105-67-9       | N.D.              | 39.                | ug/kg | 1        |
| 03748 | 2,4-Dichlorophenol                                                                                | 120-83-2       | N.D.              | 39.                | ug/kg | 1        |
| 03749 | 2,4,6-Trichlorophenol                                                                             | 88-06-2        | N.D.              | 39.                | ug/kg | 1        |
| 03753 | bis(2-Chloroethyl)ether                                                                           | 111-44-4 .     | N.D.              | 39.                | ug/kg | 1        |
| 03754 | 1,3-Dichlorobenzene                                                                               | 541-73-1       | N.D.              | 39.                | ug/kg | 1        |
| 03755 | 1,2-Dichlorobenzene                                                                               | 95-50-1        | N.D.              | 39.                | ug/kg | . 1      |
| 03757 | Hexachloroethane                                                                                  | 67-72-1        | N.D.              | 39.                | ug/kg | 1        |
| 03758 | Nitrobenzene                                                                                      | 98-95-3        | N.D.              | 39.                | ug/kg | 1        |
| 03759 | Isophorone                                                                                        | 78-59-1        | N.D.              | 39.                | ug/kg | 1        |
| 03760 | bis(2-Chloroethoxy)methane                                                                        | 111-91-1       | N.D.              | <b>39.</b>         | ug/kg | 1.       |
| 03761 | Naphthalene                                                                                       | 91-20-3        | N.D.              | 39.                | ug/kg | 1        |
| 03762 | Hexachlorobutadiene                                                                               | 87-68-3        | N.D.              | 79.                | ug/kg | 1        |
| 03763 | Hexachlorocyclopentadiene                                                                         | 77-47-4        | N.D.              | 200.               | ug/kg | 1        |
| 03764 | 2-Chloronaphthalene                                                                               | 91-58-7        | N.D.              | 39.                | ug/kg | 1        |
| 03765 | Acenaphthylene                                                                                    | 208-96-8       | N.D.              | 39.                | ug/kg | 1        |
| 03766 | Dimethylphthalate                                                                                 | 131-11-3       | N.D.              | 79.                | ug/kg | 1        |
| 04690 | 2-Methylphenol                                                                                    | 95-48-7        | N.D.              | 39.                | ug/kg | 1        |
| 04691 | 2,2'-oxybis(1-Chloropropane)                                                                      | 108-60-1       | N.D.              | 39.                | ug/kg | 1        |
| 04692 | 4-Methylphenol                                                                                    | 106-44-5       | N.D.              | 79.                | ug/kg | 1        |
|       | 3-Methylphenol and 4-methylphenochromatographic conditions used for 4-methylphenol represents the | for sample an  | alysis. The resul | t reported         |       |          |
| 04693 | 4-Chloroaniline                                                                                   | 106-47-8       | N.D.              | <b>3</b> 9.        | ug/kg | 1        |
| 04694 | 2-Methylnaphthalene                                                                               | 91-57-6        | N.D.              | 39.                | ug/kg | 1        |
| 04695 | 2,4,5-Trichlorophenol                                                                             | 95 - 95 - 4    | N.D.              | 39.                | ug/kg | 1        |







Page 3 of 5

Lancaster Laboratories Sample No. SW 3933070

Collected:11/01/2002 13:45

Account Number: 11200

Submitted: 11/02/2002 10:20

Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:35

2206 South Main Street Blacksburg VA 24060

Discard: 12/26/2002

(3-4')7GP-4 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

SDG#: RAR01-08 3474-

| 31/1                  | BBOW: RINGT OF                 |                            |                 | Dry                |       |          |
|-----------------------|--------------------------------|----------------------------|-----------------|--------------------|-------|----------|
| CAT                   |                                |                            | Dry             | Method             |       | Dilution |
| No.                   | Analysis Name                  | CAS Number                 | Result          | Detection<br>Limit | Units | Factor   |
| 04696                 | 2-Nitroaniline                 | 88-74-4                    | N.D.            | 39.                | ug/kg | 1        |
| 04689                 | TCL SW846 Semivolatiles/Soil   |                            |                 |                    |       |          |
| 01191                 | Acenaphthene                   | 83-32-9                    | N.D.            | 39.                | ug/kg | 1        |
| 01192                 | 4-Nitrophenol                  | 100-02-7                   | N.D.            | 200.               | ug/kg | 1        |
| 01193                 | 2,4-Dinitrotoluene             | 121-14-2                   | N.D.            | 79.                | ug/kg | 1        |
| 11194                 | Pentachlorophenol              | 87-86-5                    | N.D.            | 200.               | ug/kg | 1        |
| )1195                 | Pyrene                         | 129-00-0                   | N.D.            | 39.                | ug/kg | 1        |
| 03750                 | 2,4-Dinitrophenol              | 51-28-5                    | N.D.            | 790.               | ug/kg | 1        |
| 03751                 | 4,6-Dinitro-2-methylphenol     | 534-52-1                   | N.D.            | 200.               | ug/kg | 1        |
| 03767                 | 2,6-Dinitrotoluene             | 606-20-2                   | N.D.            | 39.                | ug/kg | 1        |
| 03768                 | Fluorene                       | 86-73-7                    | N.D.            | 39.                | ug/kg | 1        |
| 03769                 | 4-Chlorophenyl-phenylether     | 7005-72-3                  | N.D.            | 39.                | ug/kg | 1        |
| 03770                 | Diethylphthalate               | 84-66-2                    | N.D.            | 79.                | ug/kg | 1        |
| 03772                 | N-Nitrosodiphenylamine         | 86-30-6                    | N.D.            | 39.                | ug/kg | 1        |
|                       | N-nitrosodiphenylamine decompo | ses in the GC i            | inlet forming o | diphenylamine.     |       |          |
|                       | The result reported for N-nitr | osodiphenylamin            | ne represents t | the combined       |       |          |
|                       | total of both compounds.       |                            |                 |                    |       |          |
| <b>0</b> 377 <b>3</b> | 4-Bromophenyl-phenylether      | 101-55-3                   | N.D.            | 39.                | ug/kg | 1        |
| 03774                 | Hexachlorobenzene              | 118-74-1                   | N.D.            | 39.                | ug/kg | 1        |
| 03775                 | Phenanthrene                   | 85-01-8                    | N.D.            | 39.                | ug/kg | 1        |
| 03776                 | Anthracene                     | 120-12-7                   | N.D.            | 39.                | ug/kg | 1        |
| 03777                 | Di-n-butylphthalate            | 84-74-2                    | N.D.            | 79.                | ug/kg | 1        |
| 03778                 | Fluoranthene                   | 206-44-0                   | N.D.            | <b>3</b> 9.        | ug/kg | 1        |
| 03780                 | Butylbenzylphthalate           | 85-68-7                    | N.D.            | 79.                | ug/kg | . 1      |
| 03781                 | Benzo(a)anthracene             | 56-55-3                    | N.D.            | 39.                | ug/kg | 1        |
| 03782                 | Chrysene                       | 218-01-9                   | N.D.            | 39.                | ug/kg | 1        |
| 03783                 | 3,3'-Dichlorobenzidine         | 91-94-1                    | N.D.            | 79.                | ug/kg | 1        |
| 03784                 | bis(2-Ethylhexyl)phthalate     | 117-81-7                   | N.D.            | 79.                | ug/kg | 1        |
| 03785                 | Di-n-octylphthalate            | 117-84-0                   | N.D.            | 79.                | ug/kg | 1        |
| 03786                 | Benzo(b) fluoranthene          | 205-99-2                   | N.D.            | 39.                | ug/kg | 1        |
| 03787                 | Benzo(k)fluoranthene           | 207-08-9                   | N.D.            | 39.                | ug/kg | 1        |
| 03788                 | Benzo(a)pyrene                 | 50-32-8                    | N.D.            | 39.                | ug/kg | 1        |
| 03789                 | Indeno(1,2,3-cd)pyrene         | 19 <b>3</b> -3 <b>9</b> -5 | N.D.            | 39.                | ug/kg | 1        |
| 03790                 | Dibenz(a,h)anthracene          | 53-70-3                    | N.D.            | 39.                | ug/kg | 1        |
| 03791                 | Benzo(g,h,i)perylene           | 191-24-2                   | N.D.            | 39.                | ug/kg | 1        |
|                       |                                |                            |                 |                    |       |          |







Page 4 of 5

Lancaster Laboratories Sample No. SW 3933070

Collected:11/01/2002 13:45

Account Number: 11200

Submitted: 11/02/2002 10:20

Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:35

2206 South Main Street Blacksburg VA 24060

Discard: 12/26/2002

(3-4')7GP-4 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

3474- SDG#: RAR01-08

| J = / = | DDG#. Idator 00           |                 |        | Dry                |                |          |
|---------|---------------------------|-----------------|--------|--------------------|----------------|----------|
| CAT     |                           |                 | Dry    | Method             |                | Dilution |
| No.     | Analysis Name             | CAS Number      | Result | Detection<br>Limit | Units          | Factor   |
| 04697   | 3-Nitroaniline            | 99-09-2         | N.D.   | 79.                | ug/kg          | 1        |
| 04698   | Dibenzofuran              | 132-64-9        | N.D.   | 39.                | ug/kg          | 1        |
| 04700   | 4-Nitroaniline            | 100-01-6        | N.D.   | 79.                | ug/kg          | 1        |
| 04702   | Carbazole                 | 86-74-8         | N.D.   | 39.                | ug/kg          | 1        |
| 06292   | TCL by 8260 (soil)        |                 |        |                    |                |          |
| 25444   | Chloromethane             | 74-87-3         | N.D.   | 2.                 | ug/kg          | 0.86     |
| J5445   | Vinyl Chloride            | 75-01-4         | N.D.   | 1.                 | ug/kg          | 0.86     |
| 05446   | Bromomethane              | 74-83-9         | N.D.   | 2.                 | ug/kg          | 0.86     |
| 05447   | Chloroethane              | 75-00-3         | N.D.   | 2.                 | ug/kg          | 0.86     |
| 05449   | 1,1-Dichloroethene        | 75-35-4         | N.D.   | 1.                 | ug/kg          | 0.86     |
| 05450   | Methylene Chloride        | 75-09-2         | N.D.   | 2.                 | ug/kg          | 0.86     |
| 05451   | trans-1,2-Dichloroethene  | 156-60-5        | N.D.   | 1.                 | ug/kg          | 0.86     |
| 05452   | 1,1-Dichloroethane        | 75-34-3         | N.D.   | 1.                 | ug/kg          | 0.86     |
| 05454   | cis-1,2-Dichloroethene    | 156-59-2        | N.D.   | 1.                 | ug/kg          | 0.86     |
| 05455   | Chloroform                | 67-66-3         | N.D.   | 1.                 | ug/kg          | 0.86     |
| 05457   | 1,1,1-Trichloroethane     | 71-55-6         | N.D.   | 1.                 | ug/kg          | 0.86     |
| 05458   | Carbon Tetrachloride      | 56-23-5         | N.D.   | 1.                 | ug/kg          | 0.86     |
| 05460   | Benzene                   | 71-43-2         | N.D.   | 1.                 | ug/kg          | 0.86     |
| 05461   | 1,2-Dichloroethane        | 107-06-2        | N.D.   | 1.                 | ug/kg          | 0.86     |
| 05462   | Trichloroethene           | 79-01-6         | N.D.   | 1.                 | ug/kg          | 0.86     |
| 05463   | 1,2-Dichloropropane       | 78-87-5         | N.D.   | 1.                 | ug/kg          | 0.86     |
| 05465   | Bromodichloromethane      | 75-27-4         | N.D.   | 1.                 | ug/kg          | 0.86     |
| 05466   | Toluene                   | 108-88-3        | N.D.   | 1.                 | ug/kg          | 0.86     |
| 05467   | 1,1,2-Trichloroethane     | 79-00-5         | N.D.   | 1.                 | ug/kg          | 0.86     |
| 05468   | Tetrachloroethene         | 127-18-4        | N.D.   | 1.                 | ug/kg          | 0.86     |
| 05470   | Dibromochloromethane      | 124-48-1        | N.D.   | 1.                 | ug/kg          | 0.86     |
| 05472   | Chlorobenzene             | 108-90-7        | N.D.   | 1.                 | ug/kg          | 0.86     |
| 05474   | Ethylbenzene              | 100-41-4        | N.D.   | 1.                 | ug/kg          | 0.86     |
| 05477   | Styrene                   | 100-42-5        | N.D.   | 1.                 | ug/kg          | 0.86     |
| 05478   | Bromoform                 | 75-25-2         | N.D.   | 1.                 | ug/kg          | 0.86     |
| 05480   | 1,1,2,2-Tetrachloroethane | 79-34-5         | N.D.   | 1.                 | ug/kg          | 0.86     |
| 06293   | Acetone                   | 67-64-1         | N.D.   | 7.                 | ug/kg          | 0.86     |
| 06294   | Carbon Disulfide          | <b>7</b> 5-15-0 | N.D.   | 1.                 | ug/ <b>k</b> g | 0.86     |
| 06296   | 2-But anone               | 78-93-3         | N.D.   | 4.                 | ug/kg          | 0.86     |
| 76297   | trans-1,3-Dichloropropene | 10061-02-6      | N.D.   | 1.                 | ug/kg          | 0.86     |

211





Page 5 of 5

Lancaster Laboratories Sample No. SW 3933070

Collected:11/01/2002 13:45 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:35 2206 South Main Street Discard: 12/26/2002 Blacksburg VA 24060

(3-4')7GP-4 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

3474- SDG#: RAR01-08

|       |                         |            |        | Dry       |       |          |
|-------|-------------------------|------------|--------|-----------|-------|----------|
| CAT   |                         |            | Dry    | Method    |       | Dilution |
| No.   | Analysis Name           | CAS Number | Result | Detection | Units | Factor   |
|       |                         |            |        | Limit     |       |          |
| 06298 | cis-1,3-Dichloropropene | 10061-01-5 | N.D.   | 1.        | ug/kg | 0.86     |
| 06299 | 4-Methyl-2-pentanone    | 108-10-1   | N.D.   | 4.        | ug/kg | 0.86     |
| 06300 | 2-Hexanone              | 591-78-6   | N.D.   | 4.        | ug/kg | 0.86     |
| 06301 | Xylene (Total)          | 1330-20-7  | N.D.   | 1.        | ug/kg | 0.86     |

Laboratory Chronicle

| CAT   |                                   | -                  | •      | Analysis         |                   | Dilution      |
|-------|-----------------------------------|--------------------|--------|------------------|-------------------|---------------|
| No.   | Analysis Name                     | Method             | Trial# | Date and Time    | Analyst           | <b>Factor</b> |
| 00111 | Moisture                          | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer | 1             |
| 01225 | TCL Pesticides in Solids          | SW-846 8081A/8082  | 1      | 11/06/2002 05:10 | Douglas D Seitz   | 1             |
| 04688 | TCL SW846 Semivolatiles<br>Soil   | SW-846 8270C       | 1      | 11/06/2002 11:25 | Brian K Graham    | 1             |
| 04689 | TCL SW846<br>Semivolatiles/Soil   | SW-846 8270C       | 1      | 11/06/2002 11:25 | Brian K Graham    | 1             |
| 06292 | TCL by 8260 (soil)                | SW-846 8260B       | 1      | 11/05/2002 22:52 | Ryan V Nolt       | 0.86          |
| 00381 | BNA Soil Extraction               | SW-846 3550B       | 1      | 11/05/2002 17:40 | Amy M Strocko     | 1             |
| 00819 | Solid Sample Pesticide<br>Extract | SW-846 3550B       | 1      | 11/05/2002 00:30 | Darin P Wagner    | 1             |
| 08389 | Low/High Encore Prep<br>Tracking  | SW-846 5035        | 1      | 11/05/2002 15:20 | Medina A Long     | n.a.          |
| 08389 | Low/High Encore Prep<br>Tracking  | SW-846 5035        | 2      | 11/02/2002 23:26 | Medina A Long     | n.a.          |
| 08389 | Low/High Encore Prep<br>Tracking  | SW-846 5035        | 3      | 11/02/2002 23:27 | Medina A Long     | n.a.          |





Page 1 of 4

#### Lancaster Laboratories Sample No. SW 3933074

Collected:10/31/2002 13:10

Account Number: 11200

Submitted: 11/02/2002 10:20

Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:36

2206 South Main Street Blacksburg VA 24060

Drv

Discard: 12/26/2002

(1-2')5GP-1 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

125GP SDG#: RAR01-12

|       |                                                                                        |                |                | nry                |       |          |
|-------|----------------------------------------------------------------------------------------|----------------|----------------|--------------------|-------|----------|
| CAT   |                                                                                        |                | Dry            | Method             |       | Dilution |
| No.   | Analysis Name                                                                          | CAS Number     | Result         | Detection<br>Limit | Units | Factor   |
| 00111 | Moisture                                                                               | n.a.           | 12.2           | 0.50               | 8     | 1        |
|       | "Moisture" represents the loss<br>103 - 105 degrees Celsius. The<br>as-received basis. | _              | -              |                    |       |          |
| 01225 | TCL Pesticides in Solids                                                               |                |                |                    |       |          |
| /1218 | Gamma BHC - Lindane                                                                    | 58-89-9        | N.D.           | 0.19               | ug/kg | 1        |
| 01219 | Heptachlor                                                                             | 76-44-8        | N.D.           | 0.19               | ug/kg | 1        |
| 01220 | Aldrin                                                                                 | 309-00-2       | N.D.           | 0.19               | ug/kg | 1        |
| 01221 | p,p-DDT                                                                                | 50-29-3        | N.D.           | 0.41               | ug/kg | 1        |
| 01222 | Dieldrin                                                                               | 60-57-1        | N.D.           | 0.38               | ug/kg | 1        |
| 01223 | Endrin                                                                                 | 72-20-8        | N.D.           | 0.40               | ug/kg | 1        |
| 01859 | Methoxychlor                                                                           | 72-43-5        | N.D.           | 4.6                | ug/kg | 1        |
| 01981 | Alpha BHC                                                                              | 319-84-6       | N.D.           | 0.19               | ug/kg | 1        |
| 01982 | Beta BHC                                                                               | 319-85-7       | N.D.           | 0.19               | ug/kg | 1        |
| 01983 | Delta BHC                                                                              | 319-86-8       | N.D.           | 0.19               | ug/kg | 1        |
| 01984 | Heptachlor Epoxide                                                                     | 1024-57-3      | N.D.           | 0.19               | ug/kg | 1        |
| 01985 | p,p-DDE                                                                                | 72-55-9        | N.D.           | 0.38               | ug/kg | 1        |
| 01986 | p,p-DDD                                                                                | 72-54-8        | N.D.           | 0.38               | ug/kg | 1        |
| 01988 | Toxaphene                                                                              | 8001-35-2      | N.D.           | 13.                | ug/kg | 1        |
| 01989 | Endosulfan I                                                                           | 959-98-8       | N.D.           | 0.19               | ug/kg | 1        |
| 01990 | Endosulfan II                                                                          | 33213-65-9     | N.D.           | 0.38               | ug/kg | 1        |
| 01991 | Endosulfan Sulfate                                                                     | 1031-07-8      | N.D.           | 0.38               | ug/kg | 1        |
| 01992 | Endrin Aldehyde                                                                        | 7421-93-4      | N.D.           | 1.1                | ug/kg | 1        |
| 01993 | PCB-1016                                                                               | 12674-11-2     | N.D.           | 5.5                | ug/kg | 1        |
| 01994 | PCB-1221                                                                               | 11104-28-2     | N.D.           | 11.                | ug/kg | 1        |
| 01995 | PCB-1232                                                                               | 11141-16-5     | N.D.           | 4.9                | ug/kg | 1        |
| 01996 | PCB-1242                                                                               | 53469-21-9     | N.D.           | 5.7                | ug/kg | 1        |
| 01997 | PCB-1248                                                                               | 12672-29-6     | N.D.           | 5.6                | ug/kg | 1        |
| 01998 | PCB-1254                                                                               | 11097-69-1     | N.D.           | 6.5                | ug/kg | 1        |
| 01999 | PCB-1260                                                                               | 11096-82-5     | N.D.           | 5.0                | ug/kg | 1        |
| 03017 | Endrin Ketone                                                                          | 53494-70-5     | N.D.           | 0.38               | ug/kg | 1        |
| 03025 | Alpha Chlordane                                                                        | 5103-71-9      | N.D.           | 0.19               | ug/kg | 1        |
| 03026 | Gamma Chlordane                                                                        | 5103-74-2      | 0.48 J         | 0.19               | ug/kg | 1        |
|       | Heptachlor was detected in the                                                         | method blank a | bove the metho | od detection       |       |          |





Page 2 of 4

#### Lancaster Laboratories Sample No. SW 3933074

Collected:10/31/2002 13:10

Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:36 Draper Aden Associates, Inc.

Discard: 12/26/2002

2206 South Main Street Blacksburg VA 24060

Dry

(1-2')5GP-1 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

125GP SDG#: RAR01-12

| CAT   |                                   |                | Dry               | Method    |                | Dilution |
|-------|-----------------------------------|----------------|-------------------|-----------|----------------|----------|
| No.   | Analysis Name                     | CAS Number     | Result            | Detection | Units          | Factor   |
|       |                                   |                |                   | Limit     |                |          |
|       | limit. No heptachlor was detected | ed in the samp | le, therefore the | data is   |                |          |
|       | reported.                         |                |                   |           |                |          |
|       |                                   |                |                   |           |                |          |
| 04688 | TCL SW846 Semivolatiles Soil      |                |                   |           |                |          |
| 01185 | Phenol                            | 108-95-2       | N.D.              | 38.       | ug/kg          | 1        |
| 01186 | 2-Chlorophenol                    | 95-57-8        | N.D.              | 38.       | uq/kq          | 1        |
| 01187 | 1,4-Dichlorobenzene               | 106-46-7       | N.D.              | 38.       | ug/kg          | 1        |
| 01188 | N-Nitroso-di-n-propylamine        | 621-64-7       | N.D.              | 38.       | uq/kq          | 1        |
| 01189 | 1,2,4-Trichlorobenzene            | 120-82-1       | N.D.              | 38.       | ug/kg          | 1        |
| 01190 | 4-Chloro-3-methylphenol           | 59-50-7        | N.D.              | 76.       | ug/kg          | 1        |
| 03746 | 2-Nitrophenol                     | 88-75-5        | N.D.              | 38.       | ug/kg<br>ug/kg | 1        |
| 03740 | 2,4-Dimethylphenol                | 105-67-9       | N.D.              | 38.       | ug/kg<br>ug/kg | 1        |
| 03747 | 2,4-Dichlorophenol                | 120-83-2       | N.D.              | 38.       | ug/kg          | 1        |
| 03748 | 2,4-bichiorophenol                | 88-06-2        | N.D.              | 38.       | ug/kg<br>ug/kg | 1        |
| 03753 | bis(2-Chloroethyl)ether           | 111-44-4       | N.D.              | 38.       | ug/kg          | 1        |
| 03754 | 1.3-Dichlorobenzene               | 541-73-1       | N.D.              | 38.       | ug/kg<br>ug/kg | 1        |
| 03755 | 1,2-Dichlorobenzene               | 95-50-1        | N.D.              | 38.       | ug/kg          | ı        |
|       | •                                 | 67-72-1        | N.D.              | 38.       | ug/kg<br>ug/kg | 1        |
| 03757 | Hexachloroethane                  |                |                   |           |                |          |
| 03758 | Nitrobenzene                      | 98-95-3        | N.D.              | 38.       | ug/kg          | 1        |
| 03759 | Isophorone                        | 78-59-1        | N.D.              | 38.       | ug/kg          | 1        |
| 03760 | bis(2-Chloroethoxy)methane        | 111-91-1       | N.D.              | 38.       | ug/kg          | 1        |
| 03761 | Naphthalene                       | 91-20-3        | N.D.              | 38.       | ug/kg          | 1        |
| 03762 | Hexachlorobutadiene               | 87-68-3        | N.D.              | 76.       | ug/kg          | 1        |
| 03763 | Hexachlorocyclopentadiene         | 77-47-4        | N.D.              | 190.      | ug/kg          | 1        |
| 03764 | 2-Chloronaphthalene               | 91-58-7        | N.D.              | 38.       | ug/kg          | 1        |
| 03765 | Acenaphthylene                    | 208-96-8       | N.D.              | 38.       | ug/kg          | 1        |
| 03766 | Dimethylphthalate                 | 131-11-3       | N.D.              | 76 .      | ug/kg          | 1        |
| 04690 | 2-Methylphenol                    | 95-48-7        | N.D.              | 38.       | ug/ <b>k</b> g | 1        |
| 04691 | 2,2'-oxybis(1-Chloropropane)      | 108-60-1       | N.D.              | 38.       | ug/kg          | 1        |
| 04692 | 4-Methylphenol                    | 106-44-5       | N.D.              | 76.       | ug/kg          | 1 .      |
|       | 3-Methylphenol and 4-methylpheno  | ol cannot be r | esolved under the |           |                |          |
|       | chromatographic conditions used   | _              | -                 | _         |                |          |
|       | for 4-methylphenol represents the |                | -                 |           |                |          |
| 04693 | 4-Chloroaniline                   | 106-47-8       | N.D.              | 38.       | ug/kg          | 1        |
| 04694 | 2-Methylnaphthalene               | 91-57-6        | N.D.              | 38.       | ug/kg          | 1        |
| 14695 | 2,4,5-Trichlorophenol             | 95-95-4        | N.D.              | 38.       | ug/kg          | 1        |

# Analysis Report





Page 3 of 4

Lancaster Laboratories Sample No. SW 3933074

Collected:10/31/2002 13:10 Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:36

Discard: 12/26/2002

(1-2')5GP-1 Grab Soil Sample HWMU-5 & HWMU-7 Investigation Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

| 125GP | SDG#: | RAR01 | -12 |
|-------|-------|-------|-----|
|-------|-------|-------|-----|

|                       |                                 |                  |                   | Dry         |                |          |
|-----------------------|---------------------------------|------------------|-------------------|-------------|----------------|----------|
| CAT                   |                                 |                  | Dry               | Method      |                | Dilution |
| No.                   | Analysis Name                   | CAS Number       | Result            | Detection   | Units          | Factor   |
|                       |                                 |                  |                   | Limit       |                |          |
| 04696                 | 2-Nitroaniline                  | 88-74-4          | N.D.              | 38.         | ug/kg          | 1        |
| 04689                 | TCL SW846 Semivolatiles/Soil    |                  |                   |             |                |          |
| 01191                 | Acenaphthene                    | 83-32-9          | N.D.              | 38.         | ug/kg          | 1        |
| 01192                 | 4-Nitrophenol                   | 100-02-7         | N.D.              | 190.        | ug/kg          | 1        |
| 01193                 | 2,4-Dinitrotoluene              | 121-14-2         | N.D.              | 76.         | ug/kg          | 1        |
| 01194                 | Pentachlorophenol               | 87-86-5          | N.D.              | 190.        | u <b>g/k</b> g | 1        |
| J1195                 | Pyrene                          | 129-00-0         | N.D.              | 38.         | ug/kg          | 1        |
| 03750                 | 2,4-Dinitrophenol               | 51-28-5          | N.D.              | 760.        | ug/kg          | 1        |
| 03751                 | 4,6-Dinitro-2-methylphenol      | 534-52-1         | N.D.              | 190.        | ug/kg          | 1        |
| 03767                 | 2,6-Dinitrotoluene              | 606-20-2         | N.D.              | 38.         | ug/kg          | 1        |
| 03768                 | Fluorene                        | 86-73-7          | N.D.              | 38.         | ug/kg          | 1        |
| 03769                 | 4-Chlorophenyl-phenylether      | 7005-72-3        | N.D.              | 38.         | ug/kg          | 1        |
| 03770                 | Diethylphthalate                | 84-66-2          | N.D.              | 76.         | ug/kg          | 1        |
| 03772                 | N-Nitrosodiphenylamine          | 86-30-6          | N.D.              | 38.         | ug/kg          | 1        |
|                       | N-nitrosodiphenylamine decompos | es in the GC i   | nlet forming dipl | nenylamine. |                |          |
|                       | The result reported for N-nitro |                  |                   |             |                |          |
|                       | total of both compounds.        |                  |                   |             |                |          |
| 03773                 | 4-Bromophenyl-phenylether       | 101-55-3         | N.D.              | 38.         | ug/kg          | 1 .      |
| 03774                 | Hexachlorobenzene               | 118-74-1         | N.D.              | 38.         | ug/kg          | 1        |
| <b>0</b> 377 <b>5</b> | Phenanthrene                    | 85-01-8          | N.D.              | 38.         | ug/ <b>k</b> g | 1        |
| 03776                 | Anthracene                      | 120-12-7         | N.D.              | 38.         | ug/kg          | 1        |
| 03777                 | Di-n-butylphthalate             | 84-74-2          | N.D.              | 76.         | ug/ <b>k</b> g | 1        |
| 03778                 | Fluoranthene                    | 206-44-0         | N.D.              | 38.         | ug/kg          | 1        |
| 03780                 | Butylbenzylphthalate            | 85-68-7          | N.D.              | 76.         | ug/kg          | 1        |
| 03781                 | Benzo(a) anthracene             | 56-55-3          | N.D.              | 38.         | ug/kg          | 1        |
| 03782                 | Chrysene                        | 218-01-9         | N.D.              | 38.         | ug/kg          | 1        |
| 03783                 | 3,3'-Dichlorobenzidine          | 91-94-1          | N.D.              | 76.         | ug/kg          | 1        |
| 03784                 | bis(2-Ethylhexyl)phthalate      | 117-81-7         | N.D.              | 76.         | ug/kg          | 1        |
| 03785                 | Di-n-octylphthalate             | 117-84-0         | N.D.              | 76.         | ug/kg          | 1        |
| 03786                 | Benzo(b) fluoranthene           | 205-99-2         | N.D.              | 38.         | ug/kg          | 1        |
| 03787                 | Benzo(k) fluoranthene           | 207-08-9         | N.D.              | 38.         | ug/kg          | 1        |
| 03788                 | Benzo(a)pyrene                  | 50-32-8          | N.D.              | 38.         | ug/kg          | 1        |
| 03789                 | Indeno(1,2,3-cd)pyrene          | 193-39-5         | N.D.              | 38.         | ug/kg          | 1        |
| 03790                 | Dibenz(a,h)anthracene           | 5 <b>3</b> -70-3 | N.D.              | 38.         | ug/kg          | 1        |
| 03791                 | Benzo(g,h,i)perylene            | 191-24-2         | N.D.              | 38.         | ug/kg          | 1        |
|                       |                                 |                  |                   |             |                |          |

## Analysis Report



PEPRINT

215

Page 4 of 4

Lancaster Laboratories Sample No. SW 3933074

Collected:10/31/2002 13:10

Account Number: 11200

Submitted: 11/02/2002 10:20

Reported: 11/25/2002 at 14:36

Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:36

2206 South Main Street Blacksburg VA 24060

Discard: 12/26/2002

(1-2')5GP-1 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

125GP SDG#: RAR01-12

|       |                |            |        | Dry       |       |               |
|-------|----------------|------------|--------|-----------|-------|---------------|
| CAT   |                |            | Dry    | Method    |       | Dilution      |
| No.   | Analysis Name  | CAS Number | Result | Detection | Units | <b>Factor</b> |
|       |                |            |        | Limit     |       |               |
| 04697 | 3-Nitroaniline | 99-09-2    | N.D.   | 76.       | ug/kg | 1             |
| 04698 | Dibenzofuran   | 132-64-9   | N.D.   | 38.       | ug/kg | 1             |
| 04700 | 4-Nitroaniline | 100-01-6   | N.D.   | 76.       | ug/kg | 1             |
| 04702 | Carbazole      | 86-74-8    | N.D.   | 38.       | ug/kg | 1             |

| CAT   |                          | •                  |        | Analysis         |                   | Dilution |
|-------|--------------------------|--------------------|--------|------------------|-------------------|----------|
| No.   | Analysis Name            | Method             | Trial# | Date and Time    | Analyst           | Factor   |
| 00111 | Moisture                 | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer | 1        |
| 01225 | TCL Pesticides in Solids | SW-846 8081A/8082  | 1      | 11/06/2002 05:31 | Douglas D Seitz   | 1        |
| 04688 | TCL SW846 Semivolatiles  | SW-846 8270C       | 1      | 11/06/2002 12:18 | Brian K Graham    | 1        |
|       | Soil                     |                    |        |                  |                   |          |
| 04689 | TCL SW846                | SW-846 8270C       | 1      | 11/06/2002 12:18 | Brian K Graham    | 1        |
|       | Semivolatiles/Soil       |                    |        |                  |                   |          |
| 00381 | BNA Soil Extraction      | SW-846 3550B       | 1      | 11/05/2002 17:40 | Amy M Strocko     | 1        |
| 00819 | Solid Sample Pesticide   | SW-846 3550B       | 1      | 11/05/2002 00:30 | Darin P Wagner    | 1        |
|       | Extract                  |                    |        |                  |                   |          |





### PEPAINT

Page 1 of 4

Lancaster Laboratories Sample No. SW 3933075

Collected:10/31/2002 13:10 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc. Reported: 11/25/2002 at 14:36 2206 South Main Street

Reported: 11/25/2002 at 14:36 2206 South Main Stree
Discard: 12/26/2002 Blacksburg VA 24060

(9-10')5GP-1 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

|                |                                |                   |          |           | Dry            |                |          |
|----------------|--------------------------------|-------------------|----------|-----------|----------------|----------------|----------|
| CAT            |                                |                   | Dry      |           | Method         |                | Dilution |
| No.            | Analysis Name                  | CAS Number        | Result   |           | Detection      | Units          | Factor   |
|                |                                |                   |          |           | Limit          |                |          |
| 00111          | Moisture                       | n.a.              | 14.6     |           | 0.50           | 8              | 1        |
|                | "Moisture" represents the loss | in weight of t    | he sampl | e after ( | oven drying at |                |          |
|                | 103 - 105 degrees Celsius. The | moisture resul    | t report | ed above  | is on an       |                |          |
|                | as-received basis.             |                   |          |           |                |                |          |
| 01225          | TCL Pesticides in Solids       |                   |          |           |                |                |          |
| 01225          | ich resticides in solids       |                   |          |           |                |                |          |
| 1218           | Gamma BHC - Lindane            | 58-89-9           | N.D.     |           | 0.20           | ug/kg          | 1        |
| 01219          | Heptachlor                     | 76-44-8           | N.D.     |           | 0.20           | ug/kg          | 1        |
| 01220          | Aldrin                         | 309-00-2          | N.D.     |           | 0.20           | ug/kg          | 1        |
| 01221          | p,p-DDT                        | 50-29-3           | N.D.     |           | 0.42           | ug/kg          | 1        |
| 01222          | Dieldrin                       | 60-57-1           | N.D.     |           | 0.39           | ug/kg          | 1        |
| 01223          | Endrin                         | 72-20-8           | N.D.     |           | 0.41           | ug/kg          | 1        |
| 01859          | Methoxychlor                   | 72-43-5           | N.D.     |           | 4.7            | ug/kg          | 1        |
| 01981          | Alpha BHC                      | 319-84-6          | N.D.     |           | 0.20           | ug/kg          | 1        |
| 01982          | Beta BHC                       | 319-85-7          | N.D.     |           | 0.20           | ug/kg          | 1        |
| 01983          | Delta BHC                      | 319-86-8          | N.D.     |           | 0.20           | ug/kg          | 1        |
| 01984          | Heptachlor Epoxide             | 1024-57-3         | N.D.     |           | 0.20           | ug/kg          | 1        |
| 01985          | p,p-DDE                        | 72-55-9           | 0.49     | J         | 0.39           | ug/kg          | 1        |
| 01986          | p,p-DDD                        | 72-54-8           | 19.      |           | 0.77           | ug/kg          | 2        |
| 01988          | Toxaphene                      | 8001-35-2         | N.D.     |           | 13.            | ug/kg          | 1        |
| 01989          | Endosulfan I                   | 959-98-8          | N.D.     |           | 0.20           | ug/kg          | 1        |
| 01990          | Endosulfan II                  | 33213-65-9        | N.D.     |           | 0.39           | ug/kg          | 1        |
| 01991          | Endosulfan Sulfate             | 1031-07-8         | N.D.     |           | 0.39           | ug/kg          | 1        |
| 01992          | Endrin Aldehyde                | 7421-93-4         | 2.3      | J         | 1.2            | ug/kg          | 1        |
| 01993          | PCB-1016                       | 12674-11-2        | N.D.     |           | 5.6            | ug/kg          | 1        |
| 01994          | PCB-1221                       | 11104-28-2        | N.D.     |           | 12.            | ug/kg          | 1        |
| 01995          | PCB-1232                       | 11141-16-5        | N.D.     |           | 5.0            | ug/kg          | 1        |
| 01996          | PCB-1242                       | 53469-21-9        | N.D.     |           | 5.9            | ug/kg          | 1        |
| 01997          | PCB-1248                       | 12672-29-6        | N.D.     |           | 5.7            | ug/kg          | 1        |
| 01998          | PCB-1254                       | 11097-69-1        | N.D.     |           | 6.7            | ug/kg          | 1        |
| 01999          | PCB-1260                       | 11096-82-5        | N.D.     |           | 5.2            | ug/kg          | 1        |
| 03017          | Endrin Ketone                  | 53494-70-5        | N.D.     |           | 0.39           | u <b>g/k</b> g | 1        |
| 03025          | Alpha Chlordane                | 5103-71- <b>9</b> | N.D.     |           | 0.20           | ug/kg          | 1        |
| 0 <b>30</b> 26 | Gamma Chlordane                | 5103-74-2         | N.D.     |           | 0.20           | ug/kg          | 1        |







Page 2 of 4

Lancaster Laboratories Sample No. SW 3933075

Collected:10/31/2002 13:10 Account Number: 11200

Submitted: 11/02/2002 10:20 Dra
Reported: 11/25/2002 at 14:36 220

Discard: 12/26/2002

(9-10')5GP-1 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

Draper Aden Associates, Inc. 2206 South Main Street

Blacksburg VA 24060

| 9105- | SDG#: | RAR01-13 |
|-------|-------|----------|
|-------|-------|----------|

|       |                                 |                  |        | Dry        |                |          |
|-------|---------------------------------|------------------|--------|------------|----------------|----------|
| CAT   |                                 |                  | Dry    | Method     |                | Dilution |
| No.   | Analysis Name                   | CAS Number       | Result | Detection  | Units          | Factor   |
|       |                                 |                  |        | Limit      |                |          |
| 04688 | TCL SW846 Semivolatiles Soil    |                  |        |            |                |          |
| 01185 | Phenol                          | 108-95-2         | N.D.   | 39.        | ug/kg          | 1        |
| 01185 | 2-Chlorophenol                  | 95-57-8          | N.D.   | 39.        | ug/kg<br>ug/kg | 1        |
| 01186 | 1,4-Dichlorobenzene             | 106-46-7         | N.D.   | 39.        | ug/kg          | 1        |
| 01187 | N-Nitroso-di-n-propylamine      | 621-64-7         | N.D.   | 39.        | ug/kg          | 1        |
|       |                                 | 120-82-1         | N.D.   | 39.        | ug/kg          | 1        |
| 01189 | 1,2,4-Trichlorobenzene          |                  | N.D.   | 78.        | ug/kg<br>ug/kg | 1        |
| 71190 | 4-Chloro-3-methylphenol         | 59-50-7          | N.D.   | 78.<br>39. |                | 1        |
| 03746 | 2-Nitrophenol                   | 88-75-5          |        |            | ug/kg          | _        |
| 03747 | 2,4-Dimethylphenol              | 105-67-9         | N.D.   | 39.        | ug/kg          | 1        |
| 03748 | 2,4-Dichlorophenol              | 120-83-2         | N.D.   | 39.        | ug/kg          | 1        |
| 03749 | 2,4,6-Trichlorophenol           | 88-06-2          | N.D.   | 39.        | ug/kg          | 1        |
| 03753 | bis(2-Chloroethyl)ether         | 111-44-4         | N.D.   | 39.        | ug/kg          | 1        |
| 03754 | 1,3-Dichlorobenzene             | 541-73-1         | N.D.   | 39.        | ug/kg          | 1        |
| 03755 | 1,2-Dichlorobenzene             | 95-50-1          | N.D.   | 39.        | ug/kg          | 1        |
| 03757 | Hexachloroethane                | 67-72-1          | N.D.   | 39.        | ug/kg          | 1        |
| 03758 | Nitrobenzene                    | 98-95-3          | N.D.   | 39.        | ug/kg          | 1        |
| 03759 | Isophorone                      | 78-59-1          | N.D.   | 39.        | ug/kg          | 1        |
| 03760 | bis(2-Chloroethoxy)methane      | 111-91-1         | N.D.   | 39.        | ug/kg          | 1        |
| 03761 | Naphthalene                     | 91-20-3          | N.D.   | 39.        | ug/kg          | 1        |
| 03762 | Hexachlorobutadiene             | 87-68-3          | N.D.   | 78.        | ug/kg          | 1        |
| 03763 | Hexachlorocyclopentadiene       | 77-47-4          | N.D.   | 200.       | ug/kg          | 1        |
| 03764 | 2-Chloronaphthalene             | 91-58-7          | N.D.   | 39.        | uq/kq          | 1        |
| 03765 | Acenaphthylene                  | 208-96-8         | N.D.   | 39.        | ug/kg          | 1        |
| 03766 | Dimethylphthalate               | 131-11-3         | N.D.   | 78.        | ug/kg          | 1        |
| 04690 | 2-Methylphenol                  | 95 <b>-48</b> -7 | N.D.   | 39.        | ug/kg          | 1        |
| 04691 | 2,2'-oxybis(1-Chloropropane)    | 108-60-1         | N.D.   | 39.        | ug/kg          | 1        |
| 04692 | 4-Methylphenol                  | 106-44-5         | N.D.   | 78.        | ug/kg          | 1        |
| 0.002 | 3-Methylphenol and 4-methylphen |                  |        |            | -5/9           |          |
|       | chromatographic conditions used |                  |        |            |                |          |
|       | for 4-methylphenol represents t |                  |        |            |                |          |
| 04693 | 4-Chloroaniline                 | 106-47-8         | N.D.   | 39.        | ug/kg          | 1        |
| 04694 | 2-Methylnaphthalene             | 91-57-6          | N.D.   | 39.        | ug/kg          | 1        |
| 04695 | 2,4,5-Trichlorophenol           | 95-95-4          | N.D.   | 39.        | ug/kg          | 1        |
| 04696 | 2-Nitroaniline                  | 88- <b>74-4</b>  | N.D.   | 39.        | ug/kg          | 1        |
|       |                                 |                  |        |            | 3. 3           |          |

74689 TCL SW846 Semivolatiles/Soil



Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

## Analysis Report







Page 3 of 4

Lancaster Laboratories Sample No. SW 3933075

Collected:10/31/2002 13:10

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:36

Discard: 12/26/2002

(9-10')5GP-1 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

Account Number: 11200

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

Dry

| CAT   |                                  |                 | Dry                | Method      |               | Dilution |
|-------|----------------------------------|-----------------|--------------------|-------------|---------------|----------|
| No.   | Analysis Name                    | CAS Number      | Result             | Detection   | Units         | Factor   |
| NO.   | Mialysis Name                    | CAD NUMBEL      | NCBUI C            | Limit       | onico         | ractor   |
|       |                                  |                 |                    | <del></del> |               |          |
| 01191 | Acenaphthene                     | 83-32-9         | N.D.               | 39.         | ug/ <b>kg</b> | 1        |
| 01192 | 4-Nitrophenol                    | 100-02-7        | N.D.               | 200.        | ug/kg         | 1        |
| 01193 | 2,4-Dinitrotoluene               | 121-14-2        | N.D.               | 78.         | ug/kg         | 1        |
| 01194 | Pentachlorophenol                | 87-86-5         | N.D.               | 200.        | ug/kg         | 1        |
| 01195 | Pyrene                           | 129-00-0        | N.D.               | 39.         | ug/kg         | 1        |
| 03750 | 2,4-Dinitrophenol                | 51-28-5         | N.D.               | 780.        | ug/kg         | 1        |
| 03751 | 4,6-Dinitro-2-methylphenol       | 534-52-1        | N.D.               | 200.        | ug/kg         | 1        |
| 03767 | 2,6-Dinitrotoluene               | 606-20-2        | N.D.               | 39.         | ug/kg         | 1        |
| 03768 | Fluorene                         | 86-73-7         | N.D.               | 39.         | ug/kg         | 1        |
| 03769 | 4-Chlorophenyl-phenylether       | 7005-72-3       | N.D.               | 39.         | ug/kg         | 1        |
| 03770 | Diethylphthalate                 | 84-66-2         | N.D.               | 78.         | ug/kg         | 1        |
| 03772 | N-Nitrosodiphenylamine           | 86-30-6         | N.D.               | 39.         | ug/kg         | 1        |
|       | N-nitrosodiphenylamine decompose | es in the GC in | nlet forming diphe | enylamine.  |               |          |
|       | The result reported for N-nitros | sodiphenylamin  | e represents the o | combined    |               |          |
|       | total of both compounds.         |                 |                    |             |               |          |
| 03773 | 4-Bromophenyl-phenylether        | 101-55-3        | N.D.               | 39.         | ug/kg         | 1        |
| 03774 | Hexachlorobenzene                | 118-74-1        | N.D.               | 39.         | ug/kg         | 1        |
| 03775 | Phenanthrene                     | 85-01-8         | N.D.               | 39.         | ug/kg         | 1        |
| 03776 | Anthracene                       | 120-12-7        | N.D.               | 39.         | ug/kg         | 1        |
| 03777 | Di-n-butylphthalate              | 84-74-2         | N.D.               | 78.         | ug/kg         | 1        |
| 03778 | Fluoranthene                     | 206-44-0        | N.D.               | 39.         | ug/kg         | 1        |
| 03780 | Butylbenzylphthalate             | 85-68-7         | N.D.               | 78.         | ug/k <b>g</b> | 1        |
| 03781 | Benzo(a)anthracene               | 56-55-3         | N.D.               | 39.         | ug/kg         | 1        |
| 03782 | Chrysene                         | 218-01-9        | N.D.               | 39.         | ug/k <b>g</b> | 1        |
| 03783 | 3,3'-Dichlorobenzidine           | 91-94-1         | N.D.               | 78.         | ug/k <b>g</b> | 1        |
| 03784 | bis(2-Ethylhexyl)phthalate       | 117-81-7        | N.D.               | 78.         | ug/kg         | 1        |
| 03785 | Di-n-octylphthalate              | 117-84-0        | N.D.               | 78.         | ug/kg         | 1        |
| 03786 | Benzo(b) fluoranthene            | 205-99-2        | N.D.               | 39.         | ug/kg         | 1        |
| 03787 | Benzo(k) fluoranthene            | 207-08-9        | N.D.               | 39.         | ug/kg         | 1        |
| 03788 | Benzo (a) pyrene                 | 50-32-8         | N.D.               | 39.         | ug/kg         | 1        |
| 03789 | Indeno(1,2,3-cd)pyrene           | 193-39-5        | N.D.               | 39.         | ug/ <b>kg</b> | 1        |
| 03790 | Dibenz (a, h) anthracene         | 53-70-3         | N.D.               | 39.         | ug/kg         | 1        |
| 03791 | Benzo(g,h,i)perylene             | 191-24-2        | N.D.               | 39.         | ug/kg         | 1        |
| 04697 | 3-Nitroaniline                   | 99-09-2         | N.D.               | 78.         | ug/kg         | 1        |
| 04698 | Dibenzofuran                     | 132-64-9        | N.D.               | 39.         | ug/kg         | 1        |
| 04700 | 4-Nitroaniline                   | 100-01-6        | N.D.               | 78.         | ug/kg         | 1        |
|       |                                  |                 |                    |             |               |          |



## Analysis Report



219



Page 4 of 4

Lancaster Laboratories Sample No. SW 3933075

Collected:10/31/2002 13:10

Account Number: 11200

Submitted: 11/02/2002 10:20

Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:36

2206 South Main Street Blacksburg VA 24060

Discard: 12/26/2002

(9-10')5GP-1 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

9105- SDG#: RAR01-13

CAT

No.

04702

Dry Dry Method Dilution Analysis Name CAS Number Result Detection Units Factor Limit Carbazole 86~74-8 N.D. 39. ug/kg

| 'AT'  |                          |                    |        | Analysis         |                   | Dilution |
|-------|--------------------------|--------------------|--------|------------------|-------------------|----------|
| ٥.    | Analysis Name            | Method             | Trial# | Date and Time    | Analyst           | Factor   |
| 00111 | Moisture                 | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer | 1        |
| 01225 | TCL Pesticides in Solids | SW-846 8081A/8082  | 1      | 11/06/2002 05:52 | Douglas D Seitz   | 1        |
| 01225 | TCL Pesticides in Solids | SW-846 8081A/8082  | 1      | 11/07/2002 20:21 | Douglas D Seitz   | 2        |
| 04688 | TCL SW846 Semivolatiles  | SW-846 8270C       | 1      | 11/06/2002 13:11 | Brian K Graham    | 1        |
|       | Soil                     |                    |        |                  |                   |          |
| 04689 | TCL SW846                | SW-846 8270C       | 1      | 11/06/2002 13:11 | Brian K Graham    | 1        |
|       | Semivolatiles/Soil       |                    |        |                  |                   |          |
| 00381 | BNA Soil Extraction      | SW-846 3550B       | 1      | 11/05/2002 17:40 | Amy M Strocko     | 1        |
| 00819 | Solid Sample Pesticide   | SW-846 3550B       | 1      | 11/05/2002 00:30 | Darin P Wagner    | 1        |
|       | Extract                  |                    |        |                  | 5                 |          |







Page 1 of 4

Lancaster Laboratories Sample No. SW 3933076

Collected: 10/31/2002 13:50

Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:36 Draper Aden Associates, Inc.

Discard: 12/26/2002

2206 South Main Street Blacksburg VA 24060

(10-11')5GP-6 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

|       |                                |                                |          |         | Dry        |                |          |
|-------|--------------------------------|--------------------------------|----------|---------|------------|----------------|----------|
| CAT   |                                |                                | Dry      |         | Method     |                | Dilution |
| No.   | Analysis Name                  | CAS Number                     | Result   | ;       | Detection  | Units          | Factor   |
|       |                                |                                |          |         | Limit      |                |          |
| 00111 | Moisture                       | n.a.                           | 12.7     |         | 0.50       | 8              | 1        |
|       | "Moisture" represents the loss |                                |          |         |            |                |          |
|       | 103 - 105 degrees Celsius. The | moisture resul                 | t report | ed abov | e is on an |                |          |
|       | as-received basis.             |                                |          |         |            |                |          |
| 01225 | TCL Pesticides in Solids       |                                |          |         |            |                |          |
| 01223 | Tell restricted in bollas      |                                |          |         |            |                |          |
| 31218 | Gamma BHC - Lindane            | 58-89-9                        | N.D.     |         | 0.19       | ug/kg          | 1        |
| 01219 | Heptachlor                     | 76-44-8                        | N.D.     |         | 0.19       | ug/kg          | 1        |
| 01220 | Aldrin                         | 309-00-2                       | N.D.     |         | 0.19       | ug/kg          | 1        |
| 01221 | p,p-DDT                        | 50-29-3                        | N.D.     |         | 0.41       | ug/kg          | 1        |
| 01222 | Dieldrin                       | 60-57-1                        | N.D.     |         | 0.38       | ug/kg          | 1        |
| 01223 | Endrin                         | 72-20-8                        | N.D.     |         | 0.40       | ug/kg          | 1        |
| 01859 | Methoxychlor                   | 72-43-5                        | N.D.     |         | 4.6        | ug/kg          | 1        |
| 01981 | Alpha BHC                      | 319-84-6                       | N.D.     |         | 0.19       | ug/kg          | 1        |
| 01982 | Beta BHC                       | 319-85-7                       | N.D.     |         | 0.19       | ug/kg          | 1        |
| 01983 | Delta BHC                      | 319-86-8                       | 0.22     | J       | 0.19       | ug/kg          | 1        |
| 01984 | Heptachlor Epoxide             | 1024-57-3                      | N.D.     |         | 0.19       | ug/kg          | 1        |
| 01985 | p,p-DDE                        | 72-55-9                        | 1.7      | J       | 0.38       | ug/kg          | 1        |
| 01986 | p,p-DDD                        | 72-54-8                        | 6.7      |         | 0.38       | ug/kg          | 1        |
| 01988 | Toxaphene                      | 8001-35-2                      | N.D.     |         | 13.        | ug/kg          | 1        |
| 01989 | Endosulfan I                   | 959-98-8                       | N.D.     |         | 0.19       | ug/kg          | 1        |
| 01990 | Endosulfan II                  | 33213-65-9                     | N.D.     |         | 0.38       | ug/kg          | 1        |
| 01991 | Endosulfan Sulfate             | 1031-07-8                      | N.D.     |         | 0.38       | ug/kg          | 1        |
| 01992 | Endrin Aldehyde                | 7421-93-4                      | N.D.     |         | 1.1        | ug/kg          | 1        |
| 01993 | PCB-1016                       | 12674-11-2                     | N.D.     |         | 5.5        | ug/kg          | 1        |
| 01994 | PCB-1221                       | 11104-28-2                     | N.D.     |         | 11.        | ug/kg          | 1        |
| 01995 | PCB-1232                       | 11141-16-5                     | N.D.     |         | 4.9        | u <b>g</b> /kg | 1        |
| 01996 | PCB-1242                       | 53469-21-9                     | N.D.     |         | 5.7        | ug/kg          | 1        |
| 01997 | PCB-1248                       | 12672-29-6                     | N.D.     |         | 5.6        | ug/kg          | 1        |
| 01998 | PCB-1254                       | 11097-69-1                     | N.D.     |         | 6.5        | ug/kg          | 1        |
| 01999 | PCB-1260                       | 11096-82-5                     | N.D.     |         | 5.0        | ug/kg          | 1        |
| 03017 | Endrin Ketone                  | 53494-70-5                     | N.D.     |         | 0.38       | ug/kg          | 1        |
| 03025 | Alpha Chlordane                | 5 <b>1</b> 03 - <b>7</b> 1 - 9 | N.D.     |         | 0.19       | ug/kg          | 1        |
| 03026 | Gamma Chlordane                | 5103-74-2                      | N.D.     |         | 0.19       | ug/kg          | 1        |
|       | Heptachlor was detected in the | method blank a                 | bove the | method  | detection  |                |          |





Page 2 of 4

Lancaster Laboratories Sample No. SW 3933076

Collected:10/31/2002 13:50

Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:36 Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14

2206 South Main Street Blacksburg VA 24060

Dry

Discard: 12/26/2002

(10-11')5GP-6 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

| CAT   |                                   |                | Dry               | Method     |       | Dilution |
|-------|-----------------------------------|----------------|-------------------|------------|-------|----------|
| No.   | Analysis Name                     | CAS Number     | Result            | Detection  | Units | Factor   |
|       |                                   |                |                   | Limit      |       |          |
|       | limit. No heptachlor was detected | ed in the samp | le, therefore the | data is    |       |          |
|       | reported.                         |                |                   |            |       |          |
|       |                                   |                |                   |            |       |          |
| 04688 | TCL SW846 Semivolatiles Soil      |                |                   |            |       |          |
| 01185 | Phenol                            | 108-95-2       | N.D.              | 38.        | ug/kg | 1        |
| 01186 | 2-Chlorophenol                    | 95-57-8        | N.D.              | 38.        | ug/kg | 1        |
| 71187 | 1,4-Dichlorobenzene               | 106-46-7       | N.D.              | 38.        | ug/kg | 1        |
| 01188 | N-Nitroso-di-n-propylamine        | 621-64-7       | N.D.              | 38.        | ug/kg | 1        |
| 01189 | 1.2.4-Trichlorobenzene            | 120-82-1       | <b>N</b> .D.      | 38.        | ug/kg | 1        |
| 01190 | 4-Chloro-3-methylphenol           | 59-50-7        | N.D.              | 77.        | ug/kg | 1        |
| 03746 | 2-Nitrophenol                     | 88~75-5        | N.D.              | 38.        | ug/kg | 1        |
| 03747 | 2,4-Dimethylphenol                | 105-67-9       | N.D.              | 38.        | ug/kg | 1        |
| 03748 | 2,4-Dichlorophenol                | 120-83-2       | N.D.              | 38.        | ug/kg | 1        |
| 03749 | 2,4,6-Trichlorophenol             | 88-06-2        | N.D.              | 38.        | ug/kg | 1        |
| 03753 | bis(2-Chloroethyl)ether           | 111-44-4       | N.D.              | 38.        | ug/kg | 1        |
| 03754 | 1.3-Dichlorobenzene               | 541-73-1       | N.D.              | 38.        | ug/kg | 1        |
| 03755 | 1,2-Dichlorobenzene               | 95-50-1        | N.D.              | 38.        | ug/kg | 1        |
| 03757 | Hexachloroethane                  | 67-72-1        | N.D.              | 38.        | ug/kg | 1        |
| 03758 | Nitrobenzene                      | 98-95-3        | N.D.              | 38         | ug/kg | 1        |
| 03759 | Isophorone                        | 78-59-1        | N.D.              | 38.        | ug/kg | 1        |
| 03760 | bis(2-Chloroethoxy)methane        | 111-91-1       | N.D.              | 38.        | ug/kg | 1        |
| 03761 | Naphthalene                       | 91-20-3        | N.D.              | 38.        | ug/kg | 1        |
| 03762 | Hexachlorobutadiene               | 87-68-3        | N.D.              | 77.        | ug/kg | 1        |
| 03763 | Hexachlorocyclopentadiene         | 77-47-4        | N.D.              | 190.       | ug/kg | 1        |
| 03764 | 2-Chloronaphthalene               | 91-58-7        | N.D.              | 38.        | ug/kg | 1        |
| 03765 | Acenaphthylene                    | 208-96-8       | N.D.              | 38.        | ug/kg | 1        |
| 03766 | Dimethylphthalate                 | 131-11-3       | N.D.              | 77.        | ug/kg | 1        |
| 04690 | 2-Methylphenol                    | 95-48-7        | N.D.              | 38.        | ug/kg | 1        |
| 04691 | 2,2'-oxybis(1-Chloropropane)      | 108-60-1       | N.D.              | 38.        | ug/kg | 1        |
| 04692 | 4-Methylphenol                    | 106-44-5       | N.D.              | 77.        | ug/kg | 1        |
|       | 3-Methylphenol and 4-methylpheno  | ol cannot be r | esolved under the |            |       |          |
|       | chromatographic conditions used   |                |                   | t reported |       |          |
|       | for 4-methylphenol represents th  |                |                   | unds.      |       |          |
| 04693 | 4-Chloroaniline                   | 106-47-8       | N.D.              | 38.        | ug/kg | 1        |
| 04694 | 2-Methylnaphthalene               | 91-57-6        | <b>N</b> .D.      | 38.        | ug/kg | 1        |
| 14695 | 2,4,5-Trichlorophenol             | 95 - 95 - 4    | N.D.              | 38.        | ug/kg | 1        |





Page 3 of 4

3933076 Lancaster Laboratories Sample No.

Collected:10/31/2002 13:50

Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:36

Discard: 12/26/2002

(10-11')5GP-6 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

Draper Aden Associates, Inc. 2206 South Main Street Blacksburg VA 24060

|               |                                 |                |                   | Dry                |       |          |
|---------------|---------------------------------|----------------|-------------------|--------------------|-------|----------|
| CAT           |                                 |                | Dry               | Method             |       | Dilution |
| No.           | Analysis Name                   | CAS Number     | Result            | Detection<br>Limit | Units | Factor   |
| 04696         | 2-Nitroaniline                  | 88-74-4        | N.D.              | 38.                | ug/kg | 1        |
| 04689         | TCL SW846 Semivolatiles/Soil    |                |                   |                    |       |          |
| 01191         | Acenaphthene                    | 83-32-9        | N.D.              | 38.                | ug/kg | 1        |
| 01192         | 4-Nitrophenol                   | 100-02-7       | N.D.              | 190.               | ug/kg | 1        |
| 01193         | 2,4-Dinitrotoluene              | 121-14-2       | N.D.              | 77.                | ug/kg | 1        |
| 01194         | Pentachlorophenol               | 87-86-5        | N.D.              | 190.               | ug/kg | 1        |
| 01195         | Pyrene                          | 129-00-0       | N.D.              | 38.                | ug/kg | 1        |
| 03750         | 2,4-Dinitrophenol               | 51-28-5        | N.D.              | 770.               | ug/kg | 1        |
| 03751         | 4,6-Dinitro-2-methylphenol      | 534-52-1       | N.D.              | 190.               | ug/kg | 1        |
| 03767         | 2,6-Dinitrotoluene              | 606-20-2       | N.D.              | 38.                | ug/kg | 1        |
| 03768         | Fluorene                        | 86-73-7        | N.D.              | 38.                | ug/kg | 1        |
| 03769         | 4-Chlorophenyl-phenylether      | 7005-72-3      | N.D.              | 38.                | ug/kg | 1.       |
| 03770         | Diethylphthalate                | 84-66-2        | N.D.              | 77.                | ug/kg | 1        |
| 03772         | N-Nitrosodiphenylamine          | 86-30-6        | 63. J             | 38.                | ug/kg | 1        |
|               | N-nitrosodiphenylamine decompos | es in the GC i | nlet forming dipl | nenylamine.        |       |          |
|               | The result reported for N-nitro | sodiphenylamin | e represents the  | combined           |       |          |
|               | total of both compounds.        |                |                   |                    |       |          |
| 03773         | 4-Bromophenyl-phenylether       | 101-55-3       | N.D.              | 38.                | ug/kg | 1        |
| 03774         | Hexachlorobenzene               | 118-74-1       | N.D.              | 38.                | ug/kg | 1        |
| 03775         | Phenanthrene                    | 85-01-8        | N.D.              | 38.                | ug/kg | 1        |
| 03776         | Anthracene                      | 120-12-7       | N.D.              | 38.                | ug/kg | 1        |
| 03777         | Di-n-butylphthalate             | 84-74-2        | N.D.              | 77.                | ug/kg | 1        |
| 03778         | Fluoranthene                    | 206-44-0       | N.D.              | 38.                | ug/kg | 1        |
| 03780         | Butylbenzylphthalate            | 85-68-7        | N.D.              | 77.                | ug/kg | 1        |
| 03781         | Benzo(a)anthracene              | 56-55-3        | N.D.              | 38.                | ug/kg | 1        |
| 03782         | Chrysene                        | 218-01-9       | N.D.              | 38.                | ug/kg | 1        |
| 03783         | 3,3'-Dichlorobenzidine          | 91-94-1        | N.D.              | 77.                | ug/kg | 1        |
| 03784         | bis(2-Ethylhexyl)phthalate      | 117-81-7       | N.D.              | 77.                | ug/kg | 1        |
| 03785         | Di-n-octylphthalate             | 117-84-0       | N.D.              | <b>7</b> 7.        | ug/kg | 1        |
| 03786         | Benzo(b) fluoranthene           | 205-99-2       | N.D.              | 38.                | ug/kg | 1        |
| 03787         | Benzo(k)fluoranthene            | 207-08-9       | N.D.              | 38.                | ug/kg | 1        |
| 03788         | Benzo(a)pyrene                  | 50-32-8        | N.D.              | 38.                | ug/kg | 1        |
| 03789         | Indeno(1,2,3-cd)pyrene          | 193-39-5       | N.D.              | 38.                | ug/kg | 1        |
| <b>0</b> 3790 | Dibenz(a,h)anthracene           | 53-70-3        | N.D.              | 38.                | ug/kg | 1        |
| 13791         | Benzo(g,h,i)perylene            | 191-24-2       | N.D.              | 38.                | ug/kg | 1        |
|               |                                 |                |                   |                    | -     |          |

223



## REPRINT

Page 4 of 4

Lancaster Laboratories Sample No. SW 3933076

Collected:10/31/2002 13:50

Account Number: 11200

Submitted: 11/02/2002 10:20

Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:36

2206 South Main Street Blacksburg VA 24060

Discard: 12/26/2002

(10-11')5GP-6 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

SDG#: RAR01-14 10115

|       |                |            |        | υry                |       |          |  |
|-------|----------------|------------|--------|--------------------|-------|----------|--|
| CAT   |                |            | Dry    | Method             |       | Dilution |  |
| No.   | Analysis Name  | CAS Number | Result | Detection<br>Limit | Units | Factor   |  |
| 04697 | 3-Nitroaniline | 99-09-2    | N.D.   | 77.                | ug/kg | 1        |  |
| 04698 | Dibenzofuran   | 132-64-9   | N.D.   | 38.                | ug/kg | 1        |  |
| 04700 | 4-Nitroaniline | 100-01-6   | N.D.   | 77.                | ug/kg | 1        |  |
| 04702 | Carbazole      | 86-74-8    | N.D.   | 38.                | ug/kg | 1        |  |
|       |                |            |        |                    |       |          |  |

| CAT   |                          |                    |        | Analysis         |                   | Dilution |
|-------|--------------------------|--------------------|--------|------------------|-------------------|----------|
| No.   | Analysis Name            | Method             | Trial# | Date and Time    | Analyst           | Factor   |
| 00111 | Moisture                 | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer | 1        |
| 01225 | TCL Pesticides in Solids | SW-846 8081A/8082  | 1      | 11/06/2002 06:13 | Douglas D Seitz   | 1        |
| 04688 | TCL SW846 Semivolatiles  | SW-846 8270C       | 1      | 11/06/2002 14:05 | Brian K Graham    | 1        |
|       | Soil                     |                    |        |                  |                   |          |
| 04689 | TCL SW846                | SW-846 8270C       | 1      | 11/06/2002 14:05 | Brian K Graham    | 1        |
|       | Semivolatiles/Soil       |                    |        |                  |                   |          |
| 00381 | BNA Soil Extraction      | SW-846 3550B       | 1      | 11/05/2002 17:40 | Amy M Strocko     | 1        |
| 00819 | Solid Sample Pesticide   | SW-846 3550B       | 1      | 11/05/2002 00:30 | Darin P Wagner    | 1        |
|       | Extract                  |                    |        |                  | _                 |          |





Blacksburg VA 24060

Drv

Page 1 of 4

Lancaster Laboratories Sample No. SW 3933077

Collected:10/31/2002 14:30 Account Number: 11200

 Submitted: 11/02/2002 10:20
 Draper Aden Associates, Inc.

 Reported: 11/25/2002 at 14:37
 2206 South Main Street

Discard: 12/26/2002

(9-10')5GP-3 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

| CAT   |                                                                                              |               | Dry                    | 30 - 63 - 3        |               |          |
|-------|----------------------------------------------------------------------------------------------|---------------|------------------------|--------------------|---------------|----------|
| CILL  |                                                                                              |               | DLY                    | Method             |               | Dilution |
| No.   | Analysis Name                                                                                | CAS Number    | Result                 | Detection<br>Limit | Units         | Factor   |
| 00111 | Moisture                                                                                     | n.a.          | 17.2                   | 0.50               | 8             | 1        |
|       | "Moisture" represents the loss i $103$ - $105$ degrees Celsius. The $\pi$ as-received basis. |               |                        |                    |               |          |
| 01225 | TCL Pesticides in Solids                                                                     |               |                        |                    |               |          |
| 1218  | Gamma BHC - Lindane                                                                          | 58-89-9       | N.D.                   | 0.21               | ug/kg         | 1        |
| 01219 | Heptachlor                                                                                   | 76-44-8       | N.D.                   | 0.21               | ug/kg         | 1        |
| 01220 | Aldrin                                                                                       | 309-00-2      | N.D.                   | 0.21               | ug/kg         | 1        |
| 01221 | p,p-DDT                                                                                      | 50-29-3       | N.D.                   | 0.43               | ug/kg         | 1        |
| 01222 | Dieldrin                                                                                     | 60-57-1       | N.D.                   | 0.40               | ug/kg         | 1        |
| 01223 | Endrin                                                                                       | 72-20-8       | N.D.                   | 0.42               | ug/kg         | 1        |
| 01859 | Methoxychlor                                                                                 | 72-43-5       | N.D.                   | 4.8                | ug/kg         | 1        |
| 01981 | Alpha BHC                                                                                    | 319-84-6      | N.D.                   | 0.21               | ug/kg         | 1        |
| 01982 | Beta BHC                                                                                     | 319-85-7      | N.D.                   | 0.21               | ug/kg         | 1        |
| 01983 | Delta BHC                                                                                    | 319-86-8      | N.D.                   | 0.21               | ug/kg         | 1        |
| 01984 | Heptachlor Epoxide                                                                           | 1024-57-3     | N.D.                   | 0.21               | ug/kg         | 1        |
| 01985 | p,p-DDE                                                                                      | 72-55-9       | N.D.                   | 0.40               | ug/kg         | 1        |
| 01986 | p,p-DDD                                                                                      | 72-54-8       | N.D.                   | 0.40               | ug/kg         | 1        |
| 01988 | Toxaphene                                                                                    | 8001-35-2     | N.D.                   | 13.                | ug/kg         | 1        |
| 01989 | Endosulfan I                                                                                 | 959-98-8      | N.D.                   | 0.21               | ug/kg         | 1        |
| 01990 | Endosulfan II                                                                                | 33213-65-9    | N.D.                   | 0.40               | ug/kg         | 1        |
| 01991 | Endosulfan Sulfate                                                                           | 1031-07-8     | N.D.                   | 0.40               | ug/kg         | 1        |
| 01992 | Endrin Aldehyde                                                                              | 7421-93-4     | N.D.                   | 1.2                | ug/kg         | 1        |
| 01993 | PCB-1016                                                                                     | 12674-11-2    | N.D.                   | 5.8                | ug/kg         | 1        |
| 01994 | PCB-1221                                                                                     | 11104-28-2    | N.D.                   | 12.                | ug/kg         | 1        |
| 01995 | PCB-1232                                                                                     | 11141-16-5    | N.D.                   | 5.2                | ug/kg         | 1        |
| 01996 | PCB-1242                                                                                     | 53469-21-9    | N.D.                   | 6.0                | ug/kg         | 1        |
| 01997 | PCB-1248                                                                                     | 12672-29-6    | N.D.                   | 5. <b>9</b>        | ug/kg         | 1        |
| 01998 | PCB-1254                                                                                     | 11097-69-1    | N.D.                   | 6.9                | ug/kg         | 1        |
| 01999 | PCB-1260                                                                                     | 11096-82-5    | N.D.                   | 5.3                | ug/kg         | 1        |
| 03017 | Endrin Ketone                                                                                | 53494-70-5    | N.D.                   | 0.40               | ug/k <b>g</b> | 1        |
| 03025 | Alpha Chlordane                                                                              | 5103-71-9     | $N \cdot D$ ,          | 0.21               | ug/kg         | 1        |
| 03026 | Gamma Chlordane                                                                              | 5103 - 74 - 2 | И. D.                  | 0.21               | ug/kg         | 1        |
|       | Heptachlor was detected in the m                                                             | ethod blank a | bov <b>e</b> the metho | d detection        |               |          |





Page 2 of 4

Lancaster Laboratories Sample No. SW 3933077

Collected: 10/31/2002 14:30 Account Num

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:37

Discard: 12/26/2002

(9-10')5GP-3 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

Account Number: 11200

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

Dry

|       |                                                                                                       |                | _               | DLY                |               |          |
|-------|-------------------------------------------------------------------------------------------------------|----------------|-----------------|--------------------|---------------|----------|
| CAT   |                                                                                                       |                | Dry             | Method             |               | Dilution |
| No.   | Analysis Name                                                                                         | CAS Number     | Result          | Detection<br>Limit | Units         | Factor   |
|       | limit. No heptachlor was detect reported.                                                             | ed in the samp | le, therefore t | the data is        |               |          |
| 04688 | TCL SW846 Semivolatiles Soil                                                                          |                |                 |                    |               |          |
| 01185 | Phenol                                                                                                | 108-95-2       | N.D.            | 40.                | ug/kg         | 1        |
| 01186 | 2-Chlorophenol                                                                                        | 95-57-8        | N.D.            | 40.                | ug/kg         | 1        |
| 01187 | 1,4-Dichlorobenzene                                                                                   | 106-46-7       | N.D.            | 40.                | ug/kg         | 1        |
| 01188 | N-Nitroso-di-n-propylamine                                                                            | 621-64-7       | N.D.            | 40.                | ug/kg         | 1        |
| 01189 | 1,2,4-Trichlorobenzene                                                                                | 120-82-1       | N.D.            | 40.                | ug/kg         | 1        |
| 01190 | 4-Chloro-3-methylphenol                                                                               | 59-50-7        | N.D.            | 81.                | ug/kg         | 1        |
| 03746 | 2-Nitrophenol                                                                                         | 88-75-5        | N.D.            | 40.                | ug/kg         | 1        |
| 03747 | 2,4-Dimethylphenol                                                                                    | 105-67-9       | N.D.            | 40.                | ug/kg         | 1        |
| 03748 | 2,4-Dichlorophenol                                                                                    | 120-83-2       | N.D.            | 40.                | ug/kg         | 1        |
| 03749 | 2,4,6-Trichlorophenol                                                                                 | 88-06-2        | N.D.            | 40.                | ug/kg         | 1        |
| 03753 | bis(2-Chloroethyl)ether                                                                               | 111-44-4       | N.D.            | 40.                | ug/kg         | 1        |
| 03754 | 1,3-Dichlorobenzene                                                                                   | 541-73-1       | N.D.            | 40.                | ug/kg         | 1        |
| 03755 | 1,2-Dichlorobenzene                                                                                   | 95-50-1        | N.D.            | 40.                | ug/kg         | 1        |
| 03757 | Hexachloroethane                                                                                      | 67-72-1        | N.D.            | 40.                | ug/kg         | 1        |
| 03758 | Nitrobenzene                                                                                          | 98-95-3        | N.D.            | 40.                | ug/kg         | 1        |
| 03759 | Isophorone                                                                                            | 78-59-1        | N.D.            | 40.                | ug/ <b>kg</b> | 1        |
| 03760 | bis(2-Chloroethoxy)methane                                                                            | 111-91-1       | N.D.            | 40.                | ug/kg         | 1        |
| 03761 | Naphthalene                                                                                           | 91-20-3        | N.D.            | 40.                | ug/kg         | 1        |
| 03762 | Hexachlorobutadiene                                                                                   | 87-68-3        | N.D.            | 81.                | ug/ <b>kg</b> | 1        |
| 03763 | Hexachlorocyclopentadiene                                                                             | 77-47-4        | N.D.            | <b>2</b> 10.       | ug/kg         | 1        |
| 03764 | 2-Chloronaphthalene                                                                                   | 91-58-7        | N.D.            | 40.                | ug/kg         | 1        |
| 03765 | Acenaphthylene                                                                                        | 208-96-8       | N.D.            | 40.                | ug/kg         | 1        |
| 03766 | Dimethylphthalate                                                                                     | 131-11-3       | N.D.            | 81.                | ug/kg         | 1        |
| 04690 | 2-Methylphenol                                                                                        | 95-48-7        | N.D.            | 40.                | ug/kg         | 1        |
| 04691 | 2,2'-oxybis(1-Chloropropane)                                                                          | 108-60-1       | N.D.            | 40.                | ug/k <b>g</b> | 1        |
| 04692 | 4-Methylphenol                                                                                        | 106-44-5       | N.D.            | 81.                | ug/kg         | 1        |
|       | 3-Methylphenol and 4-methylphen<br>chromatographic conditions used<br>for 4-methylphenol represents t | for sample an  | alysis. The res | sult reported      |               |          |
| 04693 | 4-Chloroaniline                                                                                       | 106-47-8       | N.D.            | 40.                | ug/kg         | 1        |
| 04694 | 2-Methylnaphthalene                                                                                   | 91 57-6        | N.D.            | 40.                | ug/kg         | 1        |
| 14695 | 2,4,5-Trichlorophenol                                                                                 | 95-95-4        | N.D.            | 40.                | ug/kg         | 1        |





Page 3 of 4

Lancaster Laboratories Sample No. SW 3933077

Collected:10/31/2002 14:30 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:37 2206 South Main Street
Discard: 12/26/2002 Blacksburg VA 24060

(9-10')5GP-3 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

|                |                                 |                 | D                | Dry<br>Method       |                | Dilution |
|----------------|---------------------------------|-----------------|------------------|---------------------|----------------|----------|
| CAT            | Burn Burn de Branco             | CAS Number      | Dry<br>Result    | method<br>Detection | Units          | Factor   |
| No.            | Analysis Name                   | CAS Number      | Result           | Limit               | Units          | Factor   |
| 04696          | 2-Nitroaniline                  | 88-74-4         | N.D.             | 40.                 | ug/kg          | 1        |
| 04689          | TCL SW846 Semivolatiles/Soil    |                 |                  |                     |                |          |
| 01191          | Acenaphthene                    | 83-32-9         | N.D.             | 40.                 | <b>ug/k</b> g  | 1        |
| 01192          | 4-Nitrophenol                   | 100-02-7        | N.D.             | 210.                | ug/kg          | 1        |
| 01193          | 2,4-Dinitrotoluene              | 121-14-2        | N.D.             | 81.                 | ug/kg          | 1        |
| 01194          | Pentachlorophenol               | 87~86-5         | N.D.             | 210.                | ug/k <b>g</b>  | 1        |
| 01195          | Pyrene                          | 129-00-0        | N.D.             | 40.                 | ug/kg          | 1        |
| 03750          | 2,4-Dinitrophenol               | 51-28-5         | N.D.             | 810.                | u <b>g/k</b> g | 1        |
| 03751          | 4,6-Dinitro-2-methylphenol      | 534-52-1        | N.D.             | 210.                | ug/kg          | 1        |
| 03767          | 2,6-Dinitrotoluene              | 606-20-2        | N.D.             | 40.                 | ug/kg          | 1        |
| 03768          | Fluorene                        | 86-73-7         | N.D.             | 40.                 | ug/kg          | 1        |
| 03769          | 4-Chlorophenyl-phenylether      | 7005-72-3       | N.D.             | 40.                 | ug/kg          | 1        |
| 03770          | Diethylphthalate                | 84-66-2         | N.D.             | 81.                 | ug/kg          | 1        |
| 03772          | N-Nitrosodiphenylamine          | 86-30-6         | N.D.             | 40.                 | ug/kg          | 1        |
|                | N-nitrosodiphenylamine decompo  | ses in the GC i | nlet forming dip | henylamine.         |                |          |
|                | The result reported for N-nitr  | osodiphenylamin | e represents the | combined            |                |          |
|                | total of both compounds.        |                 |                  |                     |                |          |
| 03773          | 4-Bromophenyl-phenylether       | 101-55-3        | N.D.             | 40.                 | ug/kg          | 1        |
| 03774          | Hexachlorobenzene               | 118-74-1        | N.D.             | 40.                 | ug/kg          | 1        |
| 03775          | Phenanthrene                    | 85-01-8         | N.D.             | 40.                 | ug/kg          | 1        |
| 03776          | Anthracene                      | 120-12-7        | N.D.             | 40.                 | ug/kg          | 1        |
| 03777          | Di-n-butylphthalate             | 84-74-2         | N.D.             | 81.                 | ug/kg          | 1        |
| 03778          | Fluoranthen <b>e</b>            | 206-44-0        | N.D.             | 40.                 | ug/kg          | 1        |
| 03780          | Butylbenzylphthalate            | 85-68-7         | N.D.             | 81.                 | ug/kg          | 1        |
| 03781          | Benzo(a)anthracene              | 56-55-3         | N.D.             | 40.                 | ug/kg          | 1        |
| 03782          | Chrysene                        | 218-01-9        | N.D.             | 40.                 | ug/kg          | 1        |
| 03783          | 3,3'-Dichlorobe <b>nz</b> idine | 91-94-1         | N.D.             | 81.                 | ug/kg          | 1        |
| 03784          | bis(2-Ethylhexyl)phthalate      | 117-81-7        | N.D.             | 81.                 | ug/kg          | 1        |
| 03785          | Di-n-octylphthalate             | 117-84-0        | N.D.             | 81.                 | ug/kg          | 1        |
| 03786          | Benzo(b) fluoranthene           | 205-99-2        | N.D.             | 40.                 | ug/kg          | 1        |
| 03787          | Benzo(k)fluoranthene            | 207-08-9        | N.D.             | 40.                 | ug/kg          | 1        |
| 03788          | Benzo(a)pyrene                  | 50-32-8         | N.D.             | 40.                 | ug/kg          | 1        |
| 03789          | Indeno(1,2,3-cd)pyrene          | 193-39-5        | N.D.             | 40.                 | ug/kg          | 1        |
| 03 <b>79</b> 0 | Dibenz(a,h)anthracene           | 53-70-3         | N.D.             | 40.                 | ug/kg          | 1        |
| 23791          | Benzo(g,h,i)perylene            | 191-24-2        | N.D.             | 40.                 | ug/kg          | 1        |
|                |                                 |                 |                  |                     |                |          |





Page 4 of 4

Lancaster Laboratories Sample No. SW 3933077

Collected:10/31/2002 14:30

Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:37 Draper Aden Associates, Inc.

Discard: 12/26/2002

2206 South Main Street Blacksburg VA 24060

(9-10')5GP-3 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

9105G SDG#: RAR01-15

Extract

|       |                |            |        | υ <b>ry</b>        |       |          |  |
|-------|----------------|------------|--------|--------------------|-------|----------|--|
| CAT   |                |            | Dry    | Method             |       | Dilution |  |
| No.   | Analysis Name  | CAS Number | Result | Detection<br>Limit | Units | Factor   |  |
| 04697 | 3-Nitroaniline | 99-09-2    | N.D.   | 81.                | ug/kg | 1        |  |
| 04698 | Dibenzofuran   | 132-64-9   | N.D.   | 40.                | ug/kg | 1        |  |
| 04700 | 4-Nitroaniline | 100-01-6   | N.D.   | 81.                | ug/kg | 1        |  |
| 04702 | Carbazole      | 86-74-8    | N.D.   | 40.                | ug/kg | 1        |  |
|       |                |            |        |                    |       |          |  |

| CAT   |                          | 4                  | •      | Analysis         |                   | Dilution |
|-------|--------------------------|--------------------|--------|------------------|-------------------|----------|
| No.   | Analysis Name            | Method             | Trial# | Date and Time    | Analyst           | Factor   |
| 00111 | Moisture                 | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer | 1        |
| 01225 | TCL Pesticides in Solids | SW-846 8081A/8082  | 1      | 11/06/2002 06:34 | Douglas D Seitz   | 1        |
| 04688 | TCL SW846 Semivolatiles  | SW-846 8270C       | 1      | 11/06/2002 14:58 | Brian K Graham    | 1        |
|       | Soil                     |                    |        |                  |                   |          |
| 04689 | TCL SW846                | SW-846 8270C       | 1      | 11/06/2002 14:58 | Brian K Graham    | 1        |
|       | Semivolatiles/Soil       |                    |        |                  |                   |          |
| 00381 | BNA Soil Extraction      | SW-846 3550B       | 1      | 11/05/2002 17:40 | Amy M Strocko     | 1        |
| 00819 | Solid Sample Pesticide   | SW-846 3550B       | 1      | 11/05/2002 00:30 | Darin P Wagner    | 1        |



Page 1 of 4

3933078 Lancaster Laboratories Sample No. SW

Collected:10/31/2002 15:50 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc.

2206 South Main Street Reported: 11/25/2002 at 14:37 Blacksburg VA 24060

Discard: 12/26/2002

(7-8')5GP-8 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

|       |                                                                                            |            |        | Dry                |       |          |
|-------|--------------------------------------------------------------------------------------------|------------|--------|--------------------|-------|----------|
| CAT   |                                                                                            |            | Dry    | Method             |       | Dilution |
| No.   | Analysis Name                                                                              | CAS Number | Result | Detection<br>Limit | Units | Factor   |
| 00111 | Moisture                                                                                   | n.a.       | 14.6   | 0.50               | *     | 1        |
|       | "Moisture" represents the loss :<br>103 - 105 degrees Celsius. The r<br>as-received basis. |            |        |                    |       |          |
| 01225 | TCL Pesticides in Solids                                                                   |            |        |                    |       |          |
| 01218 | Gamma BHC - Lindane                                                                        | 58-89-9    | N.D.   | 0.20               | ug/kg | 1        |
| 01219 | Heptachlor                                                                                 | 76-44-8    | N.D.   | 0.20               | ug/kg | 1        |
| 01220 | Aldrin                                                                                     | 309-00-2   | N.D.   | 0.20               | ug/kg | 1        |
| 01221 | p,p-DDT                                                                                    | 50-29-3    | N.D.   | 0.42               | ug/kg | 1        |
| 01222 | Dieldrin                                                                                   | 60-57-1    | N.D.   | 0.39               | ug/kg | 1        |
| 01223 | Endrin                                                                                     | 72-20-8    | N.D.   | 0.41               | ug/kg | 1        |
| 01859 | Methoxychlor                                                                               | 72-43-5    | N.D.   | 4.7                | ug/kg | 1        |
| 01981 | Alpha BHC                                                                                  | 319-84-6   | N.D.   | 0.20               | ug/kg | 1        |
| 01982 | Beta BHC                                                                                   | 319-85-7   | N.D.   | 0.20               | ug/kg | 1        |
| 01983 | Delta BHC                                                                                  | 319-86-8   | N.D.   | 0.20               | ug/kg | 1        |
| 01984 | Heptachlor Epoxide                                                                         | 1024-57-3  | N.D.   | 0.20               | ug/kg | 1        |
| 01985 | p,p-DDE                                                                                    | 72-55-9    | 1.1 J  | 0.39               | ug/kg | 1        |
| 01986 | p,p-DDD                                                                                    | 72-54-8    | 51.    | 1.9                | ug/kg | 5        |
| 01988 | Toxaphene                                                                                  | 8001-35-2  | N.D.   | 13.                | ug/kg | 1        |
| 01989 | Endosulfan I                                                                               | 959-98-8   | N.D.   | 0.20               | ug/kg | 1        |
| 01990 | Endosulfan II                                                                              | 33213-65-9 | N.D.   | 0.39               | ug/kg | 1        |
| 01991 | Endosulfan Sulfate                                                                         | 1031-07-8  | N.D.   | 0.39               | ug/kg | 1        |
| 01992 | Endrin Aldehyde                                                                            | 7421-93-4  | N.D.   | 1.2                | ug/kg | 1        |
| 01993 | PCB-1016                                                                                   | 12674-11-2 | N.D.   | 5.6                | ug/kg | 1        |
| 01994 | PCB-1221                                                                                   | 11104-28-2 | N.D.   | 12.                | ug/kg | 1        |
| 01995 | PCB-1232                                                                                   | 11141-16-5 | N.D.   | 5.0                | ug/kg | 1        |
| 01996 | PCB-1242                                                                                   | 53469-21-9 | N.D.   | 5.9                | ug/kg | 1        |
| 01997 | PCB-1248                                                                                   | 12672-29-6 | N.D.   | 5.7                | ug/kg | 1        |
| 01998 | PCB-1254                                                                                   | 11097-69-1 | N.D.   | 6.7                | ug/kg | 1        |
| 01999 | PCB-1260                                                                                   | 11096-82-5 | N.D.   | 5.2                | ug/kg | 1        |
| 03017 | Endrin Ketone                                                                              | 53494-70-5 | N.D.   | 0.39               | ug/kg | 1        |
| 03025 | Alpha Chlordane                                                                            | 5103-71-9  | N.D.   | 0.20               | ug/kg | 1        |
| 03026 | Gamma Chlordane                                                                            | 5103-74-2  | N.D.   | 0.20               | ug/kg | 1        |
|       |                                                                                            |            |        |                    |       |          |



Page 2 of 4

Lancaster Laboratories Sample No. SW 3933078

Collected:10/31/2002 15:50

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:37

Discard: 12/26/2002

(7-8')5GP-8 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

Account Number: 11200

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

Dry

785GP SDG#: RAR01-16

| CAT           |                                 |                 | Dry              | Method             |                | Dilution |
|---------------|---------------------------------|-----------------|------------------|--------------------|----------------|----------|
| No.           | Analysis Name                   | CAS Number      | Result           | Detection<br>Limit | Units          | Factor   |
| 04688         | TCL SW846 Semivolatiles Soil    |                 |                  |                    |                |          |
| 01185         | Phenol                          | 108-95-2        | N.D.             | 39.                | ug/kg          | 1        |
| 01186         | 2-Chlorophenol                  | 95-57-8         | N.D.             | 39.                | ug/kg          | 1        |
| 01187         | 1,4-Dichlorobenzene             | 106-46-7        | N.D.             | 39.                | ug/kg          | 1        |
| 01188         | N-Nitroso-di-n-propylamine      | 621-64-7        | N.D.             | 39.                | ug/kg          | 1        |
| 01189         | 1,2,4-Trichlorobenzene          | 120-82-1        | N.D.             | 39.                | ug/kg          | 1        |
| 01190         | 4-Chloro-3-methylphenol         | 59-50-7         | N.D.             | 78.                | ug/kg          | 1        |
| 03746         | 2-Nitrophenol                   | 88-75-5         | N.D.             | 39.                | ug/kg          | 1        |
| 03747         | 2,4-Dimethylphenol              | 105-67-9        | N.D.             | 39.                | ug/kg          | 1        |
| 03748         | 2,4-Dichlorophenol              | 120-83-2        | N.D.             | 39.                | ug/kg          | 1        |
| 03749         | 2,4,6-Trichlorophenol           | 88-06-2         | N.D.             | 39.                | ug/kg          | 1        |
| 03 <b>753</b> | bis(2-Chloroethyl)ether         | 111-44-4        | N.D.             | 39.                | ug/kg          | 1        |
| 03754         | 1,3-Dichlorobenzene             | 541-73-1        | N.D.             | 39.                | ug/kg          | 1        |
| 03755         | 1,2-Dichlorobenzene             | 95-50-1         | N.D.             | 39.                | ug/kg          | 1        |
| 03757         | Hexachloroethane                | 67-72-1         | N.D.             | 39.                | ug/kg          | 1        |
| 03758         | Nitrobenzene                    | 98-95-3         | N.D.             | 39.                | ug/kg          | 1        |
| 03759         | Isophorone                      | 78-59-1         | N.D.             | 39.                | ug/kg          | 1        |
| 03760         | bis(2-Chloroethoxy)methane      | 111-91-1        | N.D.             | 39.                | ug/kg          | 1        |
| 03761         | Naphthalene                     | 91-20-3         | N.D.             | 39.                | ug/kg          | 1        |
| 03762         | Hexachlorobutadiene             | 87-68-3         | N.D.             | 78.                | ug/kg          | 1        |
| 03763         | Hexachlorocyclopentadiene       | 77-47-4         | N.D.             | 200.               | ug/kg          | 1        |
| 03764         | 2-Chloronaphthalene             | 91-58-7         | N.D.             | 39.                | ug/kg          | 1        |
| 03765         | Acenaphthylene                  | 208-96-8        | N.D.             | 39.                | ug/kg          | 1        |
| 03766         | Dimethylphthalate               | 131-11-3        | N.D.             | 78.                | ug/kg          | 1        |
| 04690         | 2-Methylphenol                  | 95-48-7         | N.D.             | 39.                | ug/ <b>k</b> g | 1        |
| 04691         | 2,2'-oxybis(1-Chloropropane)    | 108-60-1        | N.D.             | 39.                | ug/kg          | 1        |
| 04692         | 4-Methylphenol                  | 106-44-5        | N.D.             | 78.                | ug/kg          | 1        |
|               | 3-Methylphenol and 4-methylphen | nol cannot be r | esolved under th | e                  |                |          |
|               | chromatographic conditions used | l for sample an | alysis. The resu | lt reported        |                |          |
|               | for 4-methylphenol represents t | he combined to  | tal of both comp | ounds.             |                |          |
| 04693         | 4-Chloroaniline                 | 106-47-8        | N.D.             | 39.                | ug/kg          | 1        |
| 04694         | 2-Methylnaphthalene             | 91-57-6         | N.D.             | 39.                | ug/kg          | 1        |
| 04695         | 2,4,5-Trichlorophenol           | 95-95-4         | N.D.             | 39.                | ug/kg          | 1        |
| 04696         | 2-Nitroaniline                  | 88-74-4         | N.D.             | 39.                | ug/kg          | 1        |
|               |                                 |                 |                  |                    |                |          |

04689 TCL SW846 Semivolatiles/Soil



## Analysis Report





## REPRINT

Page 3 of 4

Lancaster Laboratories Sample No. SW 3933078

Collected:10/31/2002 15:50

Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:37 Draper Aden Associates, Inc.

Discard: 12/26/2002

2206 South Main Street Blacksburg VA 24060

(7-8')5GP-8 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

785GP SDG#: RAR01-16

| 70301 | BBON. Idator 10                                                                              |                  |               | Dry                |       |          |
|-------|----------------------------------------------------------------------------------------------|------------------|---------------|--------------------|-------|----------|
| CAT   |                                                                                              |                  | Dry           | Method             |       | Dilution |
| No.   | Analysis Name                                                                                | CAS Number       | Result        | Detection<br>Limit | Units | Factor   |
| 01191 | Acenaphthene                                                                                 | 83-32-9          | N.D.          | 39.                | ug/kg | 1        |
| 01192 | 4-Nitrophenol                                                                                | 100-02-7         | N.D.          | 200.               | ug/kg | 1        |
| 01193 | 2,4-Dinitrotoluene                                                                           | 121-14-2         | N.D.          | 78.                | ug/kg | 1        |
| 01194 | Pentachlorophenol                                                                            | 87-86-5          | N.D.          | 200.               | ug/kg | 1        |
| 01195 | Pyrene                                                                                       | 129-00-0         | N.D.          | 39.                | ug/kg | 1        |
| 03750 | 2,4-Dinitrophenol                                                                            | 51-28-5          | N.D.          | 780.               | ug/kg | 1        |
| 03751 | 4,6-Dinitro-2-methylphenol                                                                   | 534-52-1         | N.D.          | 200.               | ug/kg | 1        |
| 03767 | 2,6-Dinitrotoluene                                                                           | 606-20-2         | N.D.          | 39.                | ug/kg | 1        |
| 03768 | Fluorene                                                                                     | 86-73-7          | N.D.          | 39.                | ug/kg | 1        |
| 03769 | 4-Chlorophenyl-phenylether                                                                   | 7005-72-3        | N.D.          | 39.                | ug/kg | 1        |
| 03770 | Diethylphthalate                                                                             | 84-66-2          | N.D.          | 78.                | ug/kg | 1        |
| 03772 | N-Nitrosodiphenylamine                                                                       | 86-30-6          | N.D.          | 39.                | ug/kg | 1        |
|       | N-nitrosodiphenylamine decompo<br>The result reported for N-nitr<br>total of both compounds. | rosodiphenylamin | ne represents | the combined       | 4     | _        |
| 03773 | 4-Bromophenyl-phenylether                                                                    | 101-55-3         | N.D.          | 39.                | ug/kg | 1        |
| 03774 | Hexachlorobenzene                                                                            | 118-74-1         | N.D.          | 39.                | ug/kg | 1        |
| 03775 | Phenanthrene                                                                                 | 85-01-8          | N.D.          | 39.                | ug/kg | 1        |
| 03776 | Anthracene                                                                                   | 120-12-7         | N.D.          | 39.                | ug/kg | 1        |
| 03777 | Di-n-butylphthalate                                                                          | 84-74-2          | N.D.          | 78.                | ug/kg | 1        |
| 03778 | Fluoranthene                                                                                 | 206-44-0         | N.D.          | 39.                | ug/kg | 1        |
| 03780 | Butylbenzylphthalate                                                                         | 85-68-7          | N.D.          | 78.                | ug/kg | 1        |
| 03781 | Benzo(a)anthracene                                                                           | 56-55-3          | N.D.          | 39.                | ug/kg | 1        |
| 03782 | Chrysene                                                                                     | 218-01-9         | N.D.          | 39.                | ug/kg | 1        |
| 03783 | 3,3'-Dichlorobenzidine                                                                       | 91-94-1          | N.D.          | 78.                | ug/kg | 1        |
| 03784 | bis(2-Ethylhexyl)phthalate                                                                   | 117-81-7         | 92. J         | 78.                | ug/kg | 1        |
| 03785 | Di-n-octylphthalate                                                                          | 117-84-0         | N.D.          | 78.                | ug/kg | 1        |
| 03786 | Benzo(b) fluoranthene                                                                        | 205-99-2         | N.D.          | 39.                | ug/kg | 1        |
| 03787 | Benzo(k) fluoranthene                                                                        | 207-08-9         | N.D.          | 39.                | ug/kg | 1        |
| 03788 | Benzo(a) pyrene                                                                              | 50-32-8          | N.D.          | 39.                | ug/kg | 1        |
| 03789 | Indeno(1,2,3-cd)pyrene                                                                       | 193-39-5         | N.D.          | 39.                | ug/kg | 1        |
| 03790 | Dibenz(a,h)anthracene                                                                        | 53-70-3          | N.D.          | 39.                | ug/kg | 1        |
| 03791 | Benzo(g,h,i)perylene                                                                         | 191-24-2         | N.D.          | 39.                | ug/kg | 1        |
| 04697 | 3-Nitroaniline                                                                               | 99-09-2          | N.D.          | 78.                | ug/kg | 1        |
| 04698 | Dibenzofuran                                                                                 | 132-64-9         | N.D.          | 39.                | ug/kg | 1        |
| 04700 | 4-Nitroaniline                                                                               | 100-01-6         | N.D.          | 78.                | ug/kg | 1        |





Page 4 of 4

Lancaster Laboratories Sample No. 3933078

Collected:10/31/2002 15:50 Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:37

Discard: 12/26/2002

(7-8')5GP-8 Grab Soil Sample HWMU-5 & HWMU-7 Investigation Draper Aden Associates, Inc. 2206 South Main Street

Blacksburg VA 24060

785GP SDG#: RAR01-16

|       |               | Dry        |        |                    |       |          |
|-------|---------------|------------|--------|--------------------|-------|----------|
| CAT   |               |            | Dry    | Method             |       | Dilution |
| No.   | Analysis Name | CAS Number | Result | Detection<br>Limit | Units | Factor   |
| 04702 | Carbazole     | 86-74-8    | N.D.   | 39.                | ug/kg | 1        |

| CAT   |                          |                    |        | Analysis         |                   | Dilution |
|-------|--------------------------|--------------------|--------|------------------|-------------------|----------|
| 7.    | Analysis Name            | Method             | Trial# | Date and Time    | Analyst           | Factor   |
| 0111  | Moisture                 | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer | 1        |
| 01225 | TCL Pesticides in Solids | SW-846 8081A/8082  | 1      | 11/06/2002 06:55 | Douglas D Seitz   | 1        |
| 01225 | TCL Pesticides in Solids | SW-846 8081A/8082  | 1      | 11/07/2002 20:42 | Douglas D Seitz   | 5        |
| 04688 | TCL SW846 Semivolatiles  | SW-846 8270C       | 1      | 11/06/2002 15:52 | Brian K Graham    | 1        |
|       | Soil                     |                    |        |                  |                   |          |
| 04689 | TCL SW846                | SW-846 8270C       | 1      | 11/06/2002 15:52 | Brian K Graham    | 1        |
|       | Semivolatiles/Soil       |                    |        |                  |                   |          |
| 00381 | BNA Soil Extraction      | SW-846 3550B       | 1      | 11/05/2002 17:40 | Amy M Strocko     | 1        |
| 00819 | Solid Sample Pesticide   | SW-846 3550B       | 1      | 11/05/2002 00:30 | Darin P Wagner    | 1        |
|       | Extract                  |                    |        |                  | -                 |          |



Drv

Page 1 of 4

Lancaster Laboratories Sample No. SW 3933079

Collected:10/31/2002 16:05 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:37 2206 South Main Street Discard: 12/26/2002 Blacksburg VA 24060

(11-12')5GP-8 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

11125 SDG#: RAR01-17

|       |                                |                |              |          | Dry                |                |          |
|-------|--------------------------------|----------------|--------------|----------|--------------------|----------------|----------|
| CAT   |                                |                | Dry          |          | Method             |                | Dilution |
| No.   | Analysis Name                  | CAS Number     | Resul        | t        | Detection<br>Limit | Units          | Factor   |
| 00111 | Moisture                       | n.a.           | 14.5         |          | 0.50               | &              | 1        |
|       | "Moisture" represents the loss |                |              |          |                    |                |          |
|       | 103 - 105 degrees Celsius. The | moisture resul | t report     | ted abov | e is on an         |                |          |
|       | as-received basis.             |                |              |          |                    |                |          |
| 01225 | TCL Pesticides in Solids       |                |              |          |                    |                |          |
|       |                                |                |              |          |                    |                |          |
| 01218 | Gamma BHC - Lindane            | 58-89-9        | N.D.         |          | 0.20               | ug/kg          | 1        |
| 01219 | Heptachlor                     | 76-44-8        | N.D.         |          | 0.20               | ug/kg          | 1        |
| 01220 | Aldrin                         | 309-00-2       | N.D.         |          | 0.20               | ug/kg          | 1        |
| 01221 | p,p-DDT                        | 50-29-3        | N.D.         |          | 0.42               | ug/kg          | 1        |
| 01222 | Dieldrin                       | 60-57-1        | N.D.         |          | 0.39               | ug/kg          | 1        |
| 01223 | Endrin                         | 72-20-8        | N.D.         |          | 0.41               | ug/kg          | 1        |
| 01859 | Methoxychlor                   | 72-43-5        | N.D.         |          | 4.7                | ug/kg          | 1        |
| 01981 | Alpha BHC                      | 319-84-6       | N.D.         |          | 0.20               | ug/kg          | 1        |
| 01982 | Beta BHC                       | 319-85-7       | N.D.         |          | 0.20               | ug/kg          | 1        |
| 01983 | Delta BHC                      | 319-86-8       | N.D.         |          | 0.20               | ug/kg          | 1        |
| 01984 | Heptachlor Epoxide             | 1024-57-3      | N.D.         |          | 0.20               | ug/kg          | 1        |
| 01985 | p,p-DDE                        | 72~55-9        | 1.2          | J        | 0.39               | ug/kg          | 1        |
| 01986 | p,p-DDD                        | 72-54-8        | 0.97         | J        | 0.39               | ug/kg          | 1        |
| 01988 | Toxaphene                      | 8001-35-2      | N.D.         |          | 13.                | ug/ <b>kg</b>  | 1        |
| 01989 | Endosulfan I                   | 959-98-8       | N.D.         |          | 0.20               | ug/ <b>k</b> g | 1        |
| 01990 | Endosulfan II                  | 33213-65-9     | N.D.         |          | 0.39               | ug/kg          | 1        |
| 01991 | Endosulfan Sulfate             | 1031-07-8      | N.D.         |          | 0.39               | ug/ <b>k</b> g | 1        |
| 01992 | Endrin Aldehyde                | 7421-93-4      | 1.7          | J        | 1.2                | ug/kg          | 1        |
| 01993 | PCB-1016                       | 12674-11-2     | N.D.         |          | 5.6                | ug/kg          | 1        |
| 01994 | PCB-1221                       | 11104-28-2     | N.D.         |          | 12.                | ug/kg          | 1        |
| 01995 | PCB-1232                       | 11141-16-5     | N.D.         |          | 5.0                | ug/kg          | 1        |
| 01996 | PCB-1242                       | 53469-21-9     | N.D.         |          | 5.8                | ug/ <b>kg</b>  | 1        |
| 01997 | PCB-1248                       | 12672-29-6     | N.D.         |          | 5.7                | ug/kg          | 1        |
| 01998 | PCB-1254                       | 11097-69-1     | N.D.         |          | 6.7                | ug/kg          | 1        |
| 01999 | PCB-1260                       | 11096-82-5     | N.D.         |          | 5.1                | ug/kg          | 1        |
| 03017 | Endrin Ketone                  | 53494-70-5     | N.D.         |          | 0.39               | ug/kg          | 1        |
| 03025 | Alpha Chlordane                | 5103-71-9      | <b>N</b> .D. |          | 0.20               | ug/kg          | 1        |
| 03026 | Gamma Chlordane                | 5103-74-2      | N.D.         |          | 0.20               | ug/kg          | 1        |
|       | Heatsahlan dateated in the     | markad blank a | hous th      |          | dotostion          |                |          |

Heptachlor was detected in the method blank above the method detection





Page 2 of 4

Lancaster Laboratories Sample No. 3933079

Account Number: 11200 Collected:10/31/2002 16:05

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:37

Discard: 12/26/2002

(11-12')5GP-8 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

Draper Aden Associates, Inc. 2206 South Main Street Blacksburg VA 24060

Dry

| CAT   |                                                                                                  |                | Dry               | Method             |       | Dilution |
|-------|--------------------------------------------------------------------------------------------------|----------------|-------------------|--------------------|-------|----------|
| No.   | Analysis Name                                                                                    | CAS Number     | Result            | Detection<br>Limit | Units | Factor   |
|       | limit. No heptachlor was detect reported.                                                        | ed in the samp | le, therefore the | e data is          |       |          |
| 04688 | TCL SW846 Semivolatiles Soil                                                                     |                |                   |                    |       |          |
| 01185 | Phenol                                                                                           | 108-95-2       | N.D.              | 39.                | ug/kg | 1        |
| 01186 | 2-Chlorophenol                                                                                   | 95-57-8        | N.D.              | 39.                | ug/kg | 1        |
| 01187 | 1,4-Dichlorobenzene                                                                              | 106-46-7       | N.D.              | 39.                | ug/kg | 1        |
| J1188 | N-Nitroso-di-n-propylamine                                                                       | 621-64-7       | N.D.              | 39.                | ug/kg | 1        |
| 01189 | 1,2,4-Trichlorobenzene                                                                           | 120-82-1       | N.D.              | 39.                | ug/kg | 1        |
| 01190 | 4-Chloro-3-methylphenol                                                                          | 59-50-7        | N.D.              | 78.                | ug/kg | 1        |
| 03746 | 2-Nitrophenol                                                                                    | 88-75-5        | N.D.              | 39.                | ug/kg | 1        |
| 03747 | 2,4-Dimethylphenol                                                                               | 105-67-9       | N.D.              | 39.                | ug/kg | 1        |
| 03748 | 2,4-Dichlorophenol                                                                               | 120-83-2       | N.D.              | 39.                | ug/kg | 1        |
| 03749 | 2,4,6-Trichlorophenol                                                                            | 88-06-2        | N.D.              | 39.                | ug/kg | 1        |
| 03753 | bis(2-Chloroethyl)ether                                                                          | 111-44-4       | N.D.              | 39.                | ug/kg | 1        |
| 03754 | 1,3-Dichlorobenzene                                                                              | 541-73-1       | N.D.              | 39.                | ug/kg | 1        |
| 03755 | 1,2-Dichlorobenzene                                                                              | 95-50-1        | N.D.              | 39.                | ug/kg | 1        |
| 03757 | Hexachloroethane                                                                                 | 67-72-1        | N.D.              | 39.                | ug/kg | 1        |
| 03758 | Nitrobenzene                                                                                     | 98-95-3        | N.D.              | 39.                | ug/kg | 1        |
| 03759 | Isophorone                                                                                       | 78-59-1        | N.D.              | 39.                | ug/kg | 1        |
| 03760 | bis(2-Chloroethoxy)methane                                                                       | 111-91-1       | N.D.              | 39.                | ug/kg | 1        |
| 03761 | Naphthalene                                                                                      | 91-20-3        | N.D.              | 39.                | ug/kg | 1        |
| 03762 | Hexachlorobutadiene                                                                              | 87-68-3        | N.D.              | 78.                | ug/kg | 1        |
| 03763 | Hexachlorocyclopentadiene                                                                        | 77-47-4        | N.D.              | 200.               | ug/kg | 1        |
| 03764 | 2-Chloronaphthalene                                                                              | 91-58-7        | N.D.              | 39.                | ug/kg | 1        |
| 03765 | Acenaphthylene                                                                                   | 208-96-8       | N.D.              | 39.                | ug/kg | 1        |
| 03766 | Dimethylphthalate                                                                                | 131-11-3       | N.D.              | 78.                | ug/kg | 1        |
| 04690 | 2-Methylphenol                                                                                   | 95-48-7        | N.D.              | 39.                | ug/kg | 1        |
| 04691 | 2,2'-oxybis(1-Chloropropane)                                                                     | 108-60-1       | N.D.              | 39.                | ug/kg | 1        |
| 04692 | 4-Methylphenol                                                                                   | 106-44-5       | N.D.              | 78.                | ug/kg | 1        |
|       | 3-Methylphenol and 4-methylphenochromatographic conditions used for 4-methylphenol represents to | for sample an  | alysis. The resul | t reported         |       |          |
| 04693 | 4-Chloroaniline                                                                                  | 106-47-8       | N.D.              | 39.                | ug/kg | 1        |
| 04694 | 2-Methylnaphthalene                                                                              | 91-57-6        | N.D.              | 39.                | ug/kg | 1        |
| 04695 | 2,4,5-Trichlorophenol                                                                            | 95-95-4        | N.D.              | 39.                | ug/kg | 1        |





Blacksburg VA 24060

Page 3 of 4

Lancaster Laboratories Sample No. SW 3933079

Collected:10/31/2002 16:05 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc. Reported: 11/25/2002 at 14:37 2206 South Main Street

Discard: 12/26/2002

(11-12')5GP-8 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

|       |                                 |                            |                   | Dry         |               |          |
|-------|---------------------------------|----------------------------|-------------------|-------------|---------------|----------|
| CAT   |                                 |                            | Dry               | Method      |               | Dilution |
| No.   | Analysis Name                   | CAS Number                 | Result            | Detection   | Units         | Factor   |
|       |                                 |                            |                   | Limit       |               |          |
| 04696 | 2-Nitroaniline                  | 88-74-4                    | N.D.              | 39.         | ug/kg         | 1        |
|       | mar appear and all a facility   |                            |                   |             |               |          |
| 04689 | TCL SW846 Semivolatiles/Soil    |                            |                   |             |               |          |
| 01191 | Acenaphthene                    | 83-32-9                    | N.D.              | 39.         | ug/kg         | 1        |
| 01192 | 4-Nitrophenol                   | 100-02-7                   | N.D.              | 200.        | ug/kg         | 1        |
| 01193 | 2,4-Dinitrotoluene              | 121-14-2                   | N.D.              | 78.         | ug/kg         | 1        |
| 01194 | Pentachlorophenol               | 87-86-5                    | N.D.              | 200.        | ug/kg         | 1        |
| 01195 | Pyrene                          | 129-00-0                   | N.D.              | 39.         | ug/kg         | 1        |
| 03750 | 2,4-Dinitrophenol               | 51-28-5                    | N.D.              | 780.        | ug/kg         | 1        |
| 03751 | 4,6-Dinitro-2-methylphenol      | 534-52-1                   | N.D.              | 200.        | ug/kg         | 1        |
| 03767 | 2.6-Dinitrotoluene              | 606-20-2                   | N.D.              | 39.         | ug/kg         | 1        |
| 03768 | Fluorene                        | 86-73-7                    | N.D.              | 39.         | ug/kg         | 1        |
| 03769 | 4-Chlorophenyl-phenylether      | 7005-72-3                  | N.D.              | 39.         | ug/kg         | 1        |
| 03770 | Diethylphthalate                | 84-66-2                    | N.D.              | 78.         | ug/kg         | 1        |
| 03772 | N-Nitrosodiphenylamine          | 86-30-6                    | 82. J             | 39.         | ug/kg         | 1        |
|       | N-nitrosodiphenylamine decompos | es in the GC i             | nlet forming dipl | nenylamine. |               |          |
|       | The result reported for N-nitro |                            |                   |             |               |          |
|       | total of both compounds.        |                            |                   |             |               |          |
| 03773 | 4-Bromophenyl-phenylether       | 101-55-3                   | N.D.              | 39.         | ug/kg         | 1        |
| 03774 | Hexachlorobenzene               | 118-74-1                   | N.D.              | 39.         | ug/kg         | 1        |
| 03775 | Phenanthrene                    | 85-01-8                    | N.D.              | 39.         | ug/ <b>kg</b> | 1        |
| 03776 | Anthracene                      | 120-12-7                   | N.D.              | 39.         | ug/kg         | 1        |
| 03777 | Di-n-butylphthalate             | 84-74-2                    | N.D.              | 78.         | ug/kg         | 1        |
| 03778 | Fluoranthene                    | 206-44-0                   | N.D.              | 39.         | ug/kg         | 1        |
| 03780 | Butylbenzylphthalate            | 85-68-7                    | N.D.              | 78.         | ug/kg         | 1        |
| 03781 | Benzo(a)anthracene              | 56-55-3                    | N.D.              | 39.         | ug/kg         | 1        |
| 03782 | Chrysene                        | 218-01-9                   | N.D.              | 39.         | ug/kg         | 1        |
| 03783 | 3,3'-Dichlorobenzidine          | 91-94-1                    | N.D.              | 78.         | ug/kg         | 1        |
| 03784 | bis(2-Ethylhexyl)phthalate      | 117-81-7                   | N.D.              | 78.         | ug/kg         | 1        |
| 03785 | Di-n-octylphthalate             | 117-84-0                   | N.D.              | 78.         | ug/kg         | 1        |
| 03786 | Benzo(b) fluoranthene           | 205-99-2                   | N.D.              | 39.         | ug/kg         | 1        |
| 03787 | Benzo(k) fluoranthene           | 207-08-9                   | N.D.              | 39.         | ug/kg         | 1        |
| 03788 | Benzo(a) pyrene                 | 50-32-8                    | N.D.              | 39.         | ug/kg         | 1        |
| 03789 | Indeno(1,2,3-cd)pyrene          | 193-39-5                   | N.D.              | 39.         | ug/kg         | 1        |
| 03790 | Dibenz(a,h)anthracene           | <b>5</b> 3 - 70 <b>- 3</b> | N.D.              | 39.         | ug/kg         | 1        |
| 03791 | Benzo(g,h,i)perylene            | 191-24-2                   | $N \cdot D$ .     | 39.         | ug/kg         | 1        |
|       |                                 |                            |                   |             |               |          |



Page 4 of 4

Lancaster Laboratories Sample No. SW 3933079

Collected:10/31/2002 16:05

Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:37 Draper Aden Associates, Inc.

Discard: 12/26/2002

2206 South Main Street Blacksburg VA 24060

(11-12')5GP-8 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

11125 SDG#: RAR01-17

| CAT   |                |            | Dry    | Method             |       | Dilution |
|-------|----------------|------------|--------|--------------------|-------|----------|
| No.   | Analysis Name  | CAS Number | Result | Detection<br>Limit | Units | Factor   |
| 04697 | 3-Nitroaniline | 99-09-2    | N.D.   | 78.                | ug/kg | 1        |
| 04698 | Dibenzofuran   | 132-64-9   | N.D.   | 39.                | ug/kg | 1        |
| 04700 | 4-Nitroaniline | 100-01-6   | N.D.   | 78.                | ug/kg | 1        |
| 04702 | Carbazole      | 86-74-8    | N.D.   | 39.                | ug/kg | 1        |

|       |                          |                    | 4      |                  |                   |          |
|-------|--------------------------|--------------------|--------|------------------|-------------------|----------|
| CAT   |                          |                    |        | Analysis         |                   | Dilution |
| No.   | Analysis Name            | Method             | Trial# | Date and Time    | Analyst           | Factor   |
| 00111 | Moisture                 | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer | 1        |
| 01225 | TCL Pesticides in Solids | SW-846 8081A/8082  | 1      | 11/06/2002 07:15 | Douglas D Seitz   | 1        |
| 04688 | TCL SW846 Semivolatiles  | SW-846 8270C       | 1      | 11/06/2002 16:45 | Brian K Graham    | 1        |
|       | Soil                     |                    |        |                  |                   |          |
| 04689 | TCL SW846                | SW-846 8270C       | 1      | 11/06/2002 16:45 | Brian K Graham    | 1        |
|       | Semivolatiles/Soil       |                    |        |                  |                   |          |
| 00381 | BNA Soil Extraction      | SW-846 3550B       | 1      | 11/05/2002 17:40 | Amy M Strocko     | 1        |
| 00819 | Solid Sample Pesticide   | SW-846 3550B       | 1      | 11/05/2002 00:30 | Darin P Wagner    | 1        |
|       | Extract                  |                    |        |                  | _                 |          |



Page 1 of 4

Lancaster Laboratories Sample No. SW 3933080

Collected:10/31/2002 16:40

Submitted: 11/02/2002 10:20

Reported: 11/25/2002 at 14:37

Discard: 12/26/2002

(3-4')5GP-12 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

Account Number: 11200

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

|                |                                |                        |                | Dry                |                |          |
|----------------|--------------------------------|------------------------|----------------|--------------------|----------------|----------|
| CAT            |                                |                        | Dry            | Method             |                | Dilution |
| No.            | Analysis Name                  | CAS Number             | Result         | Detection<br>Limit | Units          | Factor   |
| 00111          | Moisture                       | n.a.                   | 16.3           | 0.50               | ₹              | 1        |
|                | "Moisture" represents the loss | in weight of t         | he sample afte | r oven drying at   |                |          |
|                | 103 - 105 degrees Celsius. The | moisture resul         | t reported abo | ve is on an        |                |          |
|                | as-received basis.             |                        |                |                    |                |          |
| 01225          | TCL Pesticides in Solids       |                        |                |                    |                |          |
| J1218          | Gamma BHC - Lindane            | 58-89-9                | N.D.           | 0.20               | ug/kg          | 1        |
| 01219          | Heptachlor                     | 76-44-8                | N.D.           | 0.20               | ug/kg          | 1        |
| 01220          | Aldrin                         | 309-00-2               | N.D.           | 0.20               | ug/kg          | 1        |
| 01221          | p,p-DDT                        | 50-29-3                | N.D.           | 0.43               | ug/kg          | 1        |
| 01222          | Dieldrin                       | 60-57-1                | N.D.           | 0.39               | ug/kg          | 1        |
| 01223          | Endrin                         | 72-20-8                | N.D.           | 0.42               | ug/kg          | 1        |
| 01859          | Methoxychlor                   | 72-43-5                | N.D.           | 4.8                | ug/kg          | 1        |
| 01981          | Alpha BHC                      | 319-84-6               | N.D.           | 0.20               | ug/kg          | 1        |
| 01982          | Beta BHC                       | 319-85-7               | N.D.           | 0.20               | ug/kg          | 1        |
| 01983          | Delta BHC                      | 319-86-8               | N.D.           | 0.20               | ug/kg          | 1        |
| 01984          | Heptachlor Epoxide             | 1024-57-3              | N.D.           | 0.20               | ug/kg          | 1        |
| 01985          | p,p-DDE                        | 72-55-9                | N.D.           | 0.39               | ug/kg          | 1        |
| 01986          | p,p-DDD                        | 72-54-8                | N.D.           | 0.39               | ug/kg          | 1        |
| 01988          | Toxaphene                      | 8001-35-2              | N.D.           | 13.                | ug/kg          | 1        |
| 01989          | Endosulfan I                   | 959~98-8               | N.D.           | 0.20               | ug/kg          | 1        |
| 01990          | Endosulfan II                  | 33213-65-9             | N.D.           | 0.39               | ug/kg          | 1        |
| 01991          | Endosulfan Sulfate             | 1031-07-8              | N.D.           | 0.39               | ug/kg          | 1        |
| 01992          | Endrin Aldehyde                | 7421-93-4              | 1.7 J          | 1.2                | ug/kg          | 1        |
| 01993          | PCB-1016                       | 12674-11-2             | N.D.           | 5.7                | ug/kg          | 1        |
| 01994          | PCB-1221                       | 11104-28-2             | N.D.           | 12.                | ug/kg          | 1        |
| 01995          | PCB-1232                       | 11141-16-5             | N.D.           | 5.1                | ug/kg          | 1        |
| 01996          | PCB-1242                       | 53469-21-9             | N.D.           | 6.0                | ug/kg          | 1        |
| 01997          | PCB-1248                       | 12672-29-6             | N.D.           | 5.9                | ug/kg          | 1        |
| 01998          | PCB-1254                       | 11097-69-1             | N.D.           | 6.8                | ug/kg          | 1        |
| 01999          | PCB-1260                       | 11096-82-5             | N.D.           | 5.3                | ug/kg          | 1        |
| 03017          | Endrin Ketone                  | 53494-70-5             | N.D.           | 0.39               | ug/kg          | 1        |
| 03 <b>0</b> 25 | Alpha Chlordane                | 5103-71-9              | N.D.           | 0.20               | u <b>g/k</b> g | 1        |
| 03026          | Gamma Chlordane                | 5 <b>1</b> 03 - 74 - 2 | N.D.           | 0.20               | ug/kg          | 1        |
|                | Heptachlor was detected in the | method blank a         | bove the metho | d detection        |                |          |



Page 2 of 4

Lancaster Laboratories Sample No. 3933080

Collected:10/31/2002 16:40

Account Number: 11200

Submitted: 11/02/2002 10:20

Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:37

2206 South Main Street Blacksburg VA 24060

Dry

Discard: 12/26/2002

(3-4')5GP-12 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

|       |                                           |                |                | 2-1                |       |          |
|-------|-------------------------------------------|----------------|----------------|--------------------|-------|----------|
| CAT   |                                           |                | Dry            | Method             |       | Dilution |
| No.   | Analysis Name                             | CAS Number     | Result         | Detection<br>Limit | Units | Factor   |
|       | limit. No heptachlor was detect reported. | ed in the samp | ole, therefore | the data is        |       |          |
| 04688 | TCL SW846 Semivolatiles Soil              |                |                |                    |       |          |
| 01185 | Phenol                                    | 108-95-2       | N.D.           | 39.                | ug/kg | 1        |
| 01186 | 2-Chlorophenol                            | 95-57-8        | N.D.           | 39.                | ug/kg | 1        |
| 01187 | 1,4-Dichlorobenzene                       | 106-46-7       | N.D.           | 39.                | ug/kg | 1        |
| 01188 | N-Nitroso-di-n-propylamine                | 621-64-7       | N.D.           | 39.                | ug/kg | 1        |
| 01189 | 1,2,4-Trichlorobenzene                    | 120-82-1       | N.D.           | 39.                | ug/kg | 1        |
| 01190 | 4-Chloro-3-methylphenol                   | 59-50-7        | N.D.           | 80.                | ug/kg | 1        |
| 03746 | 2-Nitrophenol                             | 88-75-5        | N.D.           | 39.                | ug/kg | 1        |
| 03747 | 2,4-Dimethylphenol                        | 105-67-9       | N.D.           | 39.                | ug/kg | 1        |
| 03748 | 2,4-Dichlorophenol                        | 120-83-2       | N.D.           | 39.                | ug/kg | 1        |
| 03749 | 2,4,6-Trichlorophenol                     | 88-06-2        | N.D.           | 39.                | ug/kg | 1        |
| 03753 | bis(2-Chloroethyl)ether                   | 111-44-4       | N.D.           | 39.                | ug/kg | 1        |
| 03754 | 1,3-Dichlorobenzene                       | 541-73-1       | N.D.           | 39.                | ug/kg | 1        |
| 03755 | 1,2-Dichlorobenzene                       | 95-50-1        | N.D.           | 39.                | ug/kg | 1        |
| 03757 | Hexachloroethane                          | 67-72-1        | N.D.           | 39.                | ug/kg | 1        |
| 03758 | Nitrobenzene                              | 98-95-3        | N.D.           | 39.                | ug/kg | 1        |
| 03759 | Isophorone                                | 78-59-1        | N.D.           | 39.                | ug/kg | 1        |
| 03760 | bis(2-Chloroethoxy)methane                | 111-91-1       | N.D.           | 39.                | ug/kg | 1 .      |
| 03761 | Naphthalene                               | 91-20-3        | N.D.           | 39.                | ug/kg | 1        |
| 03762 | Hexachlorobutadiene                       | 87-68-3        | N.D.           | 80.                | ug/kg | 1        |
| 03763 | Hexachlorocyclopentadiene                 | 77-47-4        | N.D.           | 200.               | ug/kg | 1        |
| 03764 | 2-Chloronaphthalene                       | 91-58-7        | N.D.           | 39.                | ug/kg | 1        |
| 03765 | Acenaphthylene                            | 208-96-8       | N.D.           | 39.                | ug/kg | 1        |
| 03766 | Dimethylphthalate                         | 131-11-3       | N.D.           | 80.                | ug/kg | 1        |
| 04690 | 2-Methylphenol                            | 95-48-7        | N.D.           | 39.                | ug/kg | 1        |
| 04691 | 2,2'-oxybis(1-Chloropropane)              | 108-60-1       | N.D.           | 39.                | ug/kg | 1        |
| 04692 | 4-Methylphenol                            | 106-44-5       | N.D.           | 80.                | ug/kg | 1        |
|       | 3-Methylphenol and 4-methylphen           | ol cannot be r | esolved under  | the                | -     |          |
|       | chromatographic conditions used           |                |                |                    |       |          |
|       | for 4-methylphenol represents t           |                |                |                    |       |          |
| 04693 | 4-Chloroaniline                           | 106-47-8       | N.D.           | 3 <b>9</b> .       | ug/kg | 1        |
| 04694 | 2-Methylnaphthalene                       | 91-57-6        | N.D.           | 39.                | ug/kg | 1        |
| 04695 | 2,4,5-Trichlorophenol                     | 95-95 4        | N.D.           | 39.                | ug/kg | 1        |





Blacksburg VA 24060

Page 3 of 4

Lancaster Laboratories Sample No. SW 3933080

Collected:10/31/2002 16:40 Account Number: 11200

 Submitted: 11/02/2002 10:20
 Draper Aden Associates, Inc.

 Reported: 11/25/2002 at 14:37
 2206 South Main Street

Discard: 12/26/2002

(3-4')5GP-12 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

|       |                                 |                 |                 | Dry          |                |          |
|-------|---------------------------------|-----------------|-----------------|--------------|----------------|----------|
| CAT   |                                 |                 | Dry             | Method       |                | Dilution |
| No.   | Analysis Name                   | CAS Number      | Result          | Detection    | Units          | Factor   |
|       |                                 |                 |                 | Limit        |                | 1        |
| 04696 | 2-Nitroaniline                  | 88-74-4         | N.D.            | 39.          | ug/kg          | 1        |
| 04689 | TCL SW846 Semivolatiles/Soil    |                 |                 |              |                |          |
| 01191 | Acenaphthene                    | 83-32-9         | N.D.            | 39.          | ug/kg          | 1        |
| 01192 | 4-Nitrophenol                   | 100-02-7        | N.D.            | 200.         | ug/kg          | 1        |
| 01193 | 2,4-Dinitrotoluene              | 121-14-2        | N.D.            | 80.          | ug/kg          | 1        |
| 01194 | Pentachlorophenol               | <b>87-86</b> -5 | N.D.            | 200.         | ug/kg          | 1        |
| 01195 | Pyrene                          | 129-00-0        | N.D.            | 39.          | ug/kg          | 1        |
| 03750 | 2,4-Dinitrophenol               | 51-28-5         | N.D.            | 800.         | ug/kg          | 1        |
| 03751 | 4,6-Dinitro-2-methylphenol      | 534-52-1        | N.D.            | 200.         | ug/kg          | 1        |
| 03767 | 2,6-Dinitrotoluene              | 606-20-2        | N.D.            | 39.          | ug/kg          | 1        |
| 03768 | Fluorene                        | 86-73-7         | N.D.            | 39.          | ug/kg          | 1        |
| 03769 | 4-Chlorophenyl-phenylether      | 7005-72-3       | N.D.            | 39.          | ug/kg          | 1 -      |
| 03770 | Diethylphthalate                | 84-66-2         | N.D.            | 80.          | ug/kg          | 1        |
| 03772 | N-Nitrosodiphenylamine          | 86-30-6         | N.D.            | 39.          | ug/kg          | 1        |
|       | N-nitrosodiphenylamine decompos | ses in the GC i | nlet forming di | phenylamine. |                |          |
|       | The result reported for N-nitro |                 |                 |              |                |          |
|       | total of both compounds.        |                 |                 |              |                |          |
| 03773 | 4-Bromophenyl-phenylether       | 101-55-3        | N.D.            | 39.          | ug/kg          | 1        |
| 03774 | Hexachlorobenzene               | 118-74-1        | N.D.            | 39.          | ug/kg          | 1        |
| 03775 | Phenanthrene                    | 85-01-8         | N.D.            | 39.          | ug/kg          | 1        |
| 03776 | Anthracene                      | 120-12-7        | N.D.            | 39.          | ug/ <b>k</b> g | 1        |
| 03777 | Di-n-butylphthalate             | 84-74-2         | N.D.            | 80.          | ug/kg          | 1        |
| 03778 | Fluoranthene                    | 206-44-0        | N.D.            | 39.          | ug/kg          | 1        |
| 03780 | Butylbenzylphthalate            | 85-68-7         | N.D.            | 80.          | ug/kg          | 1        |
| 03781 | Benzo(a)anthracene              | 56-55-3         | N.D.            | 39.          | ug/kg          | 1        |
| 03782 | Chrysene                        | 218-01-9        | N.D.            | 39.          | ug/kg          | 1        |
| 03783 | 3,3'-Dichlorobenzidine          | 91-94-1         | N.D.            | 80.          | ug/kg          | 1        |
| 03784 | bis(2-Ethylhexyl)phthalate      | 117-81-7        | N.D.            | 80.          | ug/kg          | 1        |
| 03785 | Di-n-octylphthalate             | 117-84-0        | N.D.            | 80.          | ug/kg          | 1        |
| 03786 | Benzo(b)fluoranthene            | 205-99-2        | N.D.            | 39.          | ug/ <b>k</b> g | 1        |
| 03787 | Benzo(k)fluoranthene            | 207-08-9        | N.D.            | 39.          | ug/kg          | 1        |
| 03788 | Benzo(a)pyrene                  | 50-32-8         | N.D.            | 39.          | ug/kg          | 1        |
| 03789 | Indeno(1,2,3-cd)pyrene          | 193-39-5        | <b>N</b> .D.    | 39.          | ug/kg          | 1        |
| 03790 | Dibenz(a,h)anthracene           | 53-70-3         | N.D.            | 39.          | ug/kg          | 1        |
| 03791 | Benzo(g,h,i)perylene            | 191-24-2        | И.D.            | 39.          | ug/kg          | 1        |
|       | _                               |                 |                 |              |                |          |



Page 4 of 4

Lancaster Laboratories Sample No. SW 3933080

Collected:10/31/2002 16:40

Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:37 Draper Aden Associates, Inc.

Discard: 12/26/2002

2206 South Main Street Blacksburg VA 24060

(3-4')5GP-12 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

34512 SDG#: RAR01-18

|       |                |            |        | Dry       |       |          |
|-------|----------------|------------|--------|-----------|-------|----------|
| CAT   |                |            | Dry    | Method    |       | Dilution |
| No.   | Analysis Name  | CAS Number | Result | Detection | Units | Factor   |
|       |                |            |        | Limit     |       |          |
| 04697 | 3-Nitroaniline | 99-09-2    | N.D.   | 80.       | ug/kg | 1        |
| 04698 | Dibenzofuran   | 132-64-9   | N.D.   | 39.       | ug/kg | 1        |
| 04700 | 4-Nitroaniline | 100-01-6   | N.D.   | 80.       | ug/kg | 1        |
| 04702 | Carbazole      | 86-74-8    | N.D.   | 39.       | ug/kg | 1        |

| CAT   |                          |                    |        | Analysis         |                   | Dilution |
|-------|--------------------------|--------------------|--------|------------------|-------------------|----------|
| No.   | Analysis Name            | Method             | Trial# | Date and Time    | Analyst           | Factor   |
| 00111 | Moisture                 | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer | 1        |
| 01225 | TCL Pesticides in Solids | SW-846 8081A/8082  | 1      | 11/06/2002 07:36 | Douglas D Seitz   | 1        |
| 04688 | TCL SW846 Semivolatiles  | SW-846 8270C       | 1      | 11/06/2002 17:39 | Brian K Graham    | 1        |
|       | Soil                     |                    |        |                  |                   |          |
| 04689 | TCL SW846                | SW-846 8270C       | 1      | 11/06/2002 17:39 | Brian K Graham    | 1        |
|       | Semivolatiles/Soil       |                    |        |                  |                   |          |
| 00381 | BNA Soil Extraction      | SW-846 3550B       | 1      | 11/05/2002 17:40 | Amy M Strocko     | 1        |
| 00819 | Solid Sample Pesticide   | SW-846 3550B       | 1      | 11/05/2002 00:30 | Darin P Wagner    | 1        |
|       | Extract                  |                    |        |                  | _                 |          |



Page 1 of 4

Lancaster Laboratories Sample No. SW 3933081

Collected:10/31/2002 17:00 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:37 2206 South Main Street
Discard: 12/26/2002 Blacksburg VA 24060

(3-4')5GP-16 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

|       |                                |                | D                 | Dry                |                | Dilution |
|-------|--------------------------------|----------------|-------------------|--------------------|----------------|----------|
| CAT   |                                | a.a            | Dry               | Method             | • •            |          |
| No.   | Analysis Name                  | CAS Number     | Result            | Detection<br>Limit | Units          | Factor   |
| 00111 | Moisture                       | n.a.           | 17.9              | 0.50               | 8              | 1        |
|       | "Moisture" represents the loss | in weight of t | he sample after o | ven drying at      |                |          |
|       | 103 - 105 degrees Celsius. The | moisture resul | t reported above  | is on an           |                |          |
|       | as-received basis.             |                |                   |                    |                |          |
| 01225 | TCL Pesticides in Solids       |                |                   |                    |                |          |
| 01225 | TCD rescicides in solids       |                |                   |                    |                |          |
| 01218 | Gamma BHC - Lindane            | 58-89-9        | N.D.              | 0.21               | ug/kg          | 1        |
| 01219 | Heptachlor                     | 76-44-8        | N.D.              | 0.21               | ug/kg          | 1        |
| 01220 | Aldrin                         | 309-00-2       | N.D.              | 0.21               | ug/kg          | 1        |
| 01221 | p,p-DDT                        | 50-29-3        | N.D.              | 0.44               | ug/kg          | 1        |
| 01222 | Dieldrin                       | 60-57-1        | N.D.              | 0.40               | ug/kg          | 1        |
| 01223 | Endrin                         | 72-20-8        | N.D.              | 0.43               | ug/kg          | 1        |
| 01859 | Methoxychlor                   | 72-43-5        | N.D.              | 4.9                | ug/kg          | 1        |
| 01981 | Alpha BHC                      | 319-84-6       | N.D.              | 0.21               | ug/kg          | 1        |
| 01982 | Beta BHC                       | 319-85-7       | N.D.              | 0.21               | ug/kg          | 1        |
| 01983 | Delta BHC                      | 319-86-8       | N.D.              | 0.21               | ug/kg          | 1        |
| 01984 | Heptachlor Epoxide             | 1024-57-3      | N.D.              | 0.21               | ug/kg          | 1        |
| 01985 | p,p-DDE                        | 72-55-9        | N.D.              | 0.40               | ug/kg          | 1        |
| 01986 | p,p-DDD                        | 72-54-8        | N.D.              | 0.40               | ug/kg          | 1        |
| 01988 | Toxaphene                      | 8001-35-2      | N.D.              | 13.                | ug/kg          | 1        |
| 01989 | Endosulfan I                   | 959-98-8       | N.D.              | 0.21               | ug/kg          | 1        |
| 01990 | Endosulfan II                  | 33213-65-9     | N.D.              | 0.40               | ug/kg          | 1        |
| 01991 | Endosulfan Sulfate             | 1031-07-8      | N.D.              | 0.40               | ug/ <b>k</b> g | 1        |
| 01992 | Endrin Aldehyde                | 7421-93-4      | 2.2 J             | 1.2                | ug/ <b>k</b> g | 1        |
| 01993 | PCB-1016                       | 12674-11-2     | N.D.              | 5. <b>8</b>        | ug/kg          | 1        |
| 01994 | PCB-1221                       | 11104-28-2     | N.D.              | 12.                | ug/kg          | 1        |
| 01995 | PCB-1232                       | 11141-16-5     | N.D.              | 5.2                | ug/kg          | 1        |
| 01996 | PCB-1242                       | 53469-21-9     | N.D.              | 6.1                | ug/kg          | 1        |
| 01997 | PCB-1248                       | 12672-29-6     | N.D.              | 6.0                | ug/kg          | 1        |
| 01998 | PCB-1254                       | 11097-69-1     | N.D.              | 6.9                | ug/kg          | 1        |
| 01999 | PCB-1260                       | 11096-82-5     | N.D.              | 5.4                | ug/kg          | 1        |
| 03017 | Endrin Ketone                  | 53494-70-5     | N.D.              | 0.40               | ug/kg          | 1        |
| 03025 | Alpha Chlordane                | 5103-71-9      | N.D.              | 0.21               | ug/kg          | 1        |
| 03026 | Gamma Chlordane                | 5103-74-2      | N.D.              | 0.21               | ug/kg          | 1        |
|       | Heptachlor was detected in the | method blank a | bove the method d | etection           |                |          |



Page 2 of 4

Lancaster Laboratories Sample No. SW 3933081

Collected:10/31/2002 17:00 Account Number: 11200

Submitted: 11/02/2002 10:20
Reported: 11/25/2002 at 14:37

Discard: 12/26/2002

(3-4')5GP-16 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

| 34310      | SDG#: KAKUI IJ                                                                                        |                 |                | Dry                |                |          |
|------------|-------------------------------------------------------------------------------------------------------|-----------------|----------------|--------------------|----------------|----------|
| G) III     |                                                                                                       |                 | Dry            | Method             |                | Dilution |
| CAT<br>No. | Analysis Name                                                                                         | CAS Number      | Result         | Detection<br>Limit | Units          | Factor   |
|            | limit. No heptachlor was detect reported.                                                             | ted in the samp | ole, therefore | the data is        |                |          |
| 04688      | TCL SW846 Semivolatiles Soil                                                                          |                 |                |                    |                |          |
| 01185      | Phenol                                                                                                | 108-95-2        | N.D.           | 40.                | ug/kg          | 1        |
| 01186      | 2-Chlorophenol                                                                                        | 95-57-8         | N.D.           | 40.                | ug/kg          | 1        |
| 01187      | 1,4-Dichlorobenzene                                                                                   | 106-46-7        | N.D.           | 40.                | u <b>g/</b> kg | 1        |
| 01188      | N-Nitroso-di-n-propylamine                                                                            | 621-64-7        | N.D.           | 40.                | ug/kg          | 1        |
| 01189      | 1,2,4-Trichlorobenzene                                                                                | 120-82-1        | N.D.           | 40.                | ug/kg          | 1        |
| 01190      | 4-Chloro-3-methylphenol                                                                               | 59-50-7         | N.D.           | 82.                | ug/kg          | 1        |
| 03746      | 2-Nitrophenol                                                                                         | 88-75-5         | N.D.           | 40.                | ug/kg          | 1        |
| 03747      | 2,4-Dimethylphenol                                                                                    | 105-67-9        | N.D.           | 40.                | ug/kg          | 1        |
| 03748      | 2,4-Dichlorophenol                                                                                    | 120-83-2        | N.D.           | 40.                | ug/kg          | 1        |
| 03749      | 2,4,6-Trichlorophenol                                                                                 | 88-06-2         | N.D.           | 40.                | ug/kg          | 1        |
| 03753      | bis(2-Chloroethyl)ether                                                                               | 111-44-4        | N.D.           | 40.                | ug/kg          | 1        |
| 03754      | 1,3-Dichlorobenzene                                                                                   | 541-73-1        | N.D.           | 40.                | ug/kg          | 1        |
| 03755      | 1,2-Dichlorobenzene                                                                                   | 95-50-1         | N.D.           | 40.                | ug/kg          | 1        |
| 03757      | Hexachloroethane                                                                                      | 67-72-1         | N.D.           | 40.                | ug/kg          | 1        |
| 03758      | Nitrobenzene                                                                                          | 98-95-3         | N.D.           | 40.                | ug/kg          | 1        |
| 03759      | Isophorone                                                                                            | 78-59-1         | N.D.           | 40.                | ug/kg          | 1        |
| 03760      | bis(2-Chloroethoxy)methane                                                                            | 111-91-1        | N.D.           | 40.                | ug/kg          | 1        |
| 03761      | Naphthalene                                                                                           | 91-20-3         | N.D.           | 40.                | ug/kg          | 1        |
| 03762      | Hexachlorobutadiene                                                                                   | 87-68-3         | N.D.           | 82.                | ug/kg          | 1        |
| 03763      | Hexachlorocyclopentadiene                                                                             | 77-47-4         | N.D.           | 210.               | ug/kg          | 1        |
| 03764      | 2-Chloronaphthalene                                                                                   | 91-58-7         | N.D.           | 40.                | ug/kg          | 1        |
| 03765      | Acenaphthylene                                                                                        | 208-96-8        | N.D.           | 40.                | ug/kg          | 1        |
| 03766      | Dimethylphthalate                                                                                     | 131-11-3        | N.D.           | 82.                | ug/kg          | 1        |
| 04690      | 2-Methylphenol                                                                                        | 95-48-7         | N.D.           | 40.                | ug/kg          | 1        |
| 04691      | 2,2'-oxybis(1-Chloropropane)                                                                          | 108-60-1        | N.D.           | 40.                | ug/kg          | 1        |
| 04692      | 4-Methylphenol                                                                                        | 106-44-5        | N.D.           | 82.                | ug/kg          | 1        |
|            | 3-Methylphenol and 4-methylphen<br>chromatographic conditions used<br>for 4-methylphenol represents t | d for sample ar | nalysis. The r | esult reported     |                |          |
| 04693      | 4-Chloroaniline                                                                                       | 106-47-8        | N.D.           | 40.                | ug/kg          | 1        |
| 04694      | 2-Methylnaphthalene                                                                                   | 91-57-6         | N.D.           | 40.                | ug/kg          | 1        |
| 04695      | 2,4,5-Trichlorophenol                                                                                 | 95-95-4         | N.D.           | 40.                | uq/kg          | 1        |



242



## REPRIM

Page 3 of 4

Lancaster Laboratories Sample No. SW 3933081

Collected:10/31/2002 17:00 Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:37

Discard: 12/26/2002

(3-4')5GP-16 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

Draper Aden Associates, Inc. 2206 South Main Street Blacksburg VA 24060

| 24210         | BBG#. REMOT 19                  |                  |                 | Dry                |       |          |
|---------------|---------------------------------|------------------|-----------------|--------------------|-------|----------|
| CAT           |                                 |                  | Dry             | Method             |       | Dilution |
| No.           | Analysis Name                   | CAS Number       | Result          | Detection<br>Limit | Units | Factor   |
| 04696         | 2-Nitroaniline                  | 88-74-4          | N.D.            | 40.                | ug/kg | 1        |
| 04689         | TCL SW846 Semivolatiles/Soil    |                  |                 |                    |       |          |
| 01191         | Acenaphthene                    | 83-32-9          | N.D.            | 40.                | ug/kg | 1        |
| 01192         | 4-Nitrophenol                   | 100-02-7         | N.D.            | 210.               | ug/kg | 1        |
| 01193         | 2,4-Dinitrotoluene              | 121-14-2         | N.D.            | 82.                | ug/kg | 1        |
| 01194         | Pentachlorophenol               | 87-86-5          | N.D.            | 210.               | ug/kg | 1        |
| <b>0119</b> 5 | Pyrene                          | 129-00-0         | N.D.            | 40.                | ug/kg | 1        |
| 03750         | 2,4-Dinitrophenol               | 5 <b>1-28-</b> 5 | N.D.            | 820.               | ug/kg | 1        |
| 03751         | 4,6-Dinitro-2-methylphenol      | 534-52-1         | N.D.            | 210.               | ug/kg | 1        |
| 03767         | 2,6-Dinitrotoluene              | 606-20-2         | N.D.            | 40.                | ug/kg | 1        |
| 03768         | Fluorene                        | 86-73-7          | N.D.            | 40.                | ug/kg | 1        |
| 03769         | 4-Chlorophenyl-phenylether      | 7005-72-3        | N.D.            | 40.                | ug/kg | 1        |
| 03770         | Diethylphthalate                | 84-66-2          | N.D.            | 82.                | ug/kg | 1        |
| 03772         | N-Nitrosodiphenylamine          | 86-30-6          | N.D.            | 40.                | ug/kg | 1        |
|               | N-nitrosodiphenylamine decompos | es in the GC i   | nlet forming di | iphenylamine.      |       |          |
|               | The result reported for N-nitro | sodiphenylamin   | e represents th | ne combined        |       |          |
|               | total of both compounds.        |                  |                 |                    |       |          |
| 03773         | 4-Bromophenyl-phenylether       | 101-55-3         | N.D.            | 40.                | ug/kg | 1        |
| 03774         | Hexachlorobenzene               | 118-74-1         | N.D.            | 40.                | ug/kg | 1        |
| 03775         | Phenanthrene                    | 85-01-8          | N.D.            | 40.                | ug/kg | 1        |
| 03776         | Anthracene                      | 120-12-7         | N.D.            | 40.                | ug/kg | 1        |
| 03777         | Di-n-butylphthalate             | 84-74-2          | N.D.            | 82.                | ug/kg | 1        |
| 03778         | Fluoranthene                    | 206-44-0         | N.D.            | 40                 | ug/kg | 1        |
| 03780         | Butylbenzylphthalate            | 85-68-7          | N.D.            | 82.                | ug/kg | 1        |
| 03781         | Benzo(a) anthracene             | 56-55-3          | N.D.            | 40.                | ug/kg | 1        |
| 03782         | Chrysene                        | 218-01-9         | N.D.            | 40.                | ug/kg | 1        |
| 03783         | 3,3'-Dichlorobenzidine          | 91-94-1          | N.D.            | 82.                | ug/kg | 1        |
| 03784         | bis(2-Ethylhexyl)phthalate      | 117-81-7         | N.D.            | 82.                | ug/kg | 1        |
| 03785         | Di-n-octylphthalate             | 117-84-0         | N.D.            | 82.                | ug/kg | 1        |
| 03786         | Benzo(b) fluoranthene           | 205-99-2         | N.D.            | 40.                | ug/kg | 1        |
| 03787         | Benzo(k) fluoranthene           | 207-08-9         | N.D.            | 40.                | ug/kg | 1        |
| 03788         | Benzo(a)pyrene                  | 50-32-8          | N.D.            | 40.                | ug/kg | 1        |
| 03789         | Indeno(1,2,3-cd)pyrene          | 193-39-5         | <b>N</b> .D.    | 40.                | ug/kg | 1        |
| 03790         | Dibenz (a, h) anthracene        | 53-70-3          | N.D.            | 40.                | ug/kg | 1        |
| 03791         | Benzo(q,h,i)perylene            | 191-24-2         | N.D.            | 40.                | ug/kg | 1        |
|               | J                               |                  |                 |                    | 3. 3  |          |



243



### REPAINT

Page 4 of 4

Lancaster Laboratories Sample No. SW 3933081

Collected:10/31/2002 17:00

Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:37 Draper Aden Associates, Inc.

Discard: 12/26/2002

2206 South Main Street Blacksburg VA 24060

(3-4')5GP-16 Grab Soil Sample HWMU-5 & HWMU-7 Investigation

34516 SDG#: RAR01-19

| CAT   |                |            | Dry    | Method             |       | Dilution |
|-------|----------------|------------|--------|--------------------|-------|----------|
| No.   | Analysis Name  | CAS Number | Result | Detection<br>Limit | Units | Factor   |
| 04697 | 3-Nitroaniline | 99-09-2    | N.D.   | 82.                | ug/kg | 1        |
| 04698 | Dibenzofuran   | 132-64-9   | N.D.   | 40.                | ug/kg | 1        |
| 04700 | 4-Nitroaniline | 100-01-6   | N.D.   | 82.                | ug/kg | 1        |
| 04702 | Carbazole      | 86-74-8    | N.D.   | 40.                | ug/kg | 1        |

| CAT   | Analysis                 |                    |        |                  |                   |        |  |  |  |  |  |  |
|-------|--------------------------|--------------------|--------|------------------|-------------------|--------|--|--|--|--|--|--|
| No.   | Analysis Name            | Method             | Trial# | Date and Time    | Analyst           | Factor |  |  |  |  |  |  |
| 00111 | Moisture                 | EPA 160.3 modified | 1      | 11/05/2002 08:39 | Helen L Schaeffer | 1      |  |  |  |  |  |  |
| 01225 | TCL Pesticides in Solids | SW-846 8081A/8082  | 1      | 11/06/2002 07:57 | Douglas D Seitz   | 1      |  |  |  |  |  |  |
| 04688 | TCL SW846 Semivolatiles  | SW-846 8270C       | 1      | 11/06/2002 18:33 | Brian K Graham    | ı      |  |  |  |  |  |  |
|       | Soil                     |                    |        |                  |                   |        |  |  |  |  |  |  |
| 04689 | TCL SW846                | SW-846 8270C       | 1      | 11/06/2002 18:33 | Brian K Graham    | 1      |  |  |  |  |  |  |
|       | Semivolatiles/Soil       |                    |        |                  |                   |        |  |  |  |  |  |  |
| 00381 | BNA Soil Extraction      | SW-846 3550B       | 1      | 11/05/2002 17:40 | Amy M Strocko     | 1      |  |  |  |  |  |  |
| 00819 | Solid Sample Pesticide   | SW-846 3550B       | 1      | 11/05/2002 00:30 | Darin P Wagner    | ı      |  |  |  |  |  |  |
|       | Extract                  |                    |        |                  |                   |        |  |  |  |  |  |  |



Page 1 of 13

### Quality Control Summary

Client Name: Draper Aden Associates, Inc.

Group Number: 829270

Reported: 11/25/02 at 02:38 PM

#### Laboratory Compliance Quality Control

|                            | Blank  | Blank        | Report     | LCS  | LCSD       | LCS/LCSD       |     |         |
|----------------------------|--------|--------------|------------|------|------------|----------------|-----|---------|
| Analysis Name              | Result | MDL          | Units      | %REC | %REC       | Limits         | RPD | RPD Max |
|                            | 0      | ) (-)        |            |      |            | 001            |     |         |
| Batch number: 023080021A   | -      |              | 3933061-39 |      | 30/4-3933  |                |     |         |
| Gamma BHC - Lindane        | N.D.   | .17          | ug/kg      | 103  |            | 58-149         |     |         |
| Heptachlor                 | 0.18 J | .17          | ug/kg      | 106  |            | 57-156         |     |         |
| Aldrin                     | N.D.   | .17          | ug/kg      | 100  |            | 54-151         |     |         |
| p,p-DDT                    | N.D.   | .36          | ug/kg      | 115  |            | 53-187         |     |         |
| Dieldrin                   | N.D.   | .33          | ug/kg      | 100  |            | 58-157         |     |         |
| Endrin                     | N.D.   | .35          | ug/kg      | 103  |            | 65-183         |     |         |
| Methoxychlor               | N.D.   | 4.           | ug/kg      | 109  |            | 53-197         |     |         |
| Alpha BHC                  | N.D.   | . 17         | ug/kg      | 97   |            | 47-149         |     |         |
| Beta BHC                   | N.D.   | .17          | ug/kg      | 106  |            | 61-148         |     |         |
| Delta BHC                  | N.D.   | .17          | ug/kg      | 109  |            | 49-171         |     |         |
| Heptachlor Epoxide         | N.D.   | .17          | ug/kg      | 103  |            | 63-149         |     |         |
| p,p-DDE                    | N.D.   | .33          | ug/kg      | 104  |            | 50-177         |     |         |
| p,p-DDD                    | N.D.   | .33          | ug/kg      | 106  |            | 49-182         |     |         |
| Toxaphene                  | N.D.   | 11.          | ug/kg      |      |            |                |     |         |
| Endosulfan I               | N.D.   | .17          | ug/kg      | 100  |            | 56-150         |     |         |
| Endosulfan II              | N.D.   | . 33         | ug/kg      | 101  |            | 58-158         |     |         |
| ndosulfan Sulfate          | N.D.   | .33          | ug/kg      | 91   |            | 57-170         |     |         |
| _ndrin Aldehyde            | N.D.   | 1.           | ug/kg      | 104  |            | 47-145         |     |         |
| PCB-1016                   | N.D.   | 4.8          | ug/kg      |      |            |                |     |         |
| PCB-1221                   | N.D.   | 10.          | ug/kg      |      |            |                |     |         |
| PCB-1232                   | N.D.   | 4.3          | ug/kg      |      |            |                |     |         |
| PCB-1242                   | N.D.   | 5.           | ug/kg      |      |            |                |     |         |
| PCB-1248                   | N.D.   | 4.9          | ug/kg      |      |            |                |     |         |
| PCB-1254                   | N.D.   | 5.7          | ug/kg      |      |            |                |     |         |
| PCB-1260                   | N.D.   | 4.4          | ug/kg      |      |            |                |     |         |
| Endrin Ketone              | N.D.   | .33          | ug/kg      | 103  |            | 70-143         |     |         |
| Alpha Chlordane            | N.D.   | .17          | ug/kg      | 106  |            | 69-138         |     |         |
| Gamma Chlordane            | N.D.   | .17          | ug/kg      | 103  |            | 63-145         |     |         |
|                            |        |              |            |      |            |                |     |         |
| Batch number: 02308SLA026  | -      |              | 3933061-39 |      | 33074-3933 |                |     |         |
| Phenol                     | N.D.   | 33.          | ug/kg      | 87   | •          | 59 <b>-121</b> |     |         |
| 2-Chlorophenol             | N.D.   | 33.          | ug/kg      | 91   |            | 71-114         |     |         |
| 1,4-Dichlorobenzene        | N.D.   | 33.          | ug/kg      | 83   |            | 61-110         |     |         |
| N-Nitroso-di-n-propylamine | N.D.   | 33.          | ug/kg      | 88   |            | 62-118         |     |         |
| 1,2,4-Trichlorobenzene     | N.D.   | 33.          | ug/kg      | 90   |            | 63-116         |     |         |
| 4-Chloro-3-methylphenol    | N.D.   | 67.          | ug/kg      | 98   |            | 72-123         |     |         |
| Acenaphthene               | N.D.   | <b>3</b> 3.  | ug/kg      | 102  |            | 70-115         |     |         |
| 4-Nitrophenol              | N.D.   | 170.         | ug/kg      | 99   |            | 63-138         |     |         |
| 2,4-Dinitrotoluene         | N.D.   | 67.          | ug/kg      | 103  |            | 70-130         |     |         |
| Pentachlorophenol          | N.D.   | 170.         | ug/kg      | 72   |            | 52-112         |     |         |
| Pyrene                     | N.D.   | 33.          | ug/kg      | 98   |            | 67-123         |     |         |
| 2-Nitrophenol              | N.D.   | 3 <b>3</b> . | ug/kg      | 99   |            | 76-114         |     |         |
| 2,4-Dimethylphenol         | N.D.   | 33.          | ug/kg      | 91   |            | 60-110         |     |         |
| • •                        |        |              | J. J       |      |            |                |     |         |

#### \*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.







Page 2 of 13

### Quality Control Summary

Client Name: Draper Aden Associates, Inc. Group Number: 829270

Reported: 11/25/02 at 02:38 PM

### Laboratory Compliance Quality Control

| Analysis Name         Result         MDL         Units         %REC         Limits         RPD         RPD Max           2,4-Dichlorophenol         N.D.         33.         ug/kg         92         71-118         72-118           2,4,6-Trichlorophenol         N.D.         33.         ug/kg         91         72-118         72-118           2,4-Dinitrophenol         N.D.         670.         ug/kg         59         32-125         72-125           4,6-Dinitro-2-methylphenol         N.D.         170.         ug/kg         82         66-114         72-125           bis(2-Chloroethyl) ether         N.D.         33.         ug/kg         87         60-110         72-125           1,3-Dichlorobenzene         N.D.         33.         ug/kg         87         60-110         72-125           1,2-Dichlorobenzene         N.D.         33.         ug/kg         83         64-107         72-125           Hexachloroethane         N.D.         33.         ug/kg         87         48-121         72-125           Nitrobenzene         N.D.         33.         ug/kg         99         65-116         72-125           Isophorone         N.D.         33.         ug/kg         99 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2,4,6-Trichlorophenol       N.D.       33.       ug/kg       91       72-118         2,4-Dinitrophenol       N.D.       670.       ug/kg       59       32-125         4,6-Dinitro-2-methylphenol       N.D.       170.       ug/kg       71       52-125         bis(2-Chloroethyl)ether       N.D.       33.       ug/kg       82       66-114         1,3-Dichlorobenzene       N.D.       33.       ug/kg       87       60-110         1,2-Dichlorobenzene       N.D.       33.       ug/kg       83       64-107         Hexachloroethane       N.D.       33.       ug/kg       87       48-121         Nitrobenzene       N.D.       33.       ug/kg       99       65-116         Isophorone       N.D.       33.       ug/kg       92       64-108         bis(2-Chloroethoxy)methane       N.D.       33.       ug/kg       99       68-122                                                                                                                                                                                                                                                                                                                                                                 |
| 2,4-Dinitrophenol       N.D.       670.       ug/kg       59       32-125         4,6-Dinitro-2-methylphenol       N.D.       170.       ug/kg       71       52-125         bis(2-Chloroethyl)ether       N.D.       33.       ug/kg       82       66-114         1,3-Dichlorobenzene       N.D.       33.       ug/kg       87       60-110         1,2-Dichlorobenzene       N.D.       33.       ug/kg       83       64-107         Hexachloroethane       N.D.       33.       ug/kg       87       48-121         Nitrobenzene       N.D.       33.       ug/kg       99       65-116         Isophorone       N.D.       33.       ug/kg       92       64-108         bis(2-Chloroethoxy)methane       N.D.       33.       ug/kg       99       68-122                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4,6-Dinitro-2-methylphenol       N.D.       170.       ug/kg       71       52-125         bis(2-Chloroethyl)ether       N.D.       33.       ug/kg       82       66-114         1,3-Dichlorobenzene       N.D.       33.       ug/kg       87       60-110         1,2-Dichlorobenzene       N.D.       33.       ug/kg       83       64-107         Hexachloroethane       N.D.       33.       ug/kg       87       48-121         Nitrobenzene       N.D.       33.       ug/kg       99       65-116         Isophorone       N.D.       33.       ug/kg       92       64-108         bis(2-Chloroethoxy)methane       N.D.       33.       ug/kg       99       68-122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| bis(2-Chloroethyl)ether       N.D.       33.       ug/kg       82       66-114         1,3-Dichlorobenzene       N.D.       33.       ug/kg       87       60-110         1,2-Dichlorobenzene       N.D.       33.       ug/kg       83       64-107         Hexachloroethane       N.D.       33.       ug/kg       87       48-121         Nitrobenzene       N.D.       33.       ug/kg       99       65-116         Isophorone       N.D.       33.       ug/kg       92       64-108         bis(2-Chloroethoxy)methane       N.D.       33.       ug/kg       99       68-122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1,3-Dichlorobenzene       N.D.       33.       ug/kg       87       60-110         1,2-Dichlorobenzene       N.D.       33.       ug/kg       83       64-107         Hexachloroethane       N.D.       33.       ug/kg       87       48-121         Nitrobenzene       N.D.       33.       ug/kg       99       65-116         Isophorone       N.D.       33.       ug/kg       92       64-108         bis(2-Chloroethoxy)methane       N.D.       33.       ug/kg       99       68-122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1,2-Dichlorobenzene       N.D.       33.       ug/kg       83       64-107         Hexachloroethane       N.D.       33.       ug/kg       87       48-121         Nitrobenzene       N.D.       33.       ug/kg       99       65-116         Isophorone       N.D.       33.       ug/kg       92       64-108         bis(2-Chloroethoxy)methane       N.D.       33.       ug/kg       99       68-122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Hexachloroethane       N.D.       33.       ug/kg       87       48-121         Nitrobenzene       N.D.       33.       ug/kg       99       65-116         Isophorone       N.D.       33.       ug/kg       92       64-108         bis(2-Chloroethoxy)methane       N.D.       33.       ug/kg       99       68-122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Nitrobenzene       N.D.       33.       ug/kg       99       65-116         Isophorone       N.D.       33.       ug/kg       92       64-108         bis(2-Chloroethoxy)methane       N.D.       33.       ug/kg       99       68-122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Isophorone         N.D.         33.         ug/kg         92         64-108           bis(2-Chloroethoxy)methane         N.D.         33.         ug/kg         99         68-122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| bis(2-Chloroethoxy)methane N.D. 33. ug/kg 99 68-122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Naphthalene N.D. 33. ug/kg 87 65-113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Hexachlorobutadiene N.D. 67. ug/kg 98 61-121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Hexachlorocyclopentadiene N.D. 170. ug/kg 109 5-226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2-Chloronaphthalene N.D. 33. ug/kg 93 69-114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Acenaphthylene N.D. 33. ug/kg 89 72-117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dimethylphthalate N.D. 67. ug/kg 99 72-119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2,6-Dinitrotoluene N.D. 33. ug/kg 97 74-115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| luorene N.D. 33. ug/kg 94 65-119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -Chlorophenyl-phenylether N.D. 33. ug/kg 95 64-119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Diethylphthalate N.D. 67. ug/kg 103 71-121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-Nitrosodiphenylamine N.D. 33. ug/kg 86 60-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4-Bromophenyl-phenylether N.D. 33. ug/kg 99 71-115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Hexachlorobenzene N.D. 33. ug/kg 101 62-128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Phenanthrene N.D. 33. ug/kg 99 64-116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Anthracene N.D. 33. ug/kg 98 64-116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Di-n-butylphthalate N.D. 67. ug/kg 95 72-119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Fluoranthene N.D. 33. ug/kg 91 65-115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Butylbenzylphthalate N.D. 67. ug/kg 103 59-150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Benzo(a)anthracene N.D. 33. ug/kg 97 69-115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Chrysene N.D. 33. ug/kg 100 67-119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3,3'-Dichlorobenzidine N.D. 67. ug/kg 40 21-104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| bis(2-Ethylhexyl)phthalate N.D. 67. ug/kg 99 56-138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Di-n-octylphthalate N.D. 67. ug/kg 96 69-131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Benzo(b) fluoranthene N.D. 33. ug/kg 103 66-122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Benzo(k) fluoranthene N.D. 33. ug/kg 105 66-122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Benzo(a)pyrene N.D. 33. ug/kg 98 72-118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Indeno(1,2,3-cd)pyrene N.D. 33. ug/kg 103 73-118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Dibenz (a, h) anthracene N.D. 33. ug/kg 107 78-126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Benzo(g,h,i)perylene N.D. 33. ug/kg 99 73-119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2-Methylphenol N.D. 33. ug/kg 84 66-111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2,2'-oxybis(1-Chloropropane) N.D. 33. ug/kg 104 65-139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4-Methylphenol N.D. 67. ug/kg 85 22-171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4-Chloroaniline N.D. 33. ug/kg 35 1-103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2-Methylnaphthalene N.D. 33. ug/kg 94 65-108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

<sup>\*-</sup> Outside of specification



<sup>(1)</sup> The result for one or both determinations was less than five times the LOQ.

<sup>(2)</sup> The background result was more than four times the spike added.





Page 3 of 13

### Quality Control Summary

Client Name: Draper Aden Associates, Inc. Group Number: 829270

Reported: 11/25/02 at 02:38 PM

#### Laboratory Compliance Quality Control

|                                                | Blank      | Blank     | Report     | LCS       | LCSD        | LCS/LCSD |     |             |
|------------------------------------------------|------------|-----------|------------|-----------|-------------|----------|-----|-------------|
| Analysis Name                                  | Result     | MDL       | Units      | %REC      | %REC        | Limits   | RPD | RPD Max     |
| 2,4,5-Trichlorophenol                          | N.D.       | 33.       | ug/kg      | 98        | <del></del> | 74-117   |     | <del></del> |
| 2-Nitroaniline                                 | N.D.       | 33.       | ug/kg      | 102       |             | 78-122   |     |             |
| 3-Nitroaniline                                 | N.D.       | 67.       | ug/kg      | 71        |             | 17-107   |     |             |
| Dibenzofuran                                   | N.D.       | 33.       | ug/kg      | 93        |             | 66-111   |     |             |
| 4-Nitroaniline                                 | N.D.       | 67.       | ug/kg      | 76        |             | 48-116   |     |             |
| Carbazole                                      | N.D.       | 33.       | ug/kg      | 94        |             | 71-114   |     |             |
|                                                |            |           |            |           |             |          |     |             |
| Batch number: 02309039401A                     | Sample nu  | nmber(s): | 3933071,39 | 33082     |             |          |     |             |
| рН                                             |            |           |            | 100       |             | 99-101   |     |             |
| Corrosivity                                    |            |           |            | 100       |             | 98-102   |     |             |
| D 1 1/2 11 12 12 12 12 12 12 12 12 12 12 12 12 | Comple no  |           | 2022061 20 | 22065 202 | 22001       |          |     |             |
| Batch number: 02309820003A                     | Sample III | mber(s):  | 3933061-39 | 100       | 33061       | 00 101   |     |             |
| Moisture                                       |            |           |            | 100       |             | 99-101   |     |             |
| Batch number: 02309820003B                     | Sample nu  | mber(s):  | 3933066-39 | 33070,393 | 33074-3933  | 080      |     |             |
| Moisture                                       | -          |           |            | 100       |             | 99-101   |     |             |
|                                                |            |           |            |           |             |          |     |             |
| Batch number: 023110015A                       | •          |           | 3933072,39 |           |             |          |     |             |
| amma BHC - Lindane                             | N.D.       | .012      | ug/l       | 120       |             | 65-144   |     |             |
| .ieptachlor                                    | N.D.       | .01       | ug/l       | 86        |             | 45-130   |     |             |
| Heptachlor Epoxide                             | N.D.       | .016      | ug/l       | 114       |             | 73-141   |     |             |
| Methoxychlor                                   | N.D.       | . 1       | ug/l       | 105       |             | 72-160   |     |             |
| Endrin                                         | N.D.       | .024      | ug/l       | 120       |             | 74-159   |     |             |
| Chlordane                                      | N.D.       | . 25      | ug/l       |           |             |          |     |             |
| Toxaphene                                      | N.D.       | 1.5       | ug/l       |           |             |          |     |             |
| Batch number: 023110027A                       | Cample nu  | mber(c).  | 3933072,39 | 22002     |             |          |     |             |
| 2,4-D                                          | N.D.       | 2.        | ug/1       | 66        |             | 53-145   |     |             |
|                                                | N.D.       | .2        | ug/l       | 82        |             | 55-128   |     |             |
| 2,4,5-TP                                       | N.D.       | . 2       | ug/1       | 02        |             | 55-126   |     |             |
| Batch number: 023115705005                     | Sample nu  | mber(s):  | 3933072,39 | 33083     |             |          |     |             |
| Arsenic                                        | N.D.       | .0049     | mg/l       | 95        |             | 90-110   |     |             |
| Selenium                                       | N.D.       | .0048     | mg/l       | 93        |             | 90-110   |     |             |
| Barium                                         | N.D.       | .00044    | mg/1       | 101       |             | 93-109   |     |             |
| Cadmium                                        | N.D.       | .00094    | mg/l       | 101       |             | 94-110   |     |             |
| Chromium                                       | N.D.       | .002      | mg/l       | 98        |             | 95-110   |     |             |
| Lead                                           | N.D.       | .0089     | mg/1       | 99        |             | 94-110   |     |             |
| Silver                                         | 0.0020 J   | .0014     | mg/1       | 101       |             | 94-110   |     |             |
|                                                |            |           | J,         | _         |             |          |     |             |
| Batch number: 023115713001                     | Sample nu  | mber(s):  | 3933072,39 | 33083     |             |          |     |             |
| Mercury                                        | N.D.       | .000079   | mg/l       | 92        |             | 84-124   |     |             |
| Batch number: 02311820003A                     | Cample ~   | mbor(a)   | 2022071 20 | 22002     |             |          |     |             |
| Moisture                                       | sample nu  | mwer(s):  | 3933071,39 | 100       |             | 00 101   |     |             |
| MOTECUTE                                       |            |           |            | 100       |             | 99-101   |     |             |

#### \*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (?) The background result was more than four times the spike added.



Group Number: 829270



# REPRINT

Page 4 of 13

### Quality Control Summary

Client Name: Draper Aden Associates, Inc.

Reported: 11/25/02 at 02:38 PM

### Laboratory Compliance Quality Control

|                            | Blank  | Blank      | Report     | LCS   | LCSD | LCS/LCSD      |     |         |
|----------------------------|--------|------------|------------|-------|------|---------------|-----|---------|
| Analysis Name              | Result | MDL        | Units      | %REC  | %REC | <u>Limits</u> | RPD | RPD Max |
| Batch number: 02311WAG026  | Sample | number(s): | 3933072,39 | 33083 |      |               |     |         |
| Pyridine                   | N.D.   | .004       | mg/l       | 65    |      | 35-92         |     |         |
| 1,4-Dichlorobenzene        | N.D.   | .002       | mg/l       | 66    |      | 38-99         |     |         |
| 2-Methylphenol             | N.D.   | .002       | mg/l       | 79    |      | 64-102        |     |         |
| 4-Methylphenol             | N.D.   | .004       | mg/l       | 75    |      | 35-124        |     |         |
| Hexachloroethane           | N.D.   | .002       | mg/l       | 57    |      | 20-97         |     |         |
| Nitrobenzene               | N.D.   | .002       | mg/l       | 90    |      | 74-116        |     |         |
| Hexachlorobutadiene        | N.D.   | .002       | mg/l       | 62    |      | 18-103        |     |         |
| 2,4,6-Trichlorophenol      | N.D.   | .002       | mg/l       | 92    |      | 66-125        |     |         |
| 2,4,5-Trichlorophenol      | N.D.   | .002       | mg/1       | 91    |      | 70-122        |     |         |
| 2,4-Dinitrotoluene         | N.D.   | .002       | mg/l       | 103   |      | 75-129        |     |         |
| Hexachlorobenzene          | N.D.   | .002       | mg/l       | 87    |      | 65-128        |     |         |
| Pentachlorophenol          | N.D.   | .006       | mg/l       | 76    |      | 43-127        |     |         |
| Batch number: 02319104201A | Sample | number(s): | 3933071 39 | 33082 |      |               |     |         |
| Cyanide (Reactivity)       | N.D.   | 100.       | mg/kg      | 96    |      | 88-114        |     |         |
| cyanizae (neaeci/ic/)      |        |            | 979        |       |      |               |     |         |
| Batch number: 02319112101A | Sample | number(s): | 3933071,39 | 33082 |      |               |     |         |
| ılfide (Reactivity)        | N.D.   | 27.        | mg/kg      | 95    |      | 77-103        |     |         |
| Batch number: K023091AA    | Sample | number(s): | 3933061-39 | 33070 |      |               |     |         |
| Chloromethane              | N.D.   | 2.         | ug/kg      | 107   |      | 47-133        |     |         |
| Vinyl Chloride             | N.D.   | 1.         | ug/kg      | 99    |      | 57-132        |     |         |
| Bromomethane               | N.D.   | 2.         | ug/kg      | 74    |      | 54-129        |     |         |
| Chloroethane               | N.D.   | 2.         | ug/kg      | 95    |      | 66-130        |     |         |
| 1,1-Dichloroethene         | N.D.   | 1.         | ug/kg      | 93    |      | 77-139        |     |         |
| Methylene Chloride         | N.D.   | 2.         | ug/kg      | 90    |      | 76-129        |     |         |
| trans-1,2-Dichloroethene   | N.D.   | 1.         | ug/kg      | 94    |      | 78-131        |     |         |
| 1,1-Dichloroethane         | N.D.   | 1.         | ug/kg      | 110   |      | 82-130        |     |         |
| cis-1,2-Dichloroethene     | N.D.   | 1.         | ug/kg      | 98    |      | 85-127        |     |         |
| Chloroform                 | N.D.   | 1.         | ug/kg      | 101   |      | 79-126        |     |         |
| 1,1,1-Trichloroethane      | N.D.   | 1.         | ug/kg      | 106   |      | 69-133        |     |         |
| Carbon Tetrachloride       | N.D.   | 1.         | ug/kg      | 100   |      | 68-137        |     |         |
| Benzene                    | N.D.   | 1.         | ug/kg      | 102   |      | 85-125        |     |         |
| 1,2-Dichloroethane         | N.D.   | 1.         | ug/kg      | 112   |      | 75-132        |     |         |
| Trichloroethene            | N.D.   | 1.         | ug/kg      | 100   |      | 81-124        |     |         |
| 1,2-Dichloropropane        | N.D.   | 1.         | ug/kg      | 108   |      | 81-126        |     |         |
| Bromodichloromethane       | N.D.   | 1.         | ug/kg      | 97    |      | 80-123        |     |         |
| Toluene                    | N.D.   | 1.         | ug/kg      | 100   |      | 81-116        |     |         |
| 1,1,2-Trichloroethane      | N.D.   | 1.         | ug/kg      | 91    |      | 77-116        |     |         |
| Tetrachloroethene          | N.D.   | 1.         | ug/kg      | 101   |      | 79-128        |     |         |
| Dibromochloromethane       | N.D.   | 1.         | ug/kg      | 88    |      | 73-116        |     |         |
| Chlorobenzene              | N.D.   | 1.         | ug/kg      | 97    |      | 81-112        |     |         |
| Ethylbenzene               | N.D.   | 1.         | ug/kg      | 100   |      | 82-115        |     |         |
| Styrene                    | N.D.   | 1.         | ug/kg      | 93    |      | 79-116        |     |         |

<sup>\*-</sup> Outside of specification

<sup>(2)</sup> The background result was more than four times the spike added.



<sup>(1)</sup> The result for one or both determinations was less than five times the LOQ.





Page 5 of 13

### Quality Control Summary

Client Name: Draper Aden Associates, Inc. Group Number: 829270

Reported: 11/25/02 at 02:38 PM

#### Laboratory Compliance Quality Control

|                           | Blank    | Blank     | Report     | LCS   | LCSD | LCS/LCSD |     |         |
|---------------------------|----------|-----------|------------|-------|------|----------|-----|---------|
| Analysis Name             | Result   | MDL       | Units      | %REC  | %REC | Limits   | RPD | RPD Max |
| Bromoform                 | N.D.     | 1.        | ug/kg      | 81    |      | 64-121   |     |         |
| 1,1,2,2-Tetrachloroethane | N.D.     | 1.        | ug/kg      | 82    |      | 64-121   |     |         |
| Acetone                   | N.D.     | 7.        | ug/kg      | 68    |      | 51-178   |     |         |
| Carbon Disulfide          | N.D.     | 1.        | ug/kg      | 105   |      | 72-144   |     |         |
| 2-Butanone                | N.D.     | 4.        | ug/kg      | 74    |      | 58-155   |     |         |
| trans-1,3-Dichloropropene | N.D.     | 1.        | ug/kg      | 96    |      | 75-113   |     |         |
| cis-1,3-Dichloropropene   | N.D.     | 1.        | ug/kg      | 99    |      | 82~122   |     |         |
| 4-Methyl-2-pentanone      | N.D.     | 3.        | ug/kg      | 83    |      | 56-144   |     |         |
| 2-Hexanone                | N.D.     | 3.        | ug/kg      | 77    |      | 51-142   |     |         |
| Xylene (Total)            | N.D.     | 1.        | ug/kg      | 97    |      | 82-117   |     |         |
| Batch number: N023141AB   | Sample n | umber(s): | 3933073,39 | 33084 |      |          |     |         |
| Vinyl Chloride            | N.D.     | 20.       | ug/l       | 79    |      | 59-129   |     |         |
| 1,1-Dichloroethene        | N.D.     | 16.       | ug/l       | 104   |      | 67-140   |     |         |
| Chloroform                | N.D.     | 16.       | ug/1       | 105   |      | 86-124   |     |         |
| Carbon Tetrachloride      | N.D.     | 20.       | ug/l       | 98    |      | 77-130   |     |         |
| Benzene                   | N.D.     | 10.       | ug/1       | 104   |      | 85-117   |     |         |
| 1,2-Dichloroethane        | N.D.     | 20.       | ug/l       | 102   |      | 77-132   |     |         |
| cichloroethene            | N.D.     | 20.       | ug/l       | 96    |      | 87-117   |     |         |
| _etrachloroethene         | N.D.     | 16.       | ug/l       | 104   |      | 79-136   |     |         |
| Chlorobenzene             | N.D.     | 16.       | ug/l       | 100   |      | 85-115   |     |         |
| 2-Butanone                | N.D.     | 60.       | ug/l       | 84    |      | 58-141   |     |         |

#### Sample Matrix Quality Control

|                          | MS     | MSD    | ms/msd      |         | RPD        | BKG          | DUP  | DUP | Dup<br>RPD |
|--------------------------|--------|--------|-------------|---------|------------|--------------|------|-----|------------|
| Analysis Name            | %REC   | %REC   | Limits      | RPD     | XAM        | Conc         | Conc | RPD | Max        |
| Batch number: 023080021A | Sample | number | (s): 393306 | 1-39330 | 70,3933    | 3074-3933083 | L    |     |            |
| Gamma BHC - Lindane      | 103    | 100    | 43-154      | 3       | 35         |              |      |     |            |
| Heptachlor               | 103    | 103    | 70-138      | 0       | 35         |              |      |     |            |
| Aldrin                   | 100    | 97     | 65-134      | 3       | 35         |              |      |     |            |
| p,p-DDT                  | 115    | 118    | 62-166      | 3       | 35         |              |      |     |            |
| Dieldrin                 | 101    | 101    | 68-139      | 0       | 35         |              |      |     |            |
| Endrin                   | 104    | 104    | 48-188      | 0       | 35         |              |      |     |            |
| Methoxychlor             | 109    | 112    | 74-162      | 3       | 35         |              |      |     |            |
| Alpha BHC                | 97     | 91     | 64-134      | 6       | 3 <b>5</b> |              |      |     |            |
| Beta BHC                 | 103    | 103    | 31-176      | 0       | 35         |              |      |     |            |
| Delta BHC                | 112    | 109    | 29-191      | 3       | 35         |              |      |     |            |
| Heptachlor Epoxide       | 103    | 103    | 69-133      | 0       | 35         |              |      |     |            |
| p,p-DDE                  | 110    | 110    | 48-175      | 0       | 35         |              |      |     |            |
| p,p-DDD                  | 104    | 104    | 52-181      | 0       | 35         |              |      |     |            |

- \*- Outside of specification
- (1) The result for one or both determinations was less than five times the LOQ.
- (?) The background result was more than four times the spike added.





Page 6 of 13

### Quality Control Summary

Client Name: Draper Aden Associates, Inc.

Reported: 11/25/02 at 02:38 PM

Group Number: 829270

#### Sample Matrix Quality Control

|                              | MS         | MSD        | MS/MSD      |          | RPD     | BKG         | DUP     | DUP         | Dup<br>RPD |
|------------------------------|------------|------------|-------------|----------|---------|-------------|---------|-------------|------------|
| Analysis Name                | %REC       | %REC       | Limits      | RPD      | MAX     | Conc        | Conc    | RPD         | Max        |
| Endosulfan I                 | 100        | 97         | 62-133      | 3        | 35      | <del></del> | <u></u> | <del></del> |            |
| Endosulfan II                | 100        | 101        | 65-144      | 1        | 35      |             |         |             |            |
| Endosulfan Sulfate           | 88         | 87         | 65-154      | 2        | 35      |             |         |             |            |
| Endrin Aldehyde              | 78         | 94         | 63-125      | 19       | 35      |             |         |             |            |
| Endrin Ketone                | <b>9</b> 9 | 99         | 33-173      | 0        | 50      |             |         |             |            |
| Alpha Chlordane              | 106        | 106        | 65-147      | 0        | 50      |             |         |             |            |
| Gamma Chlordane              | 100        | 103        | 30~157      | 3        | 50      |             |         |             |            |
| Batch number: 02308SLA026    | Sample     | number     | (s): 393306 | 51-39330 | 70,3933 | 3074-393308 | 1       |             |            |
| Phenol                       | 85         | 85         | 29-139      | 0        | 30      |             |         |             |            |
| 2-Chlorophenol               | 88         | 91         | 38-136      | 3        | 30      |             |         |             |            |
| 1,4-Dichlorobenzene          | 81         | 81         | 22-131      | 0        | 30      |             |         |             |            |
| N-Nitroso-di-n-propylamine   | 88         | 87         | 36-137      | 2        | 30      |             |         |             |            |
| 1,2,4-Trichlorobenzene       | 86         | 86         | 50~124      | 0        | 30      |             |         |             |            |
| 4-Chloro-3-methylphenol      | 97         | 95         | 33-150      | 1        | 30      |             |         |             |            |
| Acenaphthene                 | 100        | 99         | 36-140      | 1        | 30      |             |         |             |            |
| 4-Nitrophenol                | 93         | 92         | 5-170       | 1        | 30      |             |         |             |            |
| ,4-Dinitrotoluene            | 103        | 101        | 34-150      | 2        | 30      |             |         |             |            |
| rentachlorophenol            | 71         | 70         | 5-144       | 2        | 30      |             |         |             |            |
| Pyrene                       | 98         | 9 <b>9</b> | 19-152      | 1        | 30      |             |         |             |            |
| 2-Nitrophenol                | 96         | 94         | 29-145      | 3        | 30      |             |         |             |            |
| 2,4-Dimethylphenol           | 93         | 90         | 21-143      | 3        | 30      |             |         |             |            |
| 2,4-Dichlorophenol           | 92         | 88         | 29-145      | 4        | 30      |             |         |             |            |
| 2,4,6-Trichlorophenol        | 89         | 86         | 27-150      | 3        | 30      |             |         |             |            |
| 2,4-Dinitrophenol            | 41         | 38         | 20-150      | 6        | 30      |             |         |             |            |
| 4,6-Dinitro-2-methylphenol   | 63         | 63         | 5-160       | 1        | 30      |             |         |             |            |
| bis(2-Chloroethyl)ether      | 84         | 81         | 34-139      | 3        | 30      |             |         |             |            |
| 1,3-Dichlorobenzene          | 84         | 83         | 39-122      | 2        | 30      |             |         |             |            |
| 1,2-Dichlorobenzene          | 82         | 82         | 22-134      | 1        | 30      |             |         |             |            |
| Hexachloroethane             | 82         | 84         | 11-140      | 2        | 30      |             |         |             |            |
| Nitrobenzene                 | 95         | 91         | 35-138      | 3        | 30      |             |         |             |            |
| Isophorone                   | 88         | 89         | 38-133      | 1        | 30      |             |         |             |            |
| bis (2-Chloroethoxy) methane | 9 <b>5</b> | 97         | 58-132      | 2        | 30      |             |         |             |            |
| Naphthalene                  | 87<br>93   | 87         | 24-144      | 1        | 30      |             |         |             |            |
| Hexachlorobutadiene          |            | 92         | 32-136      | 1        | 30      |             |         |             |            |
| Hexachlorocyclopentadiene    | 99         | 95         | 5-176       | 4        | 30      |             |         |             |            |
| 2-Chloronaphthalene          | 92         | 91         | 32-141      | 1        | 30      |             |         |             |            |
| Acenaphthylene               | 86<br>95   | 83<br>92   | 37-142      | 3        | 30      |             |         |             |            |
| Dimethylphthalate            | 95<br>91   |            | 35-144      | 3        | 30      |             |         |             |            |
| 2,6-Dinitrotoluene           |            | 94,        | 39-138      | 3        | 30      |             |         |             |            |
| Fluorene                     | 92<br>05   | 90         | 28-151      | 3        | 30      |             |         |             |            |
| 4-Chlorophenyl-phenylether   | 95         | 92         | 36-140      | 4        | 30      |             |         |             |            |
| Diethylphthalate             | 98         | <b>9</b> 7 | 37-145      | 1        | 30      |             |         |             |            |
| N-Nitrosodiphenylamine       | 86         | 86         | 48-136      | 0        | 30      |             |         |             |            |

<sup>\*-</sup> Outside of specification

<sup>(2)</sup> The background result was more than four times the spike added.



<sup>(1)</sup> The result for one or both determinations was less than five times the LOQ.



Page 7 of 13

### Quality Control Summary

Client Name: Draper Aden Associates, Inc.

Reported: 11/25/02 at 02:38 PM

Group Number: 829270

|                                   | MS            | MSD      | ms/msd                |               | RPD              | BKG        | DUP  | DUP | Dup<br>RPD |
|-----------------------------------|---------------|----------|-----------------------|---------------|------------------|------------|------|-----|------------|
| Analysis Name                     | %REC          | %REC     | Limits                | RPD           | MAX              | Conc       | Conc | RPD | Max        |
| 4-Bromophenyl-phenylether         | 95            | 96       | 36-144                | 1             | 30               |            |      |     |            |
| Hexachlorobenzene                 | 98            | 97       | 32-146                | 1             | 30               |            |      |     |            |
| Phenanthrene                      | 98            | 94       | 20-147                | 4             | 30               |            |      |     |            |
| Anthracene                        | 98            | 93       | 29-141                | 5             | 30               |            |      |     |            |
| Di-n-butylphthalate               | 96            | 93       | 30-147                | 3             | 30               |            |      |     |            |
| Fluoranthene                      | 92            | 87       | 21-141                | 5             | 30               |            |      |     |            |
| Butylbenzylphthalate              | 96            | 97       | 28-160                | 1             | 30               |            |      |     |            |
| Benzo(a) anthracene               | 95            | 96       | 22-151                | 1             | 30               |            |      |     |            |
| Chrysene                          | 95            | 98       | 22-149                | 4             | 30               |            |      |     |            |
| 3,3'-Dichlorobenzidine .          | 65            | 74       | 3-123                 | 12            | 30               |            |      |     |            |
| bis(2-Ethylhexyl)phthalate        | 94            | 95       | 26-160                | 1             | 30               |            |      |     |            |
| Di-n-octylphthalate               | 93            | 91       | 24-164                | 2             | 30               |            |      |     |            |
| Benzo(b) fluoranthene             | 96            | 100      | 23-146                | 4             | 30               |            |      |     |            |
| Benzo(k) fluoranthene             | 99            | 98       | 27-149                | 1             | 30               |            |      |     |            |
| Benzo(a)pyrene                    | 100           | 100      | 25-149                | 0             | 30               |            |      |     |            |
| Indeno(1,2,3-cd)pyrene            | 96            | 98       | 13-157                | 2             | 30               |            |      |     |            |
| Dibenz(a,h)anthracene             | 104           | 102      | 14-170                | 2             | 30               |            |      |     |            |
| enzo(g,h,i)perylene               | 97            | 97       | 11-158                | 0             | 30               |            |      |     |            |
| Methylphenol                      | 84            | 86       | 26-139                | 1             | 30               |            |      |     |            |
| 2,2'-oxybis(1-Chloropropane)      | 104           | 105      | 50-145                | 2             | 30               |            |      |     |            |
| 4-Methylphenol                    | 83            | 83       | 9-170                 | 1             | 30               |            |      |     |            |
| 4-Chloroaniline                   | 71            | 76       | 1-127                 | 7             | 30               |            |      |     |            |
| 2-Methylnaphthalene               | 94            | 90       | 22-145                | 4             | 30               |            |      |     |            |
| 2,4,5-Trichlorophenol             | 93            | 91       | 33-147                | 2             | 30               |            |      |     |            |
| 2-Nitroaniline                    | 97            | 98       | 31-156                | 1             | 30               |            |      |     |            |
| 3-Nitroaniline                    | 89            | 88       | 2-135                 | 2             | 30               |            |      |     |            |
| Dibenzofuran                      | 93            | 91       | 27-144                | 2             | 30               |            |      |     |            |
| 4-Nitroaniline                    | 81            | 85       | 11-141                | 6             | 30               |            |      |     |            |
| Carbazole                         | 93            | 92       | 32-144                | 2             | 30               |            |      |     |            |
| Batch number: 02309039401A        | Samole        | number   | (s): 393307           | 71 20220      | a 2              |            |      |     |            |
| рн                                | oump10        |          | (6). 33330            | ,1,3,3,30     | 02               | 7.33       | 7.33 | 0   | 1          |
| Corrosivity                       |               |          |                       |               |                  | 7.33       | 7.33 | 0   | 1<br>2     |
| Corrobivity                       |               |          |                       |               |                  | 7.3        | 7.3  | U   | 2          |
| Batch number: 02309820003A        | Sample        | e number | (s): 393306           | 1-39330       | 65,3933          | 3081       |      |     |            |
| Moisture                          |               |          |                       |               |                  | 19.2       | 18.0 | 6   | 15         |
| Batch number: 02309820003B        | Sample        | number   | (s): 393306           |               | 70 3933          | 2074-39320 | g n  |     |            |
| Moisture                          | 20            |          | (5). 333300           | 0 33330       | ,0,555           | 16.0       | 16.2 | 1   | 15         |
| <del> </del>                      |               |          |                       |               |                  | 10.0       | 10.2 | 1   | 12         |
| Batch number: 023110015A          |               |          |                       |               |                  |            |      |     |            |
|                                   | Sample        | number   | (s): 393307           | 2,39330       | 83               |            |      |     |            |
| Gamma BHC - Lindane               | Sample<br>120 | number   | (s): 393307<br>67-151 | 72,39330<br>3 | <b>8</b> 3<br>30 |            |      |     |            |
| Gamma BHC - Lindane<br>Heptachlor |               |          |                       |               |                  |            |      |     |            |

#### \*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- '2) The background result was more than four times the spike added.



## Analysis Report

Group Number: 829270





## REPRINT

Page 8 of 13

## Quality Control Summary

Client Name: Draper Aden Associates, Inc.

Reported: 11/25/02 at 02:38 PM

#### Sample Matrix Quality Control

|                            | MS     | MSD        | MS/MSD      |         | RPD | BKG      | DUP      | DUP      | Dup<br>RPD |
|----------------------------|--------|------------|-------------|---------|-----|----------|----------|----------|------------|
| Analysis Name              | %REC   | %REC       | Limits      | RPD     | MAX | Conc     | Conc     | RPD      | Мах        |
| Methoxychlor               | 100    | 100        | 63-185      | 0       | 30  |          |          |          |            |
| Endrin                     | 120    | 120        | 61-179      | 0       | 30  |          |          |          |            |
| Batch number: 023110027A   | Sample | number     | (s): 393307 | 2,39330 | 83  |          |          |          |            |
| 2,4-D                      | 73     | 75         | 38-176      | 3       | 30  |          |          |          |            |
| 2,4,5-TP                   | 78     | 81         | 50-134      | 4       | 30  |          |          |          |            |
| Batch number: 023115705005 | Sample | number     | (s): 393307 | 2,39330 | 83  |          |          |          |            |
| Arsenic                    | 87     | 88         | 86-119      | 1       | 20  | N.D.     | N.D.     | 0 (1)    | 20         |
| Selenium                   | 86     | 88         | 75-125      | 3       | 20  | 0.0074 J | L 8800.0 | 17 (1)   | 20         |
| Barium                     | 81*    | 83         | 82-113      | 3       | 20  | 0.690    | 0.669    | 3        | 20         |
| Cadmium                    | 84     | 84         | 78-121      | 1       | 20  | 0.0077 J | 0.0078 J | 0 (1)    | 20         |
| Chromium                   | 84     | 82         | 80-119      | 1       | 20  | 1.85     | 1.86     | 1        | 20         |
| Lead                       | (2)    | (2)        | 75-125      | 1       | 20  | 260.     | 257.     | 1        | 20         |
| Silver                     | 48*    | 50*        | 75-125      | 3       | 20  | 0.0024 J | N.D.     | 200* (1) | 20         |
| Batch number: 023115713001 | Sample | number     | (s): 393307 | 2.39330 | 83  |          |          |          |            |
| 'ercury                    | 79*    | 79*        | 80-120      | 0       | 20  | N.D.     | N.D.     | 76* (1)  | 20         |
| Batch number: 02311820003A | Sample | number     | (s): 393307 | 1.39330 | 82  |          |          |          |            |
| Moisture                   | •      |            |             | ,       |     | 20.2     | 19.6     | 3        | 15         |
| Batch number: 02311WAG026  | Sample | number     | (s): 393307 | 2,39330 | 83  |          |          |          |            |
| Pyridine                   | 65     | 61         | 22-100      | 7       | 30  |          |          |          |            |
| 1,4-Dichlorobenzene        | 69     | 70         | 44-104      | 1       | 30  |          |          |          |            |
| 2-Methylphenol             | 80     | 80         | 27-130      | 0       | 30  |          |          |          |            |
| 4-Methylphenol             | 76     | 76         | 19-132      | 1       | 30  |          |          |          |            |
| Hexachloroethane           | 58     | 56         | 25-110      | 3       | 30  |          |          |          |            |
| Nitrobenzene               | 95     | 91         | 30-153      | 5       | 30  |          |          |          |            |
| Hexachlorobutadiene        | 63     | 64         | 21-124      | 2       | 30  |          |          |          |            |
| 2,4,6-Trichlorophenol      | 92     | 95         | 40-144      | 3       | 30  |          |          |          |            |
| 2,4,5-Trichlorophenol      | 91     | 92         | 53-134      | 1       | 30  |          |          |          |            |
| 2.4-Dinitrotoluene         | 100    | 101        | 47-148      | 1       | 30  |          |          |          |            |
| Hexachlorobenzene          | 88     | 92         | 46~139      | 4       | 30  |          |          |          |            |
| Pentachlorophenol          | 86     | 87         | 3-150       | 2       | 30  |          |          |          |            |
| Batch number: 02319104201A | Samnle | าบพุทธ     | (s): 393307 | 1 30330 | 82  |          |          |          |            |
| Cyanide (Reactivity)       | 3      | 2          | 0-5         | 40*     | 19  |          |          |          |            |
| cyanide (Reactivity)       | 3      | 2          | 0-3         | 40      | 19  |          |          |          |            |
| Batch number: 02319112101A | Sample | number     | (s): 393307 | 1,39330 | 82  |          |          |          |            |
| Sulfide (Reactivity)       | 63     | 6 <b>4</b> | 26-99       | 3       | 26  |          |          |          |            |
| Batch number: K023091AA    | Sample | number     | (s): 393306 | 1-39330 | 70  |          |          |          |            |
| Chloromethane              | 109    | 102        | 14-144      | 4       | 30  |          |          |          |            |

#### \*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.



Group Number: 829270





## REPRINT

Page 9 of 13

### Quality Control Summary

Client Name: Draper Aden Associates, Inc.

Reported: 11/25/02 at 02:38 PM

## Sample Matrix Quality Control

|                               | MS       | MSD        | ms/msd           |          | RPD  | BKG  | DUP         | DUP | Dup<br>RPD |
|-------------------------------|----------|------------|------------------|----------|------|------|-------------|-----|------------|
| Analysis Name                 | %REC     | %REC       | Limits           | RPD      | MAX  | Conc | Conc        | RPD | Max        |
| Vinyl Chloride                | 105      | 97         | 20-146           | 6        | 30   |      | <del></del> |     |            |
| Bromomethane                  | 79       | 75         | 24-140           | 3        | 30   |      |             |     |            |
| Chloroethane                  | 97       | 90         | 33-147           | 5        | 30   |      |             |     |            |
| 1,1-Dichloroethene            | 100      | 101        | 43-153           | 4        | 30   |      |             |     |            |
| Methylene Chloride            | 92       | 91         | 49-145           | 2        | 30   |      |             |     |            |
| trans-1,2-Dichloroethene      | 96       | 94         | 49-143           | 1        | 30   |      |             |     |            |
| 1,1-Dichloroethane            | 109      | 108        | 51-147           | 1        | 30   |      |             |     |            |
| cis-1,2-Dichloroethene        | 96       | 98         | 54-139           | 5        | 30   |      |             |     |            |
| Chloroform                    | 100      | 100        | 57-135           | 2        | 30   |      |             |     |            |
| 1,1,1-Trichloroethane         | 106      | 105        | 47-143           | 1        | 30   |      |             |     |            |
| Carbon Tetrachloride          | 102      | 99         | 43-144           | 0        | 30   |      |             |     |            |
| Benzene                       | 101      | 100        | 52-141           | 2        | 30   |      |             |     |            |
| 1,2-Dichloroethane            | 112      | 111        | 57-137           | 2        | 30   |      |             |     |            |
| Trichloroethene               | 97       | 99         | 47-140           | 4        | 30   |      |             |     |            |
| 1,2-Dichloropropane           | 104      | 103        | 55-138           | 1        | 30   |      |             |     |            |
| Bromodichloromethane          | 95       | 95         | 55-131           | 2        | 30   |      |             |     |            |
| Toluene                       | 104      | 105        | 41-147           | 3        | 30   |      |             |     |            |
| ,1,2-Trichloroethane          | 90       | 88         | 45-150           | 0        | 30   |      |             |     |            |
| etrachloroethene              | 105      | 107        | 42-157           | 5        | 30   |      |             |     |            |
| Dibromochloromethane          | 89       | 87         | 46-137           | 1        | 30   |      |             |     |            |
| Chlorobenzene                 | 97       | 98         | 48-132           | 4        | 30   |      |             |     |            |
| Ethylbenzene                  | 102      | 104        | 44-142           | 4        | 30   |      |             |     |            |
| Styrene                       | 90       | 93         | 30-144           | 6        | 30   |      |             |     |            |
| Bromoform                     | 74       | 74         | 32-139           | 1        | 30   |      |             |     |            |
| 1,1,2,2-Tetrachloroethane     | 76       | 75         | 23-180           | 1        | 30   |      |             |     |            |
| Acetone                       | 71       | 68         | 6-214            | 2        | 30   |      |             |     |            |
| Carbon Disulfide              | 106      | 104        | 29-162           | 1        | 30   |      |             |     |            |
| 2-Butanone                    | 68       | 64         | 22-181           | 4        | 30   |      |             |     |            |
| trans-1,3-Dichloropropene     | 98       | 95         | 46-130           | 1        | 30   |      |             |     |            |
| cis-1,3-Dichloropropene       | 92       | 96         | 50-129           | 6        | 30   |      |             |     |            |
| 4-Methyl-2-pentanone          | 69       | 65         | 40-154           | 3        | 30   |      |             |     |            |
| 2-Hexanone                    | 67       | 66         | 28-170           | 1        | 30   |      |             |     |            |
| Xylene (Total)                | 98       | 100        | 47-139           | 5        | 30   |      |             |     |            |
| Batch number: N023141AB       | Compl    |            | (s): 393301      | 77 20220 | .0.4 |      |             |     |            |
| Vinyl Chloride                | 83       | 83         | 54-144           | 1        | 30   |      |             |     |            |
| 1.1-Dichloroethene            | 90       | 91         | 69-151           | 1        | 30   |      |             |     |            |
| Chloroform                    | 98       | 91<br>95   | 77-133           | 3        | 30   |      |             |     |            |
| Carbon Tetrachloride          | 87       | 86         | 73-144           | 1        | 30   |      |             |     |            |
|                               | 95       | 94         | 78-144           | 1        | 30   |      |             |     |            |
| Benzene<br>1,2-Dichloroethane | 95<br>99 | 94<br>98   | 73-134           | 1        | 30   |      |             |     |            |
| Trichloroethene               | 88       | 96<br>87   | 75-136<br>75-135 | 1        | 30   |      |             |     |            |
| Tetrachloroethene             | 86       | 86         | 74-149           | 1        | 30   |      |             |     |            |
| Chlorobenzene                 | 91       | 90         | 81-125           | 2        | 30   |      |             |     |            |
| Curoropeusene                 | 21       | <b>7</b> 0 | 01-125           | 4        | 30   |      |             |     |            |

#### \*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.





REPRIM

Page 10 of 13

## Quality Control Summary

Client Name: Draper Aden Associates, Inc.

Reported: 11/25/02 at 02:38 PM

Group Number: 829270

### Sample Matrix Quality Control

|               | MS   | MSD  | ms/msd |     | RPD | BKG  | DUP  | DUP | Dup        |
|---------------|------|------|--------|-----|-----|------|------|-----|------------|
|               |      |      |        |     |     |      |      |     | RPD        |
| Analysis Name | %REC | %REC | Limits | RPD | MAX | Conc | Conc | RPD | <u>Max</u> |
| 2-Butanone    | 80   | 78   | 47-143 | 3   | 30  |      |      |     |            |

## Surrogate Quality Control

Analysis Name: TCL Pesticides in Solids

Batch number: 023080021A

|         | Tetrachloro-m-xylene | Decachlorobiphenyl |
|---------|----------------------|--------------------|
| 3933061 | 91                   | 105                |
| 3933062 | 91                   | 105                |
| 3933063 | 97                   | 112                |
| 3933064 | 89                   | 105                |
| 3933065 | 97                   | 113                |
| 3933066 | 98                   | 110                |
| 933067  | 91                   | 106                |
| 933068  | 96                   | 109                |
| 3933069 | 99                   | 110                |
| 3933070 | 98                   | 108                |
| 3933074 | 98                   | 108                |
| 3933075 | 95                   | 109                |
| 3933076 | 98                   | 108                |
| 3933077 | 92                   | 105                |
| 3933078 | 96                   | 110                |
| 3933079 | 92                   | 108                |
| 3933080 | 95                   | 112                |
| 3933081 | 94                   | 111                |
| Blank   | 94                   | 105                |
| LCS     | 92                   | 106                |
| MS      | 91                   | 106                |
| MSD     | 96                   | 109                |
| Limits: | 58-149               | 62-159             |

Analysis Name: TCL SW846 Semivolatiles Soil

Batch number: 02308SLA026

| Phenol-d6 |    | 2-Fluorophenol | 2-Fluorophenol 2,4,6-Tribromophenol |    |  |  |
|-----------|----|----------------|-------------------------------------|----|--|--|
| 3933061   | 83 | 80             | 98                                  | 94 |  |  |
| 3933062   | 87 | 84             | 103                                 | 99 |  |  |
| 3933063   | 86 | 82             | 104                                 | 95 |  |  |
| 3933064   | 83 | 77             | 8 <b>8</b>                          | 95 |  |  |

<sup>\*-</sup> Outside of specification



<sup>(1)</sup> The result for one or both determinations was less than five times the LOQ.

<sup>(2)</sup> The background result was more than four times the spike added.





Page 11 of 13

### Quality Control Summary

|           | me: Draper Aden Assoc |               |               | Group Number: 829270 |
|-----------|-----------------------|---------------|---------------|----------------------|
| Reported: | 11/25/02 at 02:38 PM  |               |               | _                    |
|           |                       | Surrogate (   | Quality Contr | col                  |
| 3933065   | 88                    | 83            | 101           | · 95                 |
| 3933066   | 86                    | 84            | 111           | 100                  |
| 3933067   | 88                    | 87            | 108           | 101                  |
| 3933068   | 88                    | 87            | 108           | 96                   |
| 3933069   | 88                    | 81            | 106           | 97                   |
| 3933070   | 88                    | 84            | 104           | 92                   |
| 3933074   | 86                    | 83            | 97            | 98                   |
| 3933075   | 88                    | 88            | 107           | 98                   |
| 3933076   | 88                    | 86            | 100           | 99                   |
| 3933077   | 83                    | 78            | 104           | 96                   |
| 3933078   | 87                    | 84            | 102           | 93                   |
| 3933079   | 87                    | 84            | 101           | 93                   |
| 3933080   | 84                    | 81            | 95            | 90                   |
| 3933081   | 85                    | 82            | 98            | 95                   |
| Blank     | 89                    | 87            | 105           | 100                  |
| LCS       | 90                    | 89            | 1 <b>1</b> 3  | 103                  |
| MS        | 88                    | 87            | 108           | 101                  |
| MSD       | 88                    | 87            | 108           | 96                   |
|           |                       |               |               |                      |
| Limits:   | 46-120                | 46-122        | 37-139        | 50-132               |
|           | 2-Fluorobiphenyl      | Terphenyl-d14 |               |                      |
| 3933061   | 92                    | 93            |               |                      |
| 3933062   | 100                   | 104           |               |                      |
| 3933063   | 97                    | 103           |               |                      |
| 3933064   | 90                    | 97            |               |                      |
| 3933065   | 92                    | 100           |               |                      |
| 3933066   | 98                    | 100           |               |                      |
| 3933067   | 97                    | 98            |               |                      |
| 3933068   | 97                    | 99            |               |                      |
| 3933069   | 97                    | 95            |               |                      |
| 3933070   | 95                    | 100           |               |                      |
| 3933074   | 91                    | 94            |               |                      |
| 3933075   | 103                   | 97            |               |                      |
| 3933076   | 103                   | 96            |               |                      |
| 3933077   | 95                    | 88            |               |                      |
| 3933078   | 99                    | 96            |               |                      |
| 3933079   | 96                    | 96            |               |                      |
| 3933080   | 89                    | 89            |               |                      |
| 3933081   | 92                    | 95            |               |                      |
| Blank     | 100                   | 92            |               |                      |
| LCS       | 98                    | 101           |               |                      |
| MS        | 97                    | 98            |               |                      |
| MSD       | 97                    | 99            |               |                      |
|           |                       |               |               |                      |

#### \*- Outside of specification

57-123

Limits:

48-141



<sup>(1)</sup> The result for one or both determinations was less than five times the LOQ.

<sup>(2)</sup> The background result was more than four times the spike added.





# REPRIM

Page 12 of 13

## Quality Control Summary

Client Name: Draper Aden Associates, Inc.

Group Number: 829270

Reported: 11/25/02 at 02:38 PM

Surrogate Quality Control

Analysis Name: TCLP Pesticides

Batch number: 023110015A

|         | Tetrachloro-m-xylene | Decachlorobiphenyl |
|---------|----------------------|--------------------|
| 3933072 | 85                   | 116                |
| 3933083 | 78                   | 107                |
| Blank   | 75                   | 103                |
| LCS     | 77                   | 117                |
| MS      | 76                   | 96                 |
| MSD     | 77                   | 99                 |
| Limits: | 40-135               | 36-156             |

Analysis Name: TCLP Herbicides Batch number: 023110027A

2.4-

Dichlorophenylacetic

acid

| 3933072 | 82 |
|---------|----|
| 3933083 | 80 |
| :lank   | 85 |
| ⊸CS     | 79 |
| MS      | 79 |
| MSD     | 82 |
|         |    |

Limits:

40-154

Analysis Name: TCLP Acid Base/Neutrals

Batch number: 02311WAG026

|                 | Nitrobenzene-d5 | 2-Fluorobiphenyl     | Terphenyl-d14 | Phenol-d6 |
|-----------------|-----------------|----------------------|---------------|-----------|
| 3933072         | 90              | 89                   | 84            | 41        |
| 3933083         | 91              | 87                   | 84            | 41        |
| Blank           | 95              | 87                   | 92            | 41        |
| LCS             | 93              | 93                   | 93            | 44        |
| MS              | 97              | 87                   | 72            | 45        |
| MSD             | 93              | 87                   | 83            | . 44      |
| Limits:         | 45-139          | 61-119               | 46-136        | 10-87     |
|                 | 2-Fluorophenol  | 2,4,6-Tribromophenol |               |           |
| <b>3</b> 933072 | 62              | 105                  |               |           |
| 3933083         | 61              | 106                  | -             |           |
| Blank           | 63              | 107                  |               |           |
| LCS             | 65              | 108                  |               |           |
| MS              | 66              | 111                  |               |           |

#### \*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.



# Analysis Report





## REPRINT

Page 13 of 13

## Quality Control Summary

Client Name: Draper Aden Associates, Inc.

Group Number: 829270

86-115

Reported: 11/25/02 at 02:38 PM

|             |                                            | Surrogate Q           | uality Control |                      |
|-------------|--------------------------------------------|-----------------------|----------------|----------------------|
| MSD         | 64                                         | 111                   |                |                      |
| Limits:     | 22-96                                      | 36-147                | <u> </u>       |                      |
|             | Name: TCL by 8260 (soil)<br>Der: K023091AA |                       |                |                      |
| Dateil Hama | Dibromofluoromethane                       | 1,2-Dichloroethane-d4 | Toluene-d8     | 4-Bromofluorobenzene |
| 3933061     | 97                                         | 80                    | 107            | 99                   |
| 3933062     | 96                                         | 81                    | 106            | 103                  |
| 3933063     | 97                                         | 81                    | 104            | 100                  |
| 3933064     | 92                                         | 83                    | 106            | 92                   |
| 3933065     | 98                                         | 82                    | 103            | 99                   |
| 3933066     | 97                                         | 81                    | 103            | 99                   |
| 3933067     | 99                                         | 85                    | 112            | 111                  |
| 3933068     | 96                                         | 86                    | 113            | 103                  |
| 3933069     | 96                                         | 83                    | 111            | 89                   |
| 3933070     | 96                                         | 82                    | 109            | 97                   |
| Blank       | 94                                         | 88                    | 101            | 102                  |
| LCS         | 100                                        | 97                    | 105            | 107                  |
| MS          | 99                                         | 85                    | 112            | 111                  |
| SD          | 96                                         | 86                    | 113            | 103                  |
| Limits:     | 80-120                                     | 80-120                | 81-117         | 74-121               |
| -           | Name: TCLP by 8260                         |                       |                |                      |
| Batch numb  | per: N023141AB                             |                       | _              |                      |
|             | Dibromofluoromethane                       | 1,2-Dichloroethane-d4 | Toluene-d8     | 4-Bromofluorobenzene |
| 3933073     | 98                                         | 100                   | 95             | 90                   |
| 3933084     | 98                                         | 99                    | 94             | 89                   |
| Blank       | 98                                         | 98                    | 96             | 93                   |
| LCS         | 95                                         | 99                    | 103            | 106                  |
| MS          | 9 <b>4</b>                                 | 98                    | 100            | 104                  |
| MSD         | 95                                         | 98                    | 101            | 105                  |

88-110

#### \*- Outside of specification

86-118

Limits:

80-120



<sup>(1)</sup> The result for one or both determinations was less than five times the LOQ.

<sup>(2)</sup> The background result was more than four times the spike added.

Severn Trant Laboratories, 4101 Shuffel Drive, NW, North Canton, OH 44720 (303) 497-9396 Laboratory: Draper Aden Associates Draper Aden Associates Consultant: Client: Sample Site: RFAAP Project Specific (PS) or Batch (B) QC: වන \_\_\_\_ Andy Kassoff/ Ross Miller Janet C. Frazier Attn: Atin: Sumple Collection for Project Complete? (See Note 1) Address: 2206 South Main Street Address: 2206 South Main Street Location: Monigomery County, Virginia Øves Blacksburg, Virginia 24060 Blacksburg, Virginia 24060 Phone: (540) 552-0444 Phone: (540) 552-0444 HWMU-5 and HWMU-7 Investigation Event (540) 552-0291-(540) 552-0291 DAA JN: 802271-01 Fax: Fax: (540) 552-0291 Fax: Lab JN: Box 4: Sample Box 1: Matrix Box 2: Preservative Box 3: Filtered/Unfiltered Invoice F Filtered SW Surface Water T Trip Blank A HCL E NaOH Type B HNO, GW Groundwater E Equipment Blank F ZnAc U Unfiltered G Ginsb Copy to Consultant: Ø nes □ MO P Product C H2SO4 Leachate G Other (Specify) Box 5: Sample Container Type C Composite Great Constant S Soil O Other D NaHSO4 H None P Plastic V VOA Preserved and shipped on ice: ☑ns to □no AG Amber Glass **CG Clear Glass** Box 4 - Sample Type G GENERAL NOTES: See attached terget analyte Set. Full TAL List for all analytes. Box 3 - Filtered/Unfiltered U using SW846 Test Methods Required pH of Sample Box 2 - Preservative Box 5 - Sample Container Type 40z. G Şample ID 10:00 X 7GP-3 X 8-12' 11:05 7GP- 2 X X X X 7GP-3 X X MS 76:P-SAIS X Clients Special Instructions: Received by lab in Good Condition \_\_\_\_\_Yes \_\_\_\_\_No Custody Seal Intact \_\_\_\_\_Yes \_\_\_\_\_No Temperature upon arrival \_\_\_\_\_ Received on foe \_\_\_\_\_Yes \_\_\_\_No Describe problems, if any: #2 Relinquished Sampler Name Date: / 1 / 1 . Sample Storage by (Signature): by (Signeture): Date: Time Requested Company Time: 16.30 Signature: Name: 30 DYS ORG/60 MTHS INORG Sampler Name #1 Received #2 Received (Print): Date: by (Signature) by (Signature): Date: Sampler Соттрепу Company Time: Signature: Time: Name: Time:

**CHAIN OF CUSTODY RECORD** 

| Clent:<br>Attn:<br>Address:<br>Phone:<br>Exx:      | Draper Aden<br>Andy Kassofi<br>2206 South I<br>8lacksburg, V<br>(540) 55<br>(540) 55 | Rose Miller<br>Main Street<br>Inginia 24060<br>2-0444<br>2-0291 |               | Consulta<br>Attn:<br>Address:<br>Phone:<br>Fax: |                  | Jenet C. Frazier 2206 South Main Street Blacksburg, Virginia 24060 (540) 552-0444 Event: HWMU-5 and HWMU-7 Investigation Carrier: |                                                  | Montgomery County, Virginia HWMU-5 and HWMU-7 Investigation |                                                  | Sample Co    | FED EX        | (PS) or Batch (B) QC: ②rs □s on for Project Complete? (See Note 1) ②res □so  ED EX |        |                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |           |
|----------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------|-------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|--------------|---------------|------------------------------------------------------------------------------------|--------|------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|
| Box 1: Matrix<br>SW Surface Wall<br>GW Groundwate  | er i                                                                                 | T Trip Blank<br>E Equipmen                                      |               | Box 2: Preservative A HCL B HNO <sub>3</sub>    |                  |                                                                                                                                   |                                                  | E NeOH<br>F ZnAc                                            |                                                  | F FM         | Mered         |                                                                                    |        | Box 4: Sample<br>Type<br>G Greb<br>C Composite | knyoice<br>Copy to C<br>Bill: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>⊘</b> res  | []∞       |
| L Leachate<br>S Soil                               |                                                                                      | P Product<br>D Other                                            |               | C H <sub>2</sub> S                              |                  |                                                                                                                                   |                                                  | G Other (S<br>H None                                        | pecity)                                          | P Plastic    |               | V VOA                                                                              |        | C Cumposite                                    | ı                             | ☑cont □communication logical light of the logical log | <b></b>       | □но       |
|                                                    | Box 4 - Sar                                                                          | nnia Tyra                                                       |               | <u> </u>                                        | G                |                                                                                                                                   | 1                                                | T .                                                         | 1                                                | AG Amber     | Gtass         | CG Clear                                                                           | Glass  | CINERAL NOVE                                   | · Can attach                  | ed target analyte list.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |           |
|                                                    | Box 3 - Filter                                                                       |                                                                 |               |                                                 | U                |                                                                                                                                   |                                                  |                                                             |                                                  |              |               |                                                                                    |        |                                                |                               | Test Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FUIL IAL LIST | tor att   |
|                                                    | Required pl                                                                          |                                                                 |               |                                                 |                  |                                                                                                                                   | Ι                                                | <u> </u>                                                    |                                                  |              |               |                                                                                    |        |                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |           |
| Bo                                                 | Box 2 - Prox 5 - Sample                                                              |                                                                 |               |                                                 | H<br>4oz. G      |                                                                                                                                   | +                                                | ┼                                                           | <del>-</del>                                     | <del> </del> | <del>  </del> |                                                                                    |        | -{                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |           |
|                                                    |                                                                                      |                                                                 |               |                                                 | 100.0            |                                                                                                                                   |                                                  |                                                             |                                                  |              |               |                                                                                    |        |                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |           |
| Sąmple ID                                          | Dete: 2002                                                                           | Thms                                                            | Box 1: Metrix | tumber of Bottlee                               | qetaje<br>Qetaje |                                                                                                                                   |                                                  |                                                             |                                                  |              |               |                                                                                    |        |                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |           |
| -2' SGP- /                                         | 10/31                                                                                | 13.10                                                           | 8             |                                                 | ×                |                                                                                                                                   |                                                  |                                                             |                                                  |              |               |                                                                                    |        | 56P-1                                          | (1-2                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |           |
| 10 3GP- 1                                          | 1931                                                                                 | 13/10                                                           | 8             |                                                 | х                |                                                                                                                                   |                                                  |                                                             |                                                  |              |               |                                                                                    |        | SEP-1                                          | 14-10                         | <u>^</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |           |
| 11 SGP- 6                                          | 10/31                                                                                | 13:30                                                           | 8             | I                                               | ×                |                                                                                                                                   |                                                  |                                                             |                                                  |              |               |                                                                                    |        | 56P. W                                         | `lio-1                        | 17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |           |
| 10 pgp. 3                                          | 10/21                                                                                | 14:30                                                           | 5             | 17                                              | ×                |                                                                                                                                   |                                                  |                                                             |                                                  |              |               |                                                                                    |        | 56P. 3                                         | 89-1                          | ٥)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |           |
| 2 SGP- 8                                           | 10/21                                                                                | 15:50                                                           | \$            | 1                                               | ×                |                                                                                                                                   |                                                  |                                                             |                                                  |              |               |                                                                                    |        | 56P 8                                          | 77-8                          | <i>,</i> y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |           |
| 1.) SGP- 2                                         | 10/31                                                                                | 16.05                                                           | 5             | 1                                               | ×                |                                                                                                                                   |                                                  |                                                             | 1                                                | 1            |               |                                                                                    |        | 56P.8                                          | (11-12                        | ·)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |           |
| 15GP- ()                                           | 14/21                                                                                | 17:00                                                           | 3             | 1-1                                             | ×                |                                                                                                                                   |                                                  |                                                             | <del>                                     </del> |              |               |                                                                                    | 1      | 56P-1                                          |                               | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -             |           |
| 4')5GP. 12                                         | WE                                                                                   | 16:40                                                           | 3             | 1                                               | ×                |                                                                                                                                   | <del>                                     </del> | +                                                           |                                                  | 1            |               | -                                                                                  |        | 56P-1                                          |                               | u·)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |           |
|                                                    |                                                                                      | 16-10                                                           |               |                                                 | ļ                |                                                                                                                                   |                                                  |                                                             |                                                  |              |               | _                                                                                  |        |                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |           |
|                                                    |                                                                                      |                                                                 |               |                                                 |                  |                                                                                                                                   |                                                  | <u> </u>                                                    |                                                  |              |               |                                                                                    |        |                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | -         |
| eceived by lab in G                                | ood Condition                                                                        | Yes                                                             | No            | Custody S                                       | ieel inlact      | Yes                                                                                                                               | No Tempe                                         | rature upon a                                               | ntval                                            | Received o   | on lice       | Yes                                                                                | _ No   | <del></del>                                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |           |
| escribe problems, i<br>ampter Name<br>Print): DARR |                                                                                      | 1 Divisi                                                        | .(_           | Date: //                                        | 11/02            | #1 Relinqui<br>by (Signatu                                                                                                        | shed<br>ne):                                     | 2un                                                         | Kud                                              | well         | Dale: [1]     | 1/02                                                                               | 1      | inquished<br>nature):                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date:         | Sample S  |
| gnature:                                           |                                                                                      | Irdu                                                            |               | Time: /                                         | 4:30             | Company<br>Name:                                                                                                                  | DHA                                              |                                                             |                                                  |              | Time:         | 730                                                                                | Compri |                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Time:         | Time Requ |
| impler Name                                        |                                                                                      |                                                                 |               | Dete:                                           |                  | #1 Receive<br>by (Signatu                                                                                                         |                                                  |                                                             |                                                  | _            | Date:         | Y DUK                                                                              | 12 Rec | rature):                                       |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Data          | MTHSI     |
| mnl):<br>mpler                                     | _                                                                                    |                                                                 |               | U-918:                                          | -                | Company                                                                                                                           | <u></u>                                          |                                                             |                                                  |              | -             |                                                                                    | Comp   |                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date:         | 1         |
|                                                    |                                                                                      |                                                                 |               | Time:                                           |                  | Name:                                                                                                                             | 141                                              |                                                             |                                                  |              | Time: /       | h/1//                                                                              | 1      | ~· <b>,</b>                                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 1         |

Client Sample ID: 7GP-1(1-3')

#### TOTAL Metals

Lot-Sample #...: A2K040189-001 Matrix....: S0

Date Sampled...: 11/01/02 10:00 Date Received..: 11/02/02

**% Moisture....:** 15

| PARAMETER    | RESULT     | REPORTING                      | G<br>UNITS    | METHOD              | PREPARATION- WORK ANALYSIS DATE ORDER # |
|--------------|------------|--------------------------------|---------------|---------------------|-----------------------------------------|
| FARAMBIER    | THOUSK     | BIFILI                         | ONTIB         | HBINOD              | THE DISTONAL ORDER W                    |
| Prep Batch # | .: 2311117 |                                |               |                     |                                         |
| Aluminum     | 11100 Ј    | 23.5                           | mg/kg         | SW846 6010B         | 11/07-11/12/02 FCDAQ1AG                 |
|              |            | Dilution Fact                  | or: 1         | Analysis Time: 15:5 | 8 Analyst ID: 002260                    |
|              |            | Instrument II                  | D: I5         |                     |                                         |
| Arsenic      | 3.8        | 1.2                            | mg/kg         | SW846 6010B         | 11/07-11/12/02 FCDAQ1AC                 |
|              |            | Dilution Fact<br>Instrument II |               | Analysis Time: 15:5 | 8 Analyst ID: 002260                    |
| Lead         | 8.1        | 0.35                           | mg/kg         | SW846 6010B         | 11/07-11/12/02 FCDAQ1AD                 |
|              |            | Dilution Fact                  | or: 1         | Analysis Time: 15:5 | 8 Analyst ID: 002260                    |
|              |            | Instrument II                  | D: 15         |                     |                                         |
| Antimony     | 0.52 B     | 7.0                            | mg/kg         | SW846 6010B         | 11/07-11/12/02 FCDAQ1AH                 |
|              |            | Dilution Fact                  | or: 1         | Analysis Time: 15:5 | 8 Analyst ID: 002260                    |
|              |            | Instrument II                  | D: I5         |                     |                                         |
| Barium       | 66.9 J     | 23.5                           | mg/kg         | SW846 6010B         | 11/07-11/12/02 FCDAQ1AJ                 |
|              |            | Dilution Fact                  |               | Analysis Time: 15:5 | 8 Analyst ID: 002260                    |
|              |            | Instrument II                  | D: I5         |                     |                                         |
| Selenium     | ND         | 0.59                           | mg/kg         | SW846 6010B         | 11/07-11/12/02 FCDAQ1AE                 |
|              |            | Dilution Fact                  | tor: 1        | Analysis Time: 15:5 | 8 Analyst ID: 002260                    |
|              |            | Instrument II                  | D: <b>I</b> 5 |                     |                                         |
| Beryllium    | 0.70       | 0.59                           | mg/kg         | SW846 6010B         | 11/07-11/12/02 FCDAQ1AK                 |
|              |            | Dilution Fact                  |               | Analysis Time: 15:5 | 8 Analyst ID: 002260                    |
|              |            | Instrument II                  | D: 15         |                     |                                         |
| Thallium     | ND         | 1.2                            | mg/kg         | SW846 6010B         | 11/07-11/12/02 FCDAQ1AF                 |
|              |            | Dilution Fact                  | tor: 1        | Analysis Time: 15:5 | 8 Analyst ID: 002260                    |
|              |            | Instrument II                  | D: I5         |                     |                                         |
| Cadmium      | 0.027 B    | 0.59                           | mg/kg         | SW846 6010B         | 11/07-11/12/02 FCDAQ1AL                 |
|              |            | Dilution Fact                  | tor: 1        | Analysis Time: 15:5 | 8 Analyst ID: 002260                    |
|              |            | Instrument II                  | D: 15         |                     |                                         |
| Calcium      | 7490       | 587                            | mg/kg         | SW846 6010B         | 11/07-11/12/02 FCDAQ1AM                 |
|              |            | Dilution Fact                  | or: 1         | Analysis Time: 15:5 | 8 Analyst ID: 002260                    |
|              |            | Instrument II                  | D: 15         |                     |                                         |

(Continued on next page)

Client Sample ID: 7GP-1(1-3!)

#### TOTAL Metals

Lot-Sample #...: A2K040189-001 Matrix.....: SO

| 22224     |        | REPORTIN                     | _              | Manager                   |                | PREPARATION-   | WORK     |
|-----------|--------|------------------------------|----------------|---------------------------|----------------|----------------|----------|
| PARAMETER | RESULT | LIMIT                        | _ <u>UNITS</u> | METHOD                    |                | ANALYSIS DATE  | ORDER #  |
| Chromium  | 24.1   | 1.2                          | mg/kg          | SW846                     |                | 11/07-11/12/02 |          |
|           |        | Dilution Fac<br>Instrument I |                | Analysis                  | Time: 15:58    | Analyst ID     | : 002260 |
| Cobalt    | 11.5   | 5.9                          | mg/kg          | SW846                     | 6010B          | 11/07-11/12/02 | FCDAQ1AP |
|           |        | Dilution Fac                 | tor: 1         | Analysis                  | Time: 15:58    | Analyst ID     | : 002260 |
|           |        | Instrument I                 | D: 15          |                           |                |                |          |
| Copper    | 22.8   | 2.9                          | mg/kg          | SW846                     | 6010B          | 11/07-11/12/02 | FCDAQ1AQ |
|           |        | Dilution Fac                 | tor: 1         | Analysis                  | Time: 15:58    | Analyst ID     | : 002260 |
|           |        | Instrument I                 | D: 15          |                           |                |                |          |
| Iron      | 19400  | 11.7                         | mg/kg          | SW846                     | 6010B          | 11/07-11/12/02 | FCDAQ1AR |
|           |        | Dilution Fac                 | tor: 1         | Analysis                  | Time: 15:58    | Analyst ID     | : 002260 |
|           |        | Instrument I                 | D: 15          |                           |                |                |          |
| Magnesium | 4290   | 587                          | mg/kg          | SW846                     | 6010B          | 11/07-11/12/02 | FCDAQ1AT |
|           |        | Dilution Fac                 | tor: 1         | Analysis                  | Time: 15:58    | Analyst ID     | : 002260 |
|           |        | Instrument I                 | D: I5          |                           |                |                |          |
| Manganese | 662    | 1.8                          | mg/kg          | SW846                     | 6010B          | 11/07-11/12/02 | FCDAQ1AU |
|           |        | Dilution Fac                 | tor: 1         | An <b>al</b> ysi <b>s</b> | Time: 15:58    | Analyst ID     | : 002260 |
|           |        | Instrument I                 | D: 15          |                           |                |                |          |
| Nickel    | 13.5   | 4.7                          | mg/kg          | SW846                     | 6010B          | 11/07-11/12/02 | FCDAQ1AV |
|           |        | Dilution Fac                 | tor: 1         | Analysis                  | Time: 15:58    | Analyst ID     | : 002260 |
|           |        | Instrument I                 | D: I5          |                           |                |                |          |
| Potassium | 774 Ј  | 587                          | mg/kg          | SW846                     | 601 <b>0</b> B | 11/07-11/12/02 | FCDAQ1AW |
|           |        | Dilution Fac                 | tor: 1         | Analysis                  | Time: 15:58    | Analyst ID     | : 002260 |
|           |        | Instrument I                 | D: 15          |                           |                |                |          |
| Silver    | ND     | 1.2                          | mg/kg          | SW846                     | 6010B          | 11/07-11/12/02 | FCDAQ1AX |
|           |        | Dilution Fac                 | tor: 1         | Analysis                  | Time: 15:58    | Analyst ID     | : 002260 |
|           |        | Instrument I                 | D: I5          |                           |                |                |          |
| Sodium    | ND     | 587                          | mg/kg          | SW846                     | 6010B          | 11/07-11/12/02 | FCDAQ1A0 |
|           |        | Dilution Fac                 | tor: 1         | Analysis                  | Time: 15:58    | Analyst ID     | : 002260 |
|           |        | Instrument I                 | D: 15          |                           |                |                |          |

(Continued on next page)

Client Sample ID: 7GP-1(1-3')

#### TOTAL Metals

Lot-Sample #...: A2K040189-001

Matrix....: SO

|           |         | REPORTI      | NG      |                      | PREPARATION-   | WORK      |
|-----------|---------|--------------|---------|----------------------|----------------|-----------|
| PARAMETER | RESULT  | LIMIT        | UNITS   | METHOD               | ANALYSIS DATE  | ORDER #   |
| Vanadium  | 28.0    | 5.9          | mg/kg   | SW846 6010B          | 11/07-11/12/02 | FCDAQ1A1  |
|           |         | Dilution Fac | ctor: 1 | Analysis Time: 15:58 | Analyst ID     | .: 002260 |
|           |         | Instrument : | ID: I5  |                      |                |           |
| Zinc      | 17.4    | 2.3          | mg/kg   | SW846 6010B          | 11/07-11/12/02 | FCDAQ1A2  |
|           |         | Dilution Fac | ctor: 1 | Analysis Time: 15:58 | Analyst ID     | .: 002260 |
|           |         | Instrument : | ID: I5  |                      |                |           |
| Mercury   | 0.026 B | 0.12         | mg/kg   | SW846 7471A          | 11/07-11/08/02 | FCDAQ1A3  |
|           |         | Dilution Fac | ctor: 1 | Analysis Time: 11:10 | Analyst ID     | .: 001644 |
|           |         | Instrument : | ID: H1  |                      |                |           |
|           |         |              |         |                      |                |           |

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: 7GP-2(8-12')

#### TOTAL Metals

Lot-Sample #...: A2K040189-002 Matrix.....: S0

Date Sampled...: 11/01/02 10:40 Date Received..: 11/02/02

**% Moisture....:** 18

| PARAMETER    | RESULT     | REPORTING LIMIT UNITS                  | METHOD               | PREPARATION- WORK ANALYSIS DATE ORDER # |
|--------------|------------|----------------------------------------|----------------------|-----------------------------------------|
| Prep Batch # | .: 2311117 |                                        |                      |                                         |
| Aluminum     | 8790 J     | 24.3 mg/kg                             | SW846 6010B          | 11/07-11/12/02 FCDA51A8                 |
|              |            | Dilution Factor: 1 Instrument ID: I5   | Analysis Time: 16:03 | Analyst ID: 002260                      |
| Arsenic      | 2.7        | 1.2 mg/kg                              | SW846 6010B          | 11/07-11/12/02 FCDA51AU                 |
|              |            | Dilution Factor: 1 Instrument ID: I5   | Analysis Time: 16:03 | Analyst ID: 002260                      |
| Lead         | 2.8        | 0.36 mg/kg                             | SW846 6010B          | 11/07-11/12/02 FCDA51AX                 |
|              |            | Dilution Factor: 1 Instrument ID: I5   | Analysis Time: 16:03 | Analyst ID: 002260                      |
| Antimony     | 1.1 B      | 7.3 mg/kg                              | SW846 6010B          | 11/07-11/12/02 FCDA51CC                 |
|              |            | Dilution Factor: 1 Instrument ID: I5   | Analysis Time: 16:03 | Analyst ID: 002260                      |
| Barium       | 40.9 J     | 24.3 mq/kq                             | SW846 6010B          | 11/07-11/12/02 FCDA51CF                 |
|              |            | Dilution Factor: 1 Instrument ID: I5   | Analysis Time: 16:03 | Analyst ID: 002260                      |
| Selenium     | ND         | 0.61 mg/kg                             | SW846 6010B          | 11/07-11/12/02 FCDA51A2                 |
|              | 4.         | Dilution Factor: 1 Instrument ID.:: I5 | Analysis Time: 16:03 | Analyst ID: 002260                      |
| Beryllium    | 1.2        | 0.61 mg/kg                             | SW846 6010B          | 11/07-11/12/02 FCDA51CJ                 |
|              |            | Dilution Factor: 1 Instrument ID: I5   | Analysis Time: 16:03 | Analyst ID: 002260                      |
| Thallium     | ND         | 1.2 mg/kg                              | SW846 6010B          | 11/07-11/12/02 FCDA51A5                 |
|              | •          | Dilution Factor: 1 Instrument ID: I5   | Analysis Time: 16:03 | Analyst ID: 002260                      |
| Cadmium      | ND         | 0.61 mg/kg                             | SW846 6010B          | 11/07-11/12/02 FCDA51CM                 |
|              |            | Dilution Factor: 1 Instrument ID: I5   | Analysis Time: 16:03 | Analyst ID: 002260                      |
| Calcium      | 283 B      | 607 mg/kg                              | SW846 6010B          | 11/07-11/12/02 FCDA51CQ                 |
|              |            | Dilution Factor: 1 Instrument ID.:: I5 | Analysis Time: 16:03 | Analyst ID: 002260                      |

(Continued on next page)

Client Sample ID: 7GP-2(8-12')

#### TOTAL Metals

Lot-Sample #...: A2K040189-002 Matrix.....: S0

| PARAMETER | RESULT | REPORTING<br>LIMIT UNITS             | METHOD               | PREPARATION- WORK ANALYSIS DATE ORDER # |
|-----------|--------|--------------------------------------|----------------------|-----------------------------------------|
| Chromium  | 22.0   | 1.2 mg/kg                            | SW846 6010B          | 11/07-11/12/02 FCDA51CU                 |
|           |        | Dilution Factor: 1 Instrument ID: I5 | Analysis Time: 16:03 | Analyst ID: 002260                      |
| Cobalt    | 12.5   | 6.1 mg/kg                            | SW846 6010B          | 11/07-11/12/02 FCDA51CX                 |
|           |        | Dilution Factor: 1 Instrument ID: I5 | Analysis Time: 16:03 | Analyst ID: 002260                      |
| Copper    | 22.0   | 3.0 mg/kg                            | SW846 6010B          | 11/07-11/12/02 FCDA51C2                 |
|           |        | Dilution Factor: 1 Instrument ID: I5 | Analysis Time: 16:03 | Analyst ID: 002260                      |
| Iron      | 23300  | 12.1 mg/kg                           | SW846 6010B          | 11/07-11/12/02 FCDA51C5                 |
|           |        | Dilution Factor: 1 Instrument ID: I5 | Analysis Time: 16:03 | Analyst ID: 002260                      |
| Magnesium | 3140   | 607 mg/kg                            | SW846 6010B          | 11/07-11/12/02 FCDA51C8                 |
|           |        | Dilution Factor: 1 Instrument ID: I5 | Analysis Time: 16:03 | Analyst ID: 002260                      |
| Manganese | 274    | 1.8 mg/kg                            | SW846 6010B          | 11/07-11/12/02 FCDA51DC                 |
|           |        | Dilution Factor: 1 Instrument ID: 15 | Analysis Time: 16:03 | Analyst ID: 002260                      |
| Nickel    | 21.6   | 4.9 mg/kg                            | SW846 6010B          | 11/07-11/12/02 FCDA51DF                 |
|           |        | Dilution Factor: 1 Instrument ID: I5 | Analysis Time: 16:03 | Analyst ID: 002260                      |
| Potassium | 1070 Ј | 607 mg/kg                            | SW846 6010B          | 11/07-11/12/02 FCDA51DJ                 |
|           |        | Dilution Factor: 1 Instrument ID: I5 | Analysis Time: 16:03 | Analyst ID: 002260                      |
| Silver    | ND     | 1.2 mg/kg                            | SW846 6010B          | 11/07-11/12/02 FCDA51DM                 |
|           |        | Dilution Factor: 1 Instrument ID: I5 | Analysis Time: 16:03 | Analyst ID: 002260                      |
| Sodium    | ND     | 607 mg/kg                            | SW846 6010B          | 11/07-11/12/02 FCDA51AA                 |
|           |        | Dilution Factor: 1 Instrument ID: I5 | Analysis Time: 16:03 | Analyst ID: 002260                      |

(Continued on next page)

Client Sample ID: 7GP-2(8-12')

#### TOTAL Metals

Lot-Sample #...: A2K040189-002

Matrix....: SO

|           |        | REPORTIN     | 1G       |          |             | PREPARATION-   | WORK     |
|-----------|--------|--------------|----------|----------|-------------|----------------|----------|
| PARAMETER | RESULT | LIMIT_       | _ UNITS_ | METHOD   |             | ANALYSIS DATE  | ORDER #  |
| Vanadium  | 21.1   | 6.1          | mg/kg    | SW846    | 6010B       | 11/07-11/12/02 | FCDA51AE |
|           |        | Dilution Fac | tor: 1   | Analysis | Time: 16:03 | Analyst ID     | : 002260 |
|           |        | Instrument I | D: I5    |          |             |                |          |
| Zinc      | 15.0   | 2.4          | mg/kg    | SW846    | 6010B       | 11/07-11/12/02 | FCDA51AH |
|           |        | Dilution Fac | tor: 1   | Analysis | Time: 16:03 | Analyst ID     | : 002260 |
|           |        | Instrument I | D: I5    |          |             |                |          |
| Mercury   | ND     | 0.12         | mg/kg    | SW846    | 7471A       | 11/07-11/08/02 | FCDA51AL |
|           |        | Dilution Fac | tor: 1   | Analysis | Time: 11:13 | Analyst ID     | : 001644 |
|           |        | Instrument I | D: Н1    |          |             |                |          |
|           |        |              |          |          |             |                |          |

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: 7GP-2(13.5-14.5')

#### TOTAL Metals

Lot-Sample #...: A2K040189-003 Matrix.....: SO

Date Sampled...: 11/01/02 11:05 Date Received..: 11/02/02

% Moisture....: 18

| PARAMETER    | RESULT     | REPORTING LIMIT UNITS                | METHOD               | PREPARATION- WORK ANALYSIS DATE ORDER # |
|--------------|------------|--------------------------------------|----------------------|-----------------------------------------|
| Prep Batch # | .: 2311117 |                                      |                      |                                         |
| Aluminum     | 19700 J    | 24.3 mg/kg                           | SW846 6010B          | 11/07-11/12/02 FCDA71AM                 |
|              |            | Dilution Factor: 1 Instrument ID: 15 | Analysis Time: 16:08 | Analyst ID: 002260                      |
| Arsenic      | 3.1        | 1.2 mg/kg                            | SW846 6010B          | 11/07-11/12/02 FCDA71AH                 |
|              |            | Dilution Factor: 1 Instrument ID: 15 | Analysis Time: 16:08 | Analyst ID: 002260                      |
| Lead         | 13.6       | 0.36 mg/kg                           | SW846 6010B          | 11/07-11/12/02 FCDA71AJ                 |
|              |            | Dilution Factor: 1 Instrument ID: I5 | Analysis Time: 16:08 | Analyst ID: 002260                      |
| Antimony     | 1.3 B      | 7.3 mg/kg                            | SW846 6010B          | 11/07-11/12/02 FCDA71AN                 |
|              |            | Dilution Factor: 1 Instrument ID: 15 | Analysis Time: 16:08 | Analyst ID: 002260                      |
|              |            | institument ib: 15                   |                      |                                         |
| Barium       | 70.9 J     | 24.3 mg/kg                           | SW846 6010B          | 11/07-11/12/02 FCDA71AP                 |
|              |            | Dilution Factor: 1 Instrument ID: I5 | Analysis Time: 16:08 | Analyst ID: 002260                      |
| Selenium     | ND         | 0.61 mg/kg                           | SW846 6010B          | 11/07-11/12/02 FCDA71AK                 |
|              |            | Dilution Factor: 1 Instrument ID: 15 | Analysis Time: 16:08 | Analyst ID: 002260                      |
| Beryllium    | 0.84       | 0.61 mg/kg                           | SW846 6010B          | 11/07-11/12/02 FCDA71AQ                 |
|              |            | Dilution Factor: 1 Instrument ID: 15 | Analysis Time: 16:08 | Analyst ID: 002260                      |
| Thallium     | ND         | 1.2 <b>mg/k</b> g                    | SW846 6010B          | 11/07-11/12/02 FCDA71AL                 |
|              |            | Dilution Factor: 1 Instrument ID: I5 | Analysis Time: 16:08 | Analyst ID: 002260                      |
| Cadmium      | ND         | 0.61 mg/kg                           | SW846 6010B          | 11/07-11/12/02 FCDA71AR                 |
| ŕ            |            | Dilution Factor: 1 Instrument ID: I5 | Analysis Time: 16:08 | Analyst ID: 002260                      |
| Calcium      | 480 B      | 608 mg/kg                            | SW846 6010B          | 11/07-11/12/02 FCDA71AT                 |
|              |            | Dilution Factor: 1 Instrument ID: 15 | Analysis Time: 16:08 | Analyst ID: 002260                      |
|              |            | instrument ID: 15                    |                      |                                         |

Client Sample ID: 7GP-2(13.5-14.5')

#### TOTAL Metals

Lot-Sample #...: A2K040189-003 Matrix.....: S0

| PARAMETER | RESULT | REPORTING<br>LIMIT             | UNITS | METHO                     | D           | PREPARATION -<br>ANALYSIS DATE | WORK<br>ORDER # |
|-----------|--------|--------------------------------|-------|---------------------------|-------------|--------------------------------|-----------------|
| Chromium  | 22.5   | 1.2                            | mq/kq |                           | 6010B       | 11/07-11/12/02                 |                 |
| \         |        | Dilution Factor                | J. J  |                           | Time: 16:08 | Analyst ID                     |                 |
|           |        | Instrument ID.                 |       | 1                         |             | •                              |                 |
| Cobalt    | 16.2   | 6.1                            | mg/kg | SW846                     | 6010B       | 11/07-11/12/02                 | FCDA71AV        |
|           |        | Dilution Factor Instrument ID. |       | Analysis                  | Time: 16:08 | Analyst ID                     | : 002260        |
| Copper    | 14.2   | 3.0                            | mg/kg | SW846                     | 6010B       | 11/07-11/12/02                 | FCDA71AW        |
|           |        | Dilution Factor                | r: 1  | Analysis                  | Time: 16:08 | Analyst ID                     | : 002260        |
|           |        | Instrument ID.                 | .: 15 |                           |             |                                |                 |
| Iron      | 29300  | 12.2                           | mg/kg | SW846                     | 6010B       | 11/07-11/12/02                 | FCDA71AX        |
|           |        | Dilution Factor                | c: 1  | Analysis                  | Time: 16:08 | Analyst ID                     | : 002260        |
|           |        | Instrument ID.                 | .: I5 |                           |             |                                |                 |
| Magnesium | 2000   | 608                            | mg/kg | SW846                     | 6010B       | 11/07-11/12/02                 | FCDA71A0        |
|           |        | Dilution Factor                | r: 1  | Analysis                  | Time: 16:08 | Analyst ID                     | : 002260        |
|           |        | Instrument ID.                 | .: 15 |                           |             |                                |                 |
| Manganese | 407    | 1.8                            | mg/kg | SW846                     | 6010B       | 11/07-11/12/02                 | FCDA71A1        |
|           |        | Dilution Factor                | r: 1  | Analysis                  | Time: 16:08 | Analyst ID                     | : 002260        |
|           |        | Instrument ID.                 | .: 15 |                           |             |                                |                 |
| Nickel    | 11.4   | 4.9                            | mg/kg | SW846                     | 6010B       | 11/07-11/12/02                 | FCDA71A2        |
|           |        | Dilution Factor                | r: 1  | Analysis                  | Time: 16:08 | Analyst ID                     | : 002260        |
|           |        | Instrument ID.                 | .: 15 |                           |             |                                |                 |
| Potassium | 1390 J | 608                            | mg/kg | SW846                     | 6010B       | 11/07-11/12/02                 | FCDA71A3        |
| •         |        | Dilution Factor                | r: 1  | Analysis                  | Time: 16:08 | Analyst ID                     | : 002260        |
|           |        | Instrument ID.                 | .: 15 |                           |             |                                |                 |
| Silver    | ND     | 1.2                            | mg/kg | SW846                     | 6010B       | 11/07-11/12/02                 | FCDA71A4        |
| ,         |        | Dilution Factor                | r: 1  | Analysis                  | Time: 16:08 | Analyst ID                     | : 002260        |
|           |        | Instrument ID.                 | .: 15 |                           |             |                                |                 |
| Sodium    | ND     | 608                            | mg/kg | S <b>W</b> 846            | 6010B       | 11/07-11/12/02                 | FCDA71AA        |
|           |        | Dilution Factor                | r: 1  | An <b>al</b> ysi <b>s</b> | Time: 16:08 | Analyst ID                     | : 002260        |
|           |        | Instrument ID.                 | .: 15 |                           |             |                                |                 |

(Continued on next page)

Client Sample ID: 7GP-2(13.5-14.5')

#### TOTAL Metals

Lot-Sample #...: A2K040189-003

Matrix..... SO

|           |         | REPORTI      | 1G      |          |             | PREPARATION-   | WORK                      |
|-----------|---------|--------------|---------|----------|-------------|----------------|---------------------------|
| PARAMETER | RESULT  | LIMIT_       | UNITS   | METHOD   |             | ANALYSIS DATE  | ORDER #                   |
| Vanadium  | 57.7    | 6.1          | mg/kg   | SW846    | 6010B       | 11/07-11/12/02 | FCDA71AC                  |
|           |         | Dilution Fac | ctor: 1 | Analysis | Time: 16:08 | Analyst ID     | : 002260                  |
|           |         | Instrument : | ID: I5  |          |             |                |                           |
| Zinc      | 32.6    | 2.4          | mg/kg   | SW846    | 6010B       | 11/07-11/12/02 | FCDA71AD                  |
| á         |         | Dilution Fac | ctor: 1 | Analysis | Time: 16:08 | Analyst ID     | : <b>0</b> 0 <b>2</b> 260 |
|           |         | Instrument   | ID: 15  |          |             |                |                           |
| Mercury   | 0.050 B | 0.12         | mg/kg   | SW846    | 7471A       | 11/07-11/08/02 | FCDA71AE                  |
|           |         | Dilution Fac | ctor: 1 | Analysis | Time: 11:14 | Analyst ID     | : 001644                  |
|           |         | Instrument   | ID: H1  |          |             |                |                           |

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level,

B Estimated result. Result is less than RL.

Client Sample ID: 7GP-3(10-11')

#### TOTAL Metals

Lot-Sample #...: A2K040189-004 Matrix.....: S0

Date Sampled...: 11/01/02 11:25 Date Received..: 11/02/02

**% Moisture....:** 21

| PARAMETER    | RESULT     | REPORTING     | G<br>UNITS          | METHOD               | PREPARATION- WORK ANALYSIS DATE ORDER # |
|--------------|------------|---------------|---------------------|----------------------|-----------------------------------------|
|              |            |               |                     |                      |                                         |
| Prep Batch # | .: 2311117 |               |                     |                      |                                         |
| Aluminum     | 11700 J    | 25.3          | mg/kg               | SW846 6010B          | 11/07-11/12/02 FCDCC1AM                 |
|              |            | Dilution Fact | tor: 1              | Analysis Time: 16:13 | Analyst ID: 002260                      |
|              |            | Instrument II | D: I5               |                      |                                         |
| Arsenic      | 26.1       | 1.3           | mg/kg               | SW846 6010B          | 11/07-11/12/02 FCDCC1AH                 |
|              |            | Dilution Fact | tor: 1              | Analysis Time: 16:13 | Analyst ID: 002260                      |
|              |            | Instrument II | D: I5               |                      |                                         |
| Lead         | 35.1       | 0.38          | mq/kq               | SW846 6010B          | 11/07-11/12/02 FCDCC1AJ                 |
|              |            | Dilution Fact | tor: 1              | Analysis Time: 16:13 | Analyst ID: 002260                      |
|              |            | Instrument II | D: I5               |                      |                                         |
| Antimony     | 1.1 B      | 7.6           | mg/kg               | SW846 6010B          | 11/07-11/12/02 FCDCC1AN                 |
| •            |            | Dilution Fact | tor: 1              | Analysis Time: 16:13 | Analyst ID: 002260                      |
|              |            | Instrument II | D: 15               |                      |                                         |
| Barium       | 229 Ј      | 25.3          | mq/kg               | SW846 6010B          | 11/07-11/12/02 FCDCC1AP                 |
|              |            | Dilution Fact | J- J                | Analysis Time: 16:13 | Analyst ID: 002260                      |
|              |            | Instrument II | D: I5               | •                    |                                         |
| Selenium     | 3.5        | 0.63          | mq/kq               | SW846 6010B          | 11/07-11/12/02 FCDCC1AK                 |
|              |            | Dilution Fact | tor: 1              | Analysis Time: 16:13 | Analyst ID: 002260                      |
|              |            | Instrument II | D: I5               |                      |                                         |
| Beryllium    | 1.5        | 0.63          | mag/kg              | SW846 6010B          | 11/07-11/12/02 FCDCC1AQ                 |
|              |            | Dilution Fact | tor: 1              | Analysis Time: 16:13 | Analyst ID: 002260                      |
|              |            | Instrument II | D: I5               |                      |                                         |
| Thallium     | ND         | 1.3           | mg/kg               | SW846 6010B          | 11/07-11/12/02 FCDCC1AL                 |
|              |            | Dilution Fact | tor: 1              | Analysis Time: 16:13 | Analyst ID: 002260                      |
|              |            | Instrument II | D: 15               |                      |                                         |
| Cadmium      | 0.16 B     | 0.63          | mg/kg               | SW846 6010B          | 11/07-11/12/02 FCDCC1AR                 |
|              |            | Dilution Fact | • •                 | Analysis Time: 16:13 | Analyst ID: 002260                      |
|              |            | Instrument II |                     | •                    | •                                       |
| Calcium      | 28100      | 631           | mq/kq               | SW846 6010B          | 11/07-11/12/02 FCDCC1AT                 |
| JALUAUM      | 20100      | Dilution Fact | <i>J</i> , <i>J</i> | Analysis Time: 16:13 | Analyst ID: 002260                      |
|              |            | Instrument II |                     |                      |                                         |
|              |            |               |                     |                      |                                         |

(Continued on next page)

Client Sample ID: 7GP-3(10-11')

#### TOTAL Metals

Lot-Sample #...: A2K040189-004

REPORTING

PREPARATION- WORK

Matrix..... SO

| PARAMETER | RESULT | LIMIT UNITS_       | METHOD               | ANALYSIS DATE ORDER #   |
|-----------|--------|--------------------|----------------------|-------------------------|
| Chromium  | 32.8   | 1.3 mg/kg          | SW846 6010B          | 11/07-11/12/02 FCDCC1AU |
|           |        | Dilution Factor: 1 | Analysis Time: 16:13 | Analyst ID: 002260      |
|           |        | Instrument ID: I5  |                      |                         |
| Cobalt    | 8.1    | 6.3 mg/kg          | SW846 6010B          | 11/07-11/12/02 FCDCC1AV |
|           |        | Dilution Factor: 1 | Analysis Time: 16:13 | Analyst ID: 002260      |
|           |        | Instrument ID: 15  |                      |                         |
| Copper    | 23.2   | 3.2 mg/kg          | SW846 6010B          | 11/07-11/12/02 FCDCC1AW |
|           |        | Dilution Factor: 1 | Analysis Time: 16:13 | Analyst ID: 002260      |
|           |        | Instrument ID: 15  |                      |                         |
| Iron      | 15900  | 12.6 mg/kg         | SW846 6010B          | 11/07-11/12/02 FCDCC1AX |
|           |        | Dilution Factor: 1 | Analysis Time: 16:13 | Analyst ID: 002260      |
|           |        | Instrument ID: I5  |                      |                         |
| Magnesium | 2440   | 631 mg/kg          | SW846 6010B          | 11/07-11/12/02 FCDCC1A0 |
|           |        | Dilution Factor: 1 | Analysis Time: 16:13 | Analyst ID: 002260      |
|           |        | Instrument ID: I5  |                      |                         |
| Manganese | 145    | 1.9 mg/kg          | SW846 6010B          | 11/07-11/12/02 FCDCC1A1 |
|           |        | Dilution Factor: 1 | Analysis Time: 16:13 | Analyst ID: 002260      |
|           |        | Instrument ID: I5  |                      |                         |
| Nickel    | 15.9   | 5.1 mg/kg          | SW846 6010B          | 11/07-11/12/02 FCDCC1A2 |
|           |        | Dilution Factor: 1 | Analysis Time: 16:13 | Analyst ID: 002260      |
|           |        | Instrument ID: I5  |                      |                         |
| Potassium | 2970 Ј | 631 mg/kg          | SW846 6010B          | 11/07-11/12/02 FCDCC1A3 |
|           |        | Dilution Factor: 1 | Analysis Time: 16:13 | Analyst ID: 002260      |
|           |        | Instrument ID: I5  |                      |                         |
| Silver    | ND     | 1.3 mg/kg          | SW846 6010B          | 11/07-11/12/02 FCDCC1A4 |
|           |        | Dilution Factor: 1 | Analysis Time: 16:13 | Analyst ID: 002260      |
|           |        | Instrument ID: I5  |                      |                         |
| Sodium    | 156 B  | 631 mg/kg          | SW846 6010B          | 11/07-11/12/02 FCDCC1AA |
|           |        | Dilution Factor: 1 | Analysis Time: 16:13 | Analyst ID: 002260      |
|           |        | Instrument ID: 15  |                      |                         |

(Continued on next page)

Client Sample ID: 7GP-3(10-11')

#### TOTAL Metals

Lot-Sample #...: A2K040189-004

Matrix..... SO

| PARAMETER<br>Vanadium | RESULT<br>42.1 | REPORTING LIMIT 6.3 Dilution Facto Instrument ID. | mg/kg or: 1 | METHOD  SW846 6010B  Analysis Time: 16:13 | PREPARATION- WORK  ANALYSIS DATE ORDER #  11/07-11/12/02 FCDCC1AC  Analyst ID: 002260 |
|-----------------------|----------------|---------------------------------------------------|-------------|-------------------------------------------|---------------------------------------------------------------------------------------|
| Zinc                  | 33.8           | 2.5 Dilution Facto                                |             | <b>SW846 6010B</b> Analysis Time: 16:13   | 11/07-11/12/02 FCDCC1AI Analyst ID: 002260                                            |
| Mercury               | 0.040 B        | 0.13<br>Dilution Factor                           |             | SW846 7471A Analysis Time: 11:18          | 11/07-11/08/02 FCDCC1AI<br>Analyst ID: 001644                                         |

NOTE(S):

J. Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: 7GP-8(5-8')

#### TOTAL Metals

Lot-Sample #...: A2K040189-005 Matrix....: S0
Date Sampled...: 11/01/02 12:15 Date Received..: 11/02/02

% Moisture....: 19

|              |            | REPORTING     | G             |                      | PREPARATION-   | WORK     |
|--------------|------------|---------------|---------------|----------------------|----------------|----------|
| PARAMETER    | RESULT     | LIMIT         | UNITS         | METHOD               | ANALYSIS DATE_ | ORDER #_ |
| Prep Batch # | .: 2311117 |               |               |                      |                |          |
| Aluminum     | 22400 J    | 24.7          | mg/kg         | SW846 6010B          | 11/07-11/12/02 | FCDCE1AM |
|              |            | Dilution Fact | or: 1         | Analysis Time: 16:18 | Analyst ID     | : 002260 |
|              |            | Instrument II | D: I5         |                      |                |          |
| Arsenic      | 2.4        | 1.2           | mg/kg         | SW846 6010B          | 11/07-11/12/02 | FCDCE1AH |
|              |            | Dilution Fact | or: 1         | Analysis Time: 16:18 | Analyst ID     | : 002260 |
|              |            | Instrument II | D: I5         |                      |                |          |
| Lead         | 10.3       | 0.37          | mg/kg         | SW846 6010B          | 11/07-11/12/02 | FCDCE1AJ |
|              |            | Dilution Fact | or: 1         | Analysis Time: 16:18 | Analyst ID     | : 002260 |
|              |            | Instrument II | ): I5         |                      |                |          |
| Antimony     | 0.80 B     | 7.4           | mg/kg         | SW846 6010B          | 11/07-11/12/02 | FCDCELAN |
|              |            | Dilution Fact |               | Analysis Time: 16:18 | Analyst ID     | : 002260 |
|              |            | Instrument II | D: <b>I</b> 5 |                      |                |          |
| Barium       | 55.0 J     | 24.7          | mg/kg         | SW846 6010B          | 11/07-11/12/02 | FCDCE1AP |
|              |            | Dilution Fact |               | Analysis Time: 16:18 | Analyst ID     | : 002260 |
|              |            | Instrument II | D: I5         |                      |                |          |
| Selenium     | ND         | 0.62          | mg/kg         | SW846 6010B          | 11/07-11/12/02 | FCDCE1AK |
|              |            | Dilution Fact |               | Analysis Time: 16:18 | Analyst ID     | : 002260 |
|              |            | Instrument II | ): I5         |                      |                |          |
| Beryllium    | 0.41 B     | 0.62          | mg/kg         | SW846 6010B          | 11/07-11/12/02 | FCDCE1AQ |
|              |            | Dilution Fact |               | Analysis Time: 16:18 | Analyst ID     | : 002260 |
|              |            | Instrument II | D: I5         |                      |                |          |
| Thallium     | ND         | 1.2           | mg/kg         | SW846 6010B          | 11/07-11/12/02 | FCDCE1AL |
|              |            | Dilution Fact |               | Analysis Time: 16:18 | Analyst ID     | : 002260 |
|              |            | Instrument II | D: I5         |                      |                |          |
| Cadmium      | ND         | 0.62          | mg/kg         | SW846 6010B          | 11/07-11/12/02 | FCDCE1AR |
|              |            | Dilution Fact |               | Analysis Time: 16:18 | Analyst ID     | : 002260 |
|              |            | Instrument II | ): <b>15</b>  |                      |                |          |
| Calcium      | 1570       | 618           | mg/kg         | SW846 6010B          | 11/07-11/12/02 | FCDCELAT |
|              |            | Dilution Fact |               | Analysis Time: 16:18 | Analyst ID     | : 002260 |
|              |            | Instrument II | D: I5         |                      |                |          |

(Continued on next page)

Client Sample ID: 7GP-8(5-8')

#### TOTAL Metals

Lot-Sample #...: A2K040189-005

**Matrix....**: SO

|           |        | REPORTING                     |              |          |                | PREPARATION-   | WORK             |
|-----------|--------|-------------------------------|--------------|----------|----------------|----------------|------------------|
| PARAMETER | RESULT | LIMIT                         | UNITS        | METHOD   | )              | ANALYSIS DATE  | ORDER #          |
| Chromium  | 20.1   | 1.2                           | mg/kg        | SW846    | 6010B          | 11/07-11/12/02 | FCDCE1AU         |
|           |        | Dilution Fact                 | or: 1        | Analysis | Time: 16:18    | Analyst ID     | : 002260         |
|           |        | Instrument ID                 | : 15         |          |                |                |                  |
| Cobalt    | 5.4 B  | 6.2                           | mg/kg        | SW846    | 6010B          | 11/07-11/12/02 | FCDCE1AV         |
|           |        | Dilution Fact                 | or: 1        | Analysis | Time: 16:18    | Analyst ID     | : 002260         |
|           |        | Instrument ID                 | : 15         |          |                |                |                  |
| Copper    | 12.7   | 3.1                           | mg/kg        | SW846    | 6010B          | 11/07-11/12/02 | FCDCE1AW         |
|           |        | Dilution Fact                 |              | Analysis | Time: 16:18    | Analyst ID     | : 002260         |
|           |        | Instrument ID                 | : 15         |          |                |                |                  |
| Iron      | 23200  | 12.4                          | mg/kg        | SW846    | 6010B          | 11/07-11/12/02 | FCDCE1AX         |
|           |        | Dilution Facto                |              | Analysis | Time: 16:18    | Analyst ID     | : 002260         |
|           |        | Instrument ID                 | : I5         |          |                |                |                  |
| Magnesium | 1090   | 618                           | mg/kg        | SW846    |                | 11/07-11/12/02 |                  |
|           |        | Dilution Fact                 |              | Analysis | Time: 16:18    | Analyst ID     | : 002260         |
|           |        | Instrument ID                 | : 15         |          |                |                |                  |
| Manganese | 280    | 1.9                           | mg/kg        | SW846    |                | 11/07-11/12/02 |                  |
|           |        | Dilution Facto                |              | Analysis | Time: 16:18    | Analyst ID     | : 002260         |
|           |        | Instrument ID                 | : 15         |          |                |                |                  |
| Nickel    | 8.5    | 4.9                           | mg/kg        | SW846    |                | 11/07-11/12/02 |                  |
|           |        | Dilution Facto                | <del>-</del> | Analysis | Time: 16:18    | Analyst ID     | : 002260         |
|           |        | Instrument ID                 | : 15         |          |                |                |                  |
| Potassium | 1040 J | 618                           | mg/kg        | SW846    | 6010B          | 11/07-11/12/02 | FCDCE1A3         |
|           |        | Dilution Facto                |              | Analysis | Time: 16:18    | Analyst ID     | : 002260         |
|           |        | Instrument ID                 | : 15         |          |                |                |                  |
| Silver    | ND     | 1.2                           | mg/kg        | SW846    | 6 <b>0</b> 10B | 11/07-11/12/02 | FCDCE1A4         |
|           |        | Dilution Factor Instrument ID |              | Analysis | Time: 16:18    | Analyst ID     | : 002260         |
|           |        | instrument ID                 | : 15         |          |                |                |                  |
| Sodium    | ND     | 618                           | mg/kg        | SW846    | 6 <b>0</b> 10B | 11/07-11/12/02 | FCDCE1AA         |
|           |        | Dilution Facto                | or: 1        | Analysis | Time: 16:18    | Analyst ID     | : 00226 <b>0</b> |
|           |        | Instrument ID                 | : 15         |          |                |                |                  |

(Continued on next page)

Client Sample ID: 7GP-8(5-8')

#### TOTAL Metals

Lot-Sample #...: A2K040189-005

**Matrix....** SO

|           |         | REPORTING      | 3     |          |                | PREPARATION-   | WORK     |
|-----------|---------|----------------|-------|----------|----------------|----------------|----------|
| PARAMETER | RESULT  | LIMIT          | UNITS | METHOL   | o              | ANALYSIS DATE  | ORDER #_ |
| Vanadium  | 61.8    | 6.2            | mg/kg | SW846    | 6010B          | 11/07-11/12/02 | FCDCB1AC |
|           |         | Dilution Fact  | or: 1 | Analysis | Time: 16:18    | Analyst ID     | : 002260 |
|           |         | Instrument ID  | : 15  |          |                |                |          |
| Zinc      | 28.1    | 2.5            | mg/kg | SW846    | 6010B          | 11/07-11/12/02 | FCDCE1AD |
|           |         | Dilution Fact  | or: 1 | Analysis | Time: 16:18    | Analyst ID     | : 002260 |
|           |         | Instrument ID  | : 15  |          |                |                |          |
| Mercury   | 0.061 B | 0.12           | mg/kg | SW846    | 7 <b>471</b> A | 11/07-11/08/02 | FCDCE1AE |
|           |         | Dilution Facto | or: 1 | Analysis | Time: 11:19    | Analyst ID     | : 001644 |
|           |         | Instrument ID  | : H1  |          |                |                |          |

NOTE (S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: 7GP-5(6-11')

#### TOTAL Metals

Lot-Sample #...: A2K040189-006 Matrix....: S0

Date Sampled...: 11/01/02 12:50 Date Received..: 11/02/02

**% Moisture....:** 17

| PARAMETER                | RESULT                | REPORTING LIMIT UNITS                                 | METHOD                                  | PREPARATION- WORK ANALYSIS DATE ORDER #       |
|--------------------------|-----------------------|-------------------------------------------------------|-----------------------------------------|-----------------------------------------------|
| Prep Batch #<br>Aluminum | .: 2311117<br>20000 J | 24.1 mg/kg Dilution Factor: 1 Instrument ID: 15       | <b>SW846 6010B</b> Analysis Time: 16:23 | 11/07-11/12/02 FCDCG1A8 Analyst ID: 002260    |
| Arsenic                  | 3.5                   | 1.2 mg/kg Dilution Factor: 1 Instrument ID: I5        | <b>SW846 6010B</b> Analysis Time: 16:23 | 11/07-11/12/02 FCDCG1AU Analyst ID: 002260    |
| Lead                     | 11.0                  | 0.36 mg/kg Dilution Factor: 1 Instrument ID: I5       | <b>SW846 6010B</b> Analysis Time: 16:23 | 11/07-11/12/02 FCDCG1AX Analyst ID: 002260    |
| Antimony                 | 1.0 B                 | 7.2 mg/kg Dilution Factor: 1 Instrument ID.:: 15      | <b>SW846 6010B</b> Analysis Time: 16:23 | 11/07-11/12/02 FCDCG1CC Analyst ID: 002260    |
| Barium                   | 55.6 J                | 24.1 mg/kg Dilution Factor: 1 Instrument ID.:: I5     | <b>SW846 6010B</b> Analysis Time: 16:23 | 11/07-11/12/02 FCDCG1CF<br>Analyst ID: 002260 |
| Selenium                 | ND                    | 0.60 mg/kg Dilution Factor: 1 Instrument ID: 15       | SW846 6010B<br>Analysis Time: 16:23     | 11/07-11/12/02 FCDCG1A2<br>Analyst ID: 002260 |
| Beryllium                | 0.35 B                | 0.60 mg/kg Dilution Factor: 1 Instrument ID.:: 15     | SW846 6010B<br>Analysis Time: 16:23     | 11/07-11/12/02 FCDCG1CJ<br>Analyst ID: 002260 |
| Thallium                 | ND                    | 1.2 mg/kg Dilution Factor: 1 Instrument ID.:: 15      | SW846 6010B<br>Analysis Time: 16:23     | 11/07-11/12/02 FCDCG1A5<br>Analyst ID: 002260 |
| Cadmium                  | ND                    | 0.60 mg/kg<br>Dilution Factor: 1<br>Instrument ID: 15 | SW846 6010B<br>Analysis Time: 16:23     | 11/07-11/12/02 FCDCG1CM Analyst ID: 002260    |
| Calcium                  | 259 B                 | 602 mg/kg Dilution Factor: 1 Instrument ID.:: 15      | <b>SW846 6010B</b> Analysis Time: 16:23 | 11/07-11/12/02 FCDCG1CQ Analyst ID: 002260    |

Matrix..... SO

#### DRAPER ADEN & ASSOCIATES INC

Client Sample ID: 7GP-5(6-11')

#### TOTAL Metals

Lot-Sample #...: A2K040189-006

|           | DECIM C      | REPORTIN      | -      | MERMIOD       |         | PREPARATION-   | WORK     |
|-----------|--------------|---------------|--------|---------------|---------|----------------|----------|
| PARAMETER | RESULT       | <u>LIMIT</u>  | UNITS  | METHOD COLOR  |         | ANALYSIS DATE  | ORDER #_ |
| Chromium  | 22.8         | 1.2           | mg/kg  | SW846 6010B   |         | 11/07-11/12/02 |          |
|           |              | Dilution Fac  |        | Analysis Time | : 16:23 | Analyst ID     | : 002260 |
| Cobalt    | 4.5 B        | 6.0           | mg/kg  | SW846 6010B   | ;       | 11/07-11/12/02 | FCDCG1CX |
|           |              | Dilution Fac  | tor: 1 | Analysis Time | : 16:23 | Analyst ID     | : 002260 |
|           |              | Instrument I  | D: 15  |               |         |                |          |
| Copper    | 10           | 3.0           | mg/kg  | SW846 6010B   | 1       | 11/07-11/12/02 | FCDCG1C2 |
|           |              | Dilution Fac  | tor: 1 | Analysis Time | : 16:23 | Analyst ID     | : 002260 |
|           |              | Instrument I  | D: 15  |               |         |                |          |
| Iron      | 23600        | 12.0          | mg/kg  | SW846 6010B   | }       | 11/07-11/12/02 | FCDCG1C5 |
|           |              | Dilution Fac  | tor: 1 | Analysis Time | : 16:23 | Analyst ID     | : 002260 |
|           |              | Instrument I  | D: 15  |               |         |                |          |
| Magnesium | 787          | 602           | mg/kg  | SW846 6010B   | ;       | 11/07-11/12/02 | FCDCG1C8 |
|           |              | Dilution Fac  | tor: 1 | Analysis Time | : 16:23 | Analyst ID     | : 002260 |
|           |              | Instrument I  | D: 15  |               |         |                |          |
| Manganese | 187          | 1.8           | mg/kg  | SW846 6010B   | 1       | 11/07-11/12/02 | FCDCG1DC |
|           |              | Dilution Fac  | tor: 1 | Analysis Time | : 16:23 | Analyst ID     | : 002260 |
|           |              | Instrument I  | D: 15  |               |         |                |          |
| Nickel    | 7.2          | 4.8           | mg/kg  | SW846 6010B   | ;       | 11/07-11/12/02 | FCDCG1DF |
|           |              | Dilution Fac  | tor: 1 | Analysis Time | : 16:23 | Analyst ID     | : 002260 |
|           |              | Instrument I  | D: I5  |               |         |                |          |
| Potassium | 732 <b>J</b> | 602           | mg/kg  | SW846 6010B   | 1       | 11/07-11/12/02 | FCDCG1DJ |
|           |              | Dilution Fac  | tor: 1 | Analysis Time | : 16:23 | Analyst ID     | : 002260 |
|           |              | Instrument I  | D: 15  |               |         |                |          |
| Silver    | ND           | 1.2           | mg/kg  | SW846 6010B   | i       | 11/07-11/12/02 | FCDCG1DM |
|           |              | Dilution Fac  | tor: 1 | Analysis Time | : 16:23 | Analyst ID     | : 002260 |
|           |              | Instrument I  | D: I5  |               |         |                |          |
| Sodium    | ND           | 602           | mg/kg  | SW846 6010B   | i       | 11/07-11/12/02 | FCDCG1AA |
|           |              | Dilution Fact | tor: 1 | Analysis Time | : 16:23 | Analyst ID     | : 002260 |
|           |              | Instrument II | D: 15  |               |         |                |          |

Client Sample ID: 7GP-5(6-11')

#### TOTAL Metals

Lot-Sample #...: A2K040189-006

**Matrix....**: SO

| PARAMETER<br>Vanadium | RESULT<br>60.6 | REPORTIN LIMIT 6.0 Dilution Fac      | UNITS<br>mg/kg<br>tor: 1 | METHOD  SW846 6010B  Analysis Time: | 16:23 | PREPARATION- ANALYSIS DATE 11/07-11/12/02 Analyst ID |  |
|-----------------------|----------------|--------------------------------------|--------------------------|-------------------------------------|-------|------------------------------------------------------|--|
| Zinc                  | 24.2           | <b>2.4</b> Dilution Fac Instrument I |                          | SW846 6010B Analysis Time:          | 16:23 | 11/07~11/12/02<br>Analyst ID                         |  |
| Mercury               | 0.10 B         | 0.12<br>Dilution Fac<br>Instrument I |                          | SW846 7471A<br>Analysis Time:       | 11:20 | 11/07-11/08/02<br>Analyst ID                         |  |

#### NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: 7GP-16(3-4')

#### TOTAL Metals

% Moisture....: 17

| PARAMETER    | RESULT    | REPORTING<br>LIMIT | UNITS        | METHOD              | PREPARATION- WORK ANALYSIS DATE ORDER # |
|--------------|-----------|--------------------|--------------|---------------------|-----------------------------------------|
|              | KEDOBI    |                    |              |                     | Initiate Diff.                          |
| Prep Batch # | : 2311117 |                    |              |                     |                                         |
| Aluminum     | 6650 J    | 24.1               | mg/kg        | SW846 6010B         | 11/07-11/12/02 FCDCL1AM                 |
|              |           | Dilution Fact      | or: 1        | Analysis Time: 16:  | Analyst ID: 002260                      |
|              |           | Instrument ID      | : 15         |                     |                                         |
| Arsenic      | 1.0 B     | 1.2                | mg/kg        | SW846 6010B         | 11/07-11/12/02 FCDCL1AH                 |
|              |           | Dilution Fact      | or: 1        | Analysis Time: 16:5 | Analyst ID: 002260                      |
|              |           | Instrument ID      | : 15         |                     |                                         |
| Lead         | 5.4       | 0.36               | mg/kg        | SW846 6010B         | 11/07-11/12/02 FCDCL1AJ                 |
|              |           | Dilution Fact      | or: 1        | Analysis Time: 16:  | 51 Analyst ID: 002260                   |
|              |           | Instrument ID      | : 15         |                     |                                         |
| Antimony     | 0.59 B    | 7.2                | mg/kg        | SW846 6010B         | 11/07-11/12/02 FCDCL1AN                 |
|              |           | Dilution Fact      | or: 1        | Analysis Time: 16:  | Analyst ID: 002260                      |
|              |           | Instrument ID      | : 15         |                     |                                         |
| Barium       | 106 Ј     | 24.1               | mg/kg        | SW846 6010B         | 11/07-11/12/02 FCDCL1AP                 |
|              |           | Dilution Fact      | or: 1        | Analysis Time: 16:5 | Analyst ID: 002260                      |
|              |           | Instrument ID      | : 15         |                     |                                         |
| Selenium     | ND        | 0.60               | mg/kg        | SW846 6010B         | 11/07~11/12/02 FCDCL1AK                 |
|              |           | Dilution Fact      | or: 1        | Analysis Time: 16:  | 51 Analyst ID: 002260                   |
|              |           | Instrument ID      | : 15         |                     |                                         |
| Beryllium    | 0.55 B    | 0.60               | mg/kg        | SW846 6010B         | 11/07-11/12/02 FCDCL1AQ                 |
|              |           | Dilution Fact      | or: 1        | Analysis Time: 16:  | Analyst ID: 002260                      |
|              |           | Instrument ID      | : 15         |                     |                                         |
| Thallium     | 0.70 B    | 1.2                | mg/kg        | SW846 6010B         | 11/07-11/12/02 FCDCL1AL                 |
|              |           | Dilution Fact      | or: 1        | Analysis Time: 16:  | Analyst ID: 002260                      |
|              |           | Instrument ID      | : 15         |                     |                                         |
| Cadmium      | 0.061 B   | 0.60               | mg/kg        | SW846 6010B         | 11/07-11/12/02 FCDCL1AR                 |
|              |           | Dilution Fact      | or: 1        | Analysis Time: 16:  | Analyst ID: 002260                      |
|              |           | Instrument ID      | : <b>I</b> 5 |                     |                                         |
| Calcium      | 1230      | 603                | mg/kg        | SW846 6010B         | 11/07-11/12/02 FCDCL1AT                 |
|              |           | Dilution Fact      |              | Analysis Time: 16:5 | Analyst ID: 002260                      |
|              |           | Instrument ID      | : I5         |                     |                                         |

Client Sample ID: 7GP-16(3-4')

#### TOTAL Metals

Lot-Sample #...: A2K040189-007

Matrix....: SO

|           |        | REPORTING     | G             |                      | PREPARATION- WORK       |
|-----------|--------|---------------|---------------|----------------------|-------------------------|
| PARAMETER | RESULT | LIMIT         | UNITS         | METHOD               | ANALYSIS DATE ORDER #   |
| Chromium  | 11.5   | 1.2           | mg/kg         | SW846 6010B          | 11/07-11/12/02 FCDCL1AU |
|           |        | Dilution Fact | or: 1         | Analysis Time: 16:51 | Analyst ID: 002260      |
|           |        | Instrument II | ): I5         |                      |                         |
| Cobalt    | 5.9 B  | 6.0           | mg/kg         | SW846 6010B          | 11/07-11/12/02 FCDCL1AV |
|           |        | Dilution Fact | or: 1         | Analysis Time: 16:51 | Analyst ID: 002260      |
|           |        | Instrument II | D: I5         |                      |                         |
| Copper    | 5.1    | 3.0           | mg/kg         | SW846 6010B          | 11/07-11/12/02 FCDCL1AW |
|           |        | Dilution Fact | or: 1         | Analysis Time: 16:51 | Analyst ID: 002260      |
|           |        | Instrument II | ): I5         |                      |                         |
| Iron      | 10800  | 12.1          | mg/kg         | SW846 6010B          | 11/07-11/12/02 FCDCL1AX |
|           |        | Dilution Fact | or: 1         | Analysis Time: 16:51 | Analyst ID: 002260      |
|           |        | Instrument II | ): <b>1</b> 5 |                      |                         |
| Magnesium | 1890   | 603           | mg/kg         | SW846 6010B          | 11/07-11/12/02 FCDCL1A0 |
|           |        | Dilution Fact | or: 1         | Analysis Time: 16:51 | Analyst ID: 002260      |
|           |        | Instrument II | ): I5         |                      |                         |
| Manganese | 422    | 1.8           | mg/kg         | SW846 6010B          | 11/07-11/12/02 FCDCL1A1 |
|           |        | Dilution Fact | or: 1         | Analysis Time: 16:51 | Analyst ID: 002260      |
|           |        | Instrument II | ): I5         |                      |                         |
| Nickel    | 7.7    | 4.8           | mg/kg         | SW846 6010B          | 11/07-11/12/02 FCDCL1A2 |
|           |        | Dilution Fact |               | Analysis Time: 16:51 | Analyst ID: 002260      |
|           |        | Instrument II | D: I5         |                      |                         |
| Potassium | 809 J  | <b>60</b> 3   | mg/kg         | SW846 6010B          | 11/07-11/12/02 FCDCL1A3 |
|           |        | Dilution Fact | or: 1         | Analysis Time: 16:51 | Analyst ID: 002260      |
|           |        | Instrument II | D: 15         |                      |                         |
| Silver    | ND     | 1.2           | mg/kg         | SW846 6010B          | 11/07-11/12/02 FCDCL1A4 |
|           |        | Dilution Fact | or: 1         | Analysis Time: 16:51 | Analyst ID: 002260      |
|           |        | Instrument II | D: 15         |                      |                         |
| Sodium    | ND     | 603           | mg/kg         | SW846 6010B          | 11/07-11/12/02 FCDCL1AA |
|           |        | Dilution Fact |               | Analysis Time: 16:51 | Analyst ID: 002260      |
|           |        | Instrument II | ): I5         |                      |                         |

Client Sample ID: 7GP-16(3-4')

#### TOTAL Metals

Lot-Sample #...: A2K040189-007

Matrix....: SO

|            |        | REPORTII     | 1G      |                      | PREPARATION-   | WORK     |
|------------|--------|--------------|---------|----------------------|----------------|----------|
| PARAMETER_ | RESULT | _ LIMIT      | UNITS   | METHOD               | ANALYSIS DATE  | ORDER #  |
| Vanadium   | 15.4   | 6.0          | mg/kg   | SW846 6010B          | 11/07-11/12/02 | FCDCL1AC |
|            |        | Dilution Fac | ctor: 1 | Analysis Time: 16:51 | Analyst ID     | : 002260 |
|            |        | Instrument 1 | ID: 15  |                      |                |          |
| Zinc       | 39.7   | 2.4          | mg/kg   | SW846 6010B          | 11/07-11/12/02 | FCDCL1AD |
|            |        | Dilution Fac | tor: 1  | Analysis Time: 16:51 | Analyst ID     | : 002260 |
|            |        | Instrument 1 | ID: I5  |                      |                |          |
| Mercury    | ND     | 0.12         | mg/kg   | SW846 7471A          | 11/07-11/08/02 | FCDCL1AE |
|            |        | Dilution Fac | ctor: 1 | Analysis Time: 11:24 | Analyst ID     | : 001644 |
|            |        | Instrument 1 | ID: H1  |                      |                |          |
|            |        |              |         |                      |                |          |

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: 7GP-4(3-4')

#### TOTAL Metals

Lot-Sample #...: A2K040189-008 Matrix.....: SO

Date Sampled...: 11/01/02 13:45 Date Received..: 11/02/02

**% Moisture....:** 15

| PARAMETER    | RESULT     | REPORTING LIMIT UNITS                  | METHOD                                  | PREPARATION- WORK ANALYSIS DATE ORDER #    |
|--------------|------------|----------------------------------------|-----------------------------------------|--------------------------------------------|
| Prep Batch # | .: 2311117 |                                        |                                         |                                            |
| Aluminum     | 5290 Ј     | 23.4 mg/kg Dilution Factor: 1          | <b>SW846 6010B</b> Analysis Time: 16:56 | 11/07-11/12/02 FCDCP1AM Analyst ID: 002260 |
|              |            | Instrument ID: 15                      |                                         |                                            |
| Arsenic      | 0.96 B     | 1.2 mg/kg                              | SW846 6010B                             | 11/07-11/12/02 FCDCP1AH                    |
|              |            | Dilution Factor: 1 Instrument ID: 15   | Analysis Time: 16:56                    | Analyst ID: 002260                         |
| Lead         | 5.8        | 0.35 mg/kg                             | SW846 6010B                             | 11/07-11/12/02 FCDCP1AJ                    |
|              |            | Dilution Factor: 1 Instrument ID: I5   | Analysis Time: 16:56                    | Analyst ID: 002260                         |
| Antimony     | 0.77 B     | 7.0 mg/kg                              | SW846 6010B                             | 11/07-11/12/02 FCDCP1AN                    |
|              |            | Dilution Factor: 1 Instrument ID: I5   | Analysis Time: 16:56                    | Analyst ID: 002260                         |
| Barium       | 69.2 J     | 23.4 mg/kg                             | SW846 6010B                             | 11/07-11/12/02 FCDCP1AP                    |
|              |            | Dilution Factor: 1 Instrument ID: I5   | Analysis Time: 16:56                    | Analyst ID: 002260                         |
| Selenium     | ND         | 0.59 mg/kg                             | SW846 6010B                             | 11/07-11/12/02 FCDCP1AK                    |
|              |            | Dilution Factor: 1 Instrument ID: 15   | Analysis Time: 16:56                    | Analyst ID: 002260                         |
| Beryllium    | 0.44 B     | 0.59 <b>mg/k</b> g                     | SW846 6010B                             | 11/07-11/12/02 FCDCP1AQ                    |
|              |            | Dilution Factor: 1 Instrument ID: I5   | Analysis Time: 16:56                    | Analyst ID: 002260                         |
| Thallium     | ND         | 1.2 mg/kg                              | SW846 6010B                             | 11/07-11/12/02 FCDCP1AL                    |
|              |            | Dilution Factor: 1 Instrument ID: I5   | Analysis Time: 16:56                    | Analyst ID: 002260                         |
| Cadmium      | ND         | 0.59 mg/kg                             | SW846 6010B                             | 11/07-11/12/02 FCDCP1AR                    |
|              |            | Dilution Factor: 1 Instrument ID: 15   | Analysis Time: 16:56                    | Analyst ID: 002260                         |
| Calcium      | 749        | 586 <b>m</b> g/kg                      | SW846 6010B                             | 11/07-11/12/02 FCDCP1AT                    |
|              |            | Dilution Factor: 1 Instrument ID.:: 15 | Analysis Time: 16:56                    | Analyst ID: 002260                         |

Client Sample ID: 7GP-4(3-4')

#### TOTAL Metals

Lot-Sample #...: A2K040189-008

**Matrix....:** SO

| PARAMETER      | RESULT | REPORTIN<br>LI <b>M</b> IT | IG<br>UNITS | метног            | )              | PREPARATION-<br>ANALYSIS DATE | WORK<br>ORDER #  |
|----------------|--------|----------------------------|-------------|-------------------|----------------|-------------------------------|------------------|
| Chromium       | 10.1   | 1.2                        | mg/kg       | SW846             |                | 11/07-11/12/02                |                  |
| CIII OIRI CIII | 10.1   | Dilution Fac               |             |                   | Time: 16:56    | Analyst ID                    |                  |
|                |        | Instrument I               |             | iniai į o ib      | 11110111 20130 | inarjee ib                    | . 00220          |
| Cobalt         | 5.4 B  | 5.9                        | mg/kg       | SW846             | 6010B          | 11/07-11/12/02                | FCDCP1AV         |
|                |        | Dilution Fac               | tor: 1      | Analy <b>si</b> s | Time: 16:56    | Analyst ID                    | : <b>0</b> 02260 |
|                |        | Instrument I               | D: I5       |                   |                |                               |                  |
| Copper         | 5.1    | 2.9                        | mg/kg       | SW846             | 6010B          | 11/07-11/12/02                | FCDCP1AW         |
|                |        | Dilution Fac               | tor: 1      | Analysis          | Time: 16:56    | Analyst ID                    | : 002260         |
|                |        | Instrument I               | D: I5       |                   |                |                               |                  |
| Iron           | 9860   | 11.7                       | mg/kg       | SW846             | 6010B          | 11/07-11/12/02                | FCDCP1AX         |
|                |        | Dilution Fac               | tor: 1      | Analysis          | Time: 16:56    | Analyst ID                    | : 002260         |
|                |        | Instrument I               | D: I5       |                   |                |                               |                  |
| Magnesium      | 1590   | 586                        | mg/kg       | SW846             | 6010B          | 11/07-11/12/02                | FCDCP1A0         |
|                |        | Dilution Fac               | ctor: 1     | Analysis          | Time: 16:56    | Analyst ID                    | : 002260         |
|                |        | Instrument I               | D: I5       |                   |                |                               |                  |
| Manganese      | 292    | 1.8                        | mg/kg       | SW846             | 6010B          | 11/07-11/12/02                | FCDCP1A1         |
|                |        | Dilution Fac               | tor: 1      | Analysis          | Time: 16:56    | Analyst ID                    | : 002260         |
|                |        | Instrument I               | D: I5       |                   |                |                               |                  |
| Nickel         | 6.3    | 4.7                        | mg/kg       | SW846             | 6010B          | 11/07-11/12/02                | FCDCP1A2         |
|                |        | Dilution Fac               | tor: 1      | Analysis          | Time: 16:56    | Analyst ID                    | : 002260         |
|                |        | Instrument I               | D: I5       |                   |                |                               |                  |
| Potassium      | 729 J  | 586                        | mg/kg       | SW846             | 6010B          | 11/07-11/12/02                | FCDCP1A3         |
|                |        | Dilution Fac               | tor: 1      | Analysis          | Time: 16:56    | Analyst ID                    | : 002260         |
|                |        | Instrument I               | D: I5       |                   |                |                               |                  |
| Silver         | ND     | 1.2                        | mg/kg       | S <b>W</b> 846    | 6010B          | 11/07-11/12/02                | FCDCP1A4         |
|                |        | Dilution Fac               | tor: 1      | Analysis          | Time: 16:56    | Analyst ID                    | : 002260         |
|                |        | Instrument I               | D: I5       |                   |                |                               |                  |
| Sodium         | ND     | 586                        | mg/kg       | S <b>W</b> 846    | 6010B          | 11/07-11/12/02                | FCDCP1AA         |
|                |        | Dilution Fac               |             | Analysis          | Time: 16:56    | Analyst ID                    | : 002260         |
|                |        | Instrument I               | D: I5       |                   |                |                               |                  |

Client Sample ID: 7GP-4(3-4')

#### TOTAL Metals

Lot-Sample #...: A2K040189-008

Matrix..... SO

|           |              | REPORTING     | G     |          |             | PREPARATION-   | WORK     |
|-----------|--------------|---------------|-------|----------|-------------|----------------|----------|
| PARAMETER | RESULT       | LIMIT         | UNITS | METHO    | <u> </u>    | ANALYSIS DATE  | ORDER #  |
| Vanadium  | 14.0         | 5.9           | mg/kg | SW846    | 6010B       | 11/07-11/12/02 | FCDCP1AC |
|           |              | Dilution Fact | or: 1 | Analysis | Time: 16:56 | Analyst ID     | : 002260 |
|           |              | Instrument II | D: I5 |          |             |                |          |
| Zinc      | 35 <b>.0</b> | 2.3           | mg/kg | SW846    | 6010B       | 11/07-11/12/02 | FCDCP1AD |
|           |              | Dilution Fact | or: 1 | Analysis | Time: 16:56 | Analyst ID     | : 002260 |
|           |              | Instrument II | D: 15 |          |             |                |          |
| Mercury   | ND           | 0.12          | mg/kg | SW846    | 7471A       | 11/07-11/08/02 | FCDCP1AE |
| _         |              | Dilution Fact | or: 1 | Analysis | Time: 11:27 | Analyst ID     | : 001644 |
|           |              | Instrument II | ): Н1 |          |             |                |          |

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: 5GP-1(1-2')

#### TOTAL Metals

Lot-Sample #...: A2K040189-009 Matrix.....: SO

Date Sampled...: 10/31/02 13:10 Date Received..: 11/02/02

% Moisture....: 19

| PARAMETER                | RESULT                | REPORTING LIMIT UNITS                             | METHOD                                  | PREPARATION- WORK ANALYSIS DATE ORDER #       |
|--------------------------|-----------------------|---------------------------------------------------|-----------------------------------------|-----------------------------------------------|
| Prep Batch #<br>Aluminum | .: 2311117<br>19200 J | 24.7 mg/kg Dilution Factor: 1 Instrument ID: I5   | <b>SW846 6010B</b> Analysis Time: 17:01 | 11/07-11/12/02 FCDCQ1AM Analyst ID: 002260    |
| Arsenic                  | 2.2                   | 1.2 mg/kg Dilution Factor: 1 Instrument ID: I5    | <b>SW846 6010B</b> Analysis Time: 17:01 | 11/07-11/12/02 FCDCQ1AH<br>Analyst ID: 002260 |
| Lead                     | 12.9                  | 0.37 mg/kg Dilution Factor: 1 Instrument ID.:: 15 | <b>SW846 6010B</b> Analysis Time: 17:01 | 11/07-11/12/02 FCDCQ1AJ Analyst ID: 002260    |
| Antimony                 | 1.8 B                 | 7.4 mg/kg Dilution Factor: 1 Instrument ID: I5    | <b>SW846 6010B</b> Analysis Time: 17:01 | 11/07-11/12/02 FCDCQ1AN Analyst ID: 002260    |
| Barium                   | 85.1 <sub>.</sub> J   | 24.7 mg/kg Dilution Factor: 1 Instrument ID: I5   | <b>SW846 6010B</b> Analysis Time: 17:01 | 11/07-11/12/02 FCDCQ1AP Analyst ID: 002260    |
| Selenium                 | ND                    | 0.62 mg/kg Dilution Factor: 1 Instrument ID: I5   | SW846 6010B Analysis Time: 17:01        | 11/07-11/12/02 FCDCQ1AK<br>Analyst ID: 002260 |
| Beryllium                | 0.59 <sub>.</sub> B   | 0.62 mg/kg Dilution Factor: 1 Instrument ID: I5   | SW846 6010B Analysis Time: 17:01        | 11/07-11/12/02 FCDCQ1AQ Analyst ID: 002260    |
| Thallium                 | ND                    | 1.2 mg/kg Dilution Factor: 1 Instrument ID: I5    | SW846 6010B Analysis Time: 17:01        | 11/07-11/12/02 FCDCQ1AL<br>Analyst ID: 002260 |
| Cadmium                  | ND                    | 0.62 mg/kg Dilution Factor: 1 Instrument ID: I5   | SW846 6010B<br>Analysis Time: 17:01     | 11/07-11/12/02 FCDCQ1AR Analyst ID: 002260    |
| Calcium                  | 1060                  | 618 mg/kg Dilution Factor: 1 Instrument ID: I5    | <b>SW846 6010B</b> Analysis Time: 17:01 | 11/07-11/12/02 FCDCQ1AT Analyst ID: 002260    |

Client Sample ID: 5GP-1(1-2')

#### TOTAL Metals

UNITS

mq/kq

mg/kg

mq/kq

mq/kq

mg/kg

mq/kq

mq/kg

mg/kg

mq/kq

mg/kg

METHOD SW846 6010B

SW846 6010B

SW846 6010B

SW846 6010B

SW846 6010B

SW846 6010B

SW846 6010B

SW846 6010B

SW846 6010B

SW846 6010B

Analysis Time..: 17:01

Analysis Time..: 17:01

Analysis Time..: 17:01

REPORTING

Dilution Factor: 1

Instrument ID..: I5

Dilution Factor: 1

Dilution Factor: 1

Dilution Factor: 1

Instrument ID..: I5

LIMIT

1.2

6.2

3.1

12.4

618

1.9

4.9

618

618

Lot-Sample #...: A2K040189-009

RESULT

22.4

9.0

13.9

30700

1530

337

9.4

ND

ND

1580 J

PARAMETER

Chromium

Cobalt

Copper

Iron

Magnesium

Manganese

Nickel

Potassium

Silver

Sodium

PREPARATION -WORK ANALYSIS DATE ORDER # 11/07-11/12/02 FCDCQ1AU Analysis Time..: 17:01 Analyst ID....: 002260 11/07-11/12/02 FCDCQ1AV Analysis Time..: 17:01 Analyst ID....: 002260 11/07-11/12/02 FCDCQ1AW Analysis Time..: 17:01 Analyst ID....: 002260 11/07-11/12/02 FCDCO1AX Analyst ID....: 002260 Analysis Time..: 17:01 11/07-11/12/02 FCDCQ1A0 Analysis Time..: 17:01 Analyst ID....: 002260 11/07-11/12/02 FCDCQ1A1 Analysis Time..: 17:01 Analyst ID....: 002260 11/07-11/12/02 FCDCQ1A2 Analysis Time..: 17:01 Analyst ID....: 002260

11/07-11/12/02 FCDCQ1A3

Analyst ID....: 002260

11/07-11/12/02 FCDCO1A4

Analyst ID....: 002260

11/07-11/12/02 FCDCQ1AA

Analyst ID....: 002260

Matrix....: SO

(Continued on next page)

Client Sample ID: 5GP-1(1-2')

#### TOTAL Metals

Lot-Sample #...: A2K040189-009

Matrix..... SO

|            |         | REPORTI            | <b>N</b> G |                      |                    | PREPARATION-   | WORK     |
|------------|---------|--------------------|------------|----------------------|--------------------|----------------|----------|
| PARAMETER_ | RESULT  | LIMIT              | UNITS      | METHOL               | <u> </u>           | ANALYSIS DATE  | ORDER #  |
| Vanadium   | 64.9    | 6.2                | mg/kg      | SW846                | 6010B              | 11/07-11/12/02 | FCDCQ1AC |
|            |         | Dilution Factor: 1 |            | Analysis Time: 17:01 | Analyst ID: 002260 |                |          |
|            |         | Instrument ID: I5  |            |                      |                    |                |          |
| Zinc       | 35.3    | 2.5                | mg/kg      | SW846                | 6010B              | 11/07-11/12/02 | FCDCQ1AD |
|            |         | Dilution Factor: 1 |            | Analysis             | Time: 17:01        | Analyst ID     | : 002260 |
|            |         | Instrument 1       | ID: I5     |                      |                    |                |          |
| Mercury    | 0.048 в | 0.12               | mg/kg      | SW846                | 7471A              | 11/07-11/08/02 | FCDCQ1AE |
|            |         | Dilution Factor: 1 |            | Analysis             | Time: 11:26        | Analyst ID     | : 001644 |
|            |         | Instrument ID: H1  |            |                      |                    |                |          |
|            |         |                    |            |                      |                    |                |          |

NOTE(S):

J. Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

#### Client Sample ID: 5GP-1(9-10')

#### TOTAL Metals

**% Moisture....:** 15

| PARAMETER             | RESULT  | REPORTING LIMIT UNITS                               | METHOD               | PREPARATION- WORK ANALYSIS DATE ORDER # |  |  |  |  |  |
|-----------------------|---------|-----------------------------------------------------|----------------------|-----------------------------------------|--|--|--|--|--|
| Prep Batch #: 2311117 |         |                                                     |                      |                                         |  |  |  |  |  |
| Alumipum              | 12100 J | 23.4 mg/kg                                          | SW846 6010B          | 11/07-11/12/02 FCDCT1AM                 |  |  |  |  |  |
|                       |         | Dilution Factor: 1                                  | Analysis Time: 17:06 | Analyst ID: 002260                      |  |  |  |  |  |
|                       |         | Instrument ID: I5                                   |                      |                                         |  |  |  |  |  |
| Arsenic               | 3.9     | 1.2 mg/kg                                           | SW846 6010B          | 11/07-11/12/02 FCDCT1AH                 |  |  |  |  |  |
|                       | Dilutio |                                                     | Analysis Time: 17:06 | Analyst ID: 002260                      |  |  |  |  |  |
|                       |         | Instrument ID: I5                                   |                      |                                         |  |  |  |  |  |
| Lead                  | 9.8     | 0.35 mg/kg                                          | SW846 6010B          | 11/07-11/12/02 FCDCT1AJ                 |  |  |  |  |  |
|                       |         | Dilution Factor: 1 Analysis Time  Instrument ID: I5 |                      | 6 Analyst ID: 002260                    |  |  |  |  |  |
| Antimony              | 0.90 B  | 7.0 mg/kg                                           | SW846 6010B          | 11/07-11/12/02 FCDCT1AN                 |  |  |  |  |  |
|                       |         | Dilution Factor: 1                                  | Analysis Time: 17:06 | Analyst ID: 002260                      |  |  |  |  |  |
|                       |         | Instrument ID: I5                                   |                      |                                         |  |  |  |  |  |
| Barium                | 47.3 J  | 23.4 mg/kg                                          | SW846 6010B          | 11/07-11/12/02 FCDCT1AP                 |  |  |  |  |  |
|                       |         | Dilution Factor: 1                                  | Analysis Time: 17:06 | Analyst ID: 002260                      |  |  |  |  |  |
|                       |         | Instrument ID: I5                                   |                      |                                         |  |  |  |  |  |
| Selenium              | ND      | 0.59 mg/kg                                          | SW846 6010B          | 11/07-11/12/02 FCDCT1AK                 |  |  |  |  |  |
|                       |         | Dilution Factor: 1                                  | Analysis Time: 17:06 | Analyst ID: 002260                      |  |  |  |  |  |
|                       |         | Instrument ID: I5                                   |                      |                                         |  |  |  |  |  |
| Beryllium             | 1.1     | <b>0.</b> 59 mg/kg                                  | SW846 6010B          | 11/07-11/12/02 FCDCT1AQ                 |  |  |  |  |  |
|                       |         | Dilution Factor: 1                                  | Analysis Time: 17:06 | Analyst ID: 002260                      |  |  |  |  |  |
|                       |         | Instrument ID: I5                                   |                      |                                         |  |  |  |  |  |
| Thallium              | ND      | 1.2 mg/kg                                           | SW846 6010B          | 11/07-11/12/02 FCDCT1AL                 |  |  |  |  |  |
|                       |         | Dilution Factor: 1                                  | Analysis Time: 17:06 | Analyst ID: 002260                      |  |  |  |  |  |
|                       |         | Instrument ID: I5                                   |                      |                                         |  |  |  |  |  |
| Cadmium               | ND      | 0.59 mg/kg                                          | SW846 6010B          | 11/07-11/12/02 FCDCT1AR                 |  |  |  |  |  |
|                       |         | Dilution Factor: 1                                  | Analysis Time: 17:06 | Analyst ID: 002260                      |  |  |  |  |  |
|                       |         | Instrument ID: I5                                   |                      |                                         |  |  |  |  |  |
| Calcium               | 303 B   | 586 <b>mg/k</b> g                                   | SW846 6010B          | 11/07-11/12/02 FCDCT1AT                 |  |  |  |  |  |
|                       |         | Dilution Factor: 1                                  | Analysis Time: 17:06 | Analyst ID: 002260                      |  |  |  |  |  |
|                       |         | Instrument ID: 15                                   |                      |                                         |  |  |  |  |  |

(Continued on next page)

Client Sample ID: 5GP-1(9-10)

# TOTAL Metals

| Lot-Sample #: A2K040189-010 | <b>Matrix:</b> SO |
|-----------------------------|-------------------|
|-----------------------------|-------------------|

|           |                      | REPORTING     | }            |          |             | PREPARATION-   | WORK             |
|-----------|----------------------|---------------|--------------|----------|-------------|----------------|------------------|
| PARAMETER | RESULT_              | LIMIT         | UNITS        | METHOI   | D           | ANALYSIS DATE  | ORDER #          |
| Chromium  | 31.7                 | 1.2           | mg/kg        | SW846    | 6010B       | 11/07-11/12/02 | FCDCT1AU         |
|           |                      | Dilution Fact | or: 1        | Analysis | Time: 17:06 | Analyst ID     | : 002260         |
|           |                      | Instrument ID | : 15         |          |             |                |                  |
| Cobalt    | 17.6                 | 5.9           | mg/kg        |          | 6010B       | 11/07-11/12/02 |                  |
|           |                      | Dilution Fact | or: 1        | Analysis | Time: 17:06 | Analyst ID     | : 002260         |
|           |                      | Instrument ID | : <b>I</b> 5 |          |             |                |                  |
| Copper    | 19.8                 | 2.9           | mg/kg        |          | 6010B       | 11/07-11/12/02 |                  |
|           |                      | Dilution Fact | or: 1        | Analysis | Time: 17:06 | Analyst ID     | : 00226 <b>0</b> |
|           |                      | Instrument ID | : <b>I</b> 5 |          |             |                |                  |
| Iron      | 26700                | 11.7          | mg/kg        | SW846    | 6010B       | 11/07-11/12/02 | FCDCT1AX         |
|           |                      | Dilution Fact | or: 1        | Analysis | Time: 17:06 | Analyst ID     | : 002260         |
|           |                      | Instrument ID | : 15         |          |             |                |                  |
| Magnesium | 1730                 | 586           | mg/kg        | SW846    | 6010B       | 11/07-11/12/02 | FCDCT1A0         |
|           |                      | Dilution Fact | or: 1        | Analysis | Time: 17:06 | Analyst ID     | : 002260         |
|           |                      | Instrument ID | : 15         |          |             |                |                  |
| Manganese | 360                  | 1.8           | mg/kg        | SW846    | 6010B       | 11/07-11/12/02 | FCDCT1A1         |
|           |                      | Dilution Fact | or: 1        | Analysis | Time: 17:06 | Analyst ID     | : 002260         |
|           |                      | Instrument ID | : I5         |          |             |                |                  |
| Nickel    | 19.0                 | 4.7           | mg/kg        | SW846    | 6010B       | 11/07-11/12/02 | FCDCT1A2         |
|           |                      | Dilution Fact | or: 1        | Analysis | Time: 17:06 | Analyst ID     | : 002260         |
|           |                      | Instrument ID | : 15         |          |             |                |                  |
| Potassium | <b>8</b> 51 <b>J</b> | 586           | mg/kg        | SW846    | 6010B       | 11/07-11/12/02 | FCDCT1A3         |
|           |                      | Dilution Fact | or: 1        | Analysis | Time: 17:06 | Analyst ID     | : 002260         |
|           |                      | Instrument ID | : 15         |          |             |                |                  |
| Silver    | ND                   | 1.2           | mg/kg        | SW846    | 6010B       | 11/07-11/12/02 | FCDCT1A4         |
|           |                      | Dilution Fact | or: 1        | Analysis | Time: 17:06 | Analyst ID     | : 002260         |
|           |                      | Instrument ID | : 15         |          |             |                |                  |
| Sodium    | ND                   | 586           | mg/kg        | SW846    | 6010B       | 11/07-11/12/02 | FCDCT1AA         |
|           |                      | Dilution Fact | or: 1        | Analysis | Time: 17:06 | Analyst ID     | : 002260         |
|           |                      | Instrument ID | : I5         |          |             |                |                  |

(Continued on next page)

STL North Canton 46

Client Sample ID: 5GP-1(9-10')

### TOTAL Metals

Lot-Sample #...: A2K040189-010

Matrix..... SO

|           |        | REPORTIN     | G      |                      | PREPARATION-   | WORK     |
|-----------|--------|--------------|--------|----------------------|----------------|----------|
| PARAMETER | RESULT | LIMIT_       | UNITS  | METHOD               | ANALYSIS DATE  | ORDER #  |
| Vanadium  | 32.0   | 5.9          | mg/kg  | SW846 6010B          | 11/07-11/12/02 | FCDCT1AC |
|           |        | Dilution Fac | tor: 1 | Analysis Time: 17:06 | Analyst ID     | : 002260 |
|           |        | Instrument I | D: I5  |                      |                |          |
| Zinc      | 20.7   | 2.3          | mg/kg  | SW846 6010B          | 11/07-11/12/02 | FCDCT1AD |
|           |        | Dilution Fac | tor: 1 | Analysis Time: 17:06 | Analyst ID     | : 002260 |
|           |        | Instrument I | D: I5  |                      |                |          |
| Mercury   | ND     | 0.12         | mg/kg  | SW846 7471A          | 11/07-11/08/02 | FCDCT1AE |
|           |        | Dilution Fac | tor: 1 | Analysis Time: 11:29 | Analyst ID     | : 001644 |
|           |        | Instrument I | D: H1  |                      |                |          |
|           |        |              |        |                      |                |          |

NOTE(S):

J. Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: 5GP-6(10-11')

#### TOTAL Metals

Lot-Sample #...: A2K040189-011 Matrix.....: SO

Date Sampled...: 10/31/02 13:50 Date Received..: 11/02/02

**% Moisture....:** 17

| PARAMETER                | RESULT                | REPORTING LIMIT UNITS                             | METHOD                                  | PREPARATION- WORK ANALYSIS DATE ORDER #       |
|--------------------------|-----------------------|---------------------------------------------------|-----------------------------------------|-----------------------------------------------|
| Prep Batch #<br>Aluminum | .: 2311117<br>19400 J | 24.2 mg/kg Dilution Factor: 1 Instrument ID: I5   | <b>SW846 6010B</b> Analysis Time: 17:11 | 11/07-11/12/02 FCDCW1AM Analyst ID: 002260    |
| Arsenic                  | 1.6                   | 1.2 mg/kg Dilution Factor: 1 Instrument ID.:: 15  | SW846 6010B Analysis Time: 17:11        | 11/07-11/12/02 FCDCW1AH Analyst ID: 002260    |
| Lead                     | 11.3                  | 0.36 mg/kg Dilution Factor: 1 Instrument ID: I5   | SW846 6010B Analysis Time: 17:11        | 11/07-11/12/02 FCDCW1AJ Analyst ID: 002260    |
| Antimony                 | 1.1 B                 | 7.2 mg/kg Dilution Factor: 1 Instrument ID: 15    | <b>SW846 6010B</b> Analysis Time: 17:11 | 11/07-11/12/02 FCDCW1AN Analyst ID: 002260    |
| Barium                   | 56.9 J                | 24.2 mg/kg Dilution Factor: 1 Instrument ID: I5   | SW846 6010B<br>Analysis Time: 17:11     | 11/07-11/12/02 FCDCW1AP Analyst ID: 002260    |
| Selenium                 | ND                    | 0.60 mg/kg Dilution Factor: 1 Instrument ID.:: 15 | SW846 6010B<br>Analysis Time: 17:11     | 11/07-11/12/02 FCDCW1AK Analyst ID: 002260    |
| Beryllium                | 0.41 B                | 0.60 mg/kg Dilution Factor: 1 Instrument ID: 15   | <b>SW846 6010B</b> Analysis Time: 17:11 | 11/07-11/12/02 FCDCW1AQ Analyst ID: 002260    |
| Thallium                 | ND                    | 1.2 mg/kg Dilution Factor: 1 Instrument ID.:: 15  | SW846 6010B<br>Analysis Time: 17:11     | 11/07-11/12/02 FCDCW1AL<br>Analyst ID: 002260 |
| Cadmium                  | <b>N</b> D            | 0.60 mg/kg Dilution Factor: 1 Instrument ID: I5   | SW846 6010B<br>Analysis Time: 17:11     | 11/07-11/12/02 FCDCW1AR<br>Analyst ID: 002260 |
| Calcium                  | 993 <b>0</b>          | 604 mg/kg Dilution Factor: 1 Instrument ID: 15    | <b>SW846 6010B</b> Analysis Time: 17:11 | 11/07-11/12/02 FCDCW1AT Analyst ID: 002260    |

Matrix..... SO

11/07-11/12/02 FCDCW1AA

Analyst ID....: 002260

#### DRAPER ADEN & ASSOCIATES INC

Client Sample ID: 5GP-6(10-11')

#### TOTAL Metals

Lot-Sample #...: A2K040189-011

Sodium

80.8 B

604

Dilution Factor: 1

Instrument ID..: 15

REPORTING PREPARATION-WORK METHOD ANALYSIS DATE ORDER # PARAMETER RESULT LIMIT UNITS Chromium 17.9 1.2 SW846 6010B 11/07-11/12/02 FCDCW1AU mq/kq Analyst ID....: 002260 Dilution Factor: 1 Analysis Time..: 17:11 Instrument ID..: I5 5.5 B SW846 6010B 11/07-11/12/02 FCDCW1AV Cobalt 6.0 mq/kq Dilution Factor: 1 Analysis Time..: 17:11 Analyst ID....: 002260 Instrument ID..: I5 Copper 11.6 3.0 mq/kq SW846 6010B 11/07-11/12/02 FCDCW1AW Dilution Factor: 1 Analysis Time..: 17:11 Analyst ID....: 002260 Instrument ID..: I5 Iron 22400 12.1 SW846 6010B 11/07-11/12/02 FCDCW1AX mq/kq Analysis Time..: 17:11 Analyst ID....: 002260 Dilution Factor: 1 Instrument ID..: I5 604 11/07-11/12/02 FCDCW1A0 Magnesium 1220 SW846 6010B mg/kg Dilution Factor: 1 Analysis Time..: 17:11 Analyst ID....: 002260 Instrument ID..: I5 Manganese 154 1.8 mq/kq SW846 6010B 11/07-11/12/02 FCDCW1A1 Dilution Factor: 1 Analysis Time..: 17:11 Analyst ID....: 002260 Instrument ID..: 15 Nickel 7.9 SW846 6010B 11/07-11/12/02 FCDCW1A2 4.8 mq/kq Dilution Factor: 1 Analysis Time..: 17:11 Analyst ID....: 002260 Instrument ID..: I5 Potassium 1120 J 604 mg/kg SW846 6010B 11/07-11/12/02 FCDCW1A3 Dilution Factor: 1 Analysis Time..: 17:11 Analyst ID....: 002260 Instrument ID..: I5 Silver ND 1.2 mq/kq SW846 6010B 11/07-11/12/02 FCDCW1A4 Dilution Factor: 1 Analysis Time..: 17:11 Analyst ID....: 002260 Instrument ID..: I5

(Continued on next page)

mg/kg

SW846 6010B

Analysis Time..: 17:11

STL North Canton 49

Client Sample ID: 5GP-6(10-11')

### TOTAL Metals

Lot-Sample #...: A2K040189-011

Matrix....: SO

| PARAMETER<br>Vanadium | RESULT<br>57.5 | REPORTING LIMIT 6.0            | UNITS<br>mg/kg | METHOD<br>SW846 6010B                   | PREPARATION- ANALYSIS DATE 11/07-11/12/02 | WORK ORDER # FCDCW1AC |
|-----------------------|----------------|--------------------------------|----------------|-----------------------------------------|-------------------------------------------|-----------------------|
|                       |                | Dilution Factor Instrument ID. |                | Analysis Time: 17:11                    | Analyst ID                                | : 002260              |
| Zinc                  | 26.4           | 2.4 Dilution Facto             |                | <b>SW846 6010B</b> Analysis Time: 17:11 | 11/07-11/12/02<br>Analyst ID              |                       |
| Mercury               | 0.043 B        | 0.12 Dilution Factor           |                | <b>SW846 7471A</b> Analysis Time: 11:28 | 11/07-11/08/02<br>Analyst ID              |                       |

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: 5GP-3(9-10')

### TOTAL Metals

% Moisture....: 18

| PARAMETER                | RESULT                | REPORTING LIMIT UNITS                            | METHOD                                  | PREPARATION- WORK ANALYSIS DATE ORDER #       |
|--------------------------|-----------------------|--------------------------------------------------|-----------------------------------------|-----------------------------------------------|
| Prep Batch #<br>Aluminum | .: 2311117<br>14800 J | 24.4 mg/kg Dilution Factor: 1 Instrument ID: I5  | <b>SW846 6010B</b> Analysis Time: 17:16 | 11/07-11/12/02 FCDCX1AM Analyst ID: 002260    |
| Arsenic                  | 2.6                   | 1.2 mg/kg Dilution Factor: 1 Instrument ID.:: 15 | <b>SW846 6010B</b> Analysis Time: 17:16 | 11/07-11/12/02 FCDCX1AH Analyst ID: 002260    |
| Lead                     | 9.7                   | 0.37 mg/kg Dilution Factor: 1 Instrument ID: 15  | <b>SW846 6010B</b> Analysis Time: 17:16 | 11/07-11/12/02 FCDCX1AJ Analyst ID: 002260    |
| Antimony                 | 1.4 B                 | 7.3 mg/kg Dilution Factor: 1 Instrument ID: 15   | <b>SW846 6010B</b> Analysis Time: 17:16 | 11/07-11/12/02 FCDCX1AN Analyst ID: 002260    |
| Barium                   | 37.2 Ј                | 24.4 mg/kg Dilution Factor: 1 Instrument ID: I5  | <b>SW846 6010B</b> Analysis Time: 17:16 | 11/07-11/12/02 FCDCX1AP Analyst ID: 002260    |
| Selenium                 | ND                    | 0.61 mg/kg Dilution Factor: 1 Instrument ID: 15  | SW846 6010B<br>Analysis Time: 17:16     | 11/07-11/12/02 FCDCX1AK<br>Analyst ID: 002260 |
| Beryllium                | 0.31 B                | 0.61 mg/kg Dilution Factor: 1 Instrument ID: I5  | <b>SW846 6010B</b> Analysis Time: 17:16 | 11/07-11/12/02 FCDCX1AQ Analyst ID: 002260    |
| Thallium                 | ND                    | 1.2 mg/kg Dilution Factor: 1 Instrument ID.:: 15 | SW846 6010B<br>Analysis Time: 17:16     | 11/07-11/12/02 FCDCX1AL Analyst ID: 002260    |
| Cadmium                  | ND                    | 0.61 mg/kg Dilution Factor: 1 Instrument ID: I5  | SW846 6010B<br>Analysis Time: 17:16     | 11/07-11/12/02 FCDCX1AR<br>Analyst ID: 002260 |
| Calcium                  | 866                   | 609 mg/kg Dilution Factor: 1 Instrument ID: 15   | <b>SW846 6010B</b> Analysis Time: 17:16 | 11/07-11/12/02 FCDCX1AT Analyst ID: 002260    |

Matrix..... S0

#### DRAPER ADEN & ASSOCIATES INC

Client Sample ID: 5GP-3(9-10')

# TOTAL Metals

Lot-Sample #...: A2K040189-012

|           |               | REPORTIN     | 1G      |                      | PREPARATION- WORK       |
|-----------|---------------|--------------|---------|----------------------|-------------------------|
| PARAMETER | RESULT        | LIMIT        | UNITS   | METHOD               | ANALYSIS DATE ORDER #   |
| Chromium  | 22.8          | 1.2          | mg/kg   | SW846 6010B          | 11/07-11/12/02 FCDCX1AU |
|           |               | Dilution Fac | ctor: 1 | Analysis Time: 17:16 | Analyst ID: 002260      |
|           |               | Instrument I | D: 15   |                      |                         |
| Cobalt    | 3.2 B         | 6.1          | mg/kg   | SW846 6010B          | 11/07-11/12/02 FCDCX1AV |
|           |               | Dilution Fac | ctor: 1 | Analysis Time: 17:16 | Analyst ID: 002260      |
|           |               | Instrument I | D: 15   |                      |                         |
| Copper    | 9.5           | 3.0          | mg/kg   | SW846 6010B          | 11/07-11/12/02 FCDCX1AW |
|           |               | Dilution Fac | 3. 3    | Analysis Time: 17:16 |                         |
|           |               | Instrument I |         |                      |                         |
| Iron      | 24400         | 12.2         | mg/kg   | SW846 6010B          | 11/07-11/12/02 FCDCX1AX |
|           |               | Dilution Fac |         | Analysis Time: 17:16 |                         |
|           |               | Instrument I | D: 15   | •                    |                         |
| Magnesium | 59 <b>7</b> B | <b>60</b> 9  | mq/kq   | SW846 6010B          | 11/07~11/12/02 FCDCX1A0 |
| 3         |               | Dilution Fac | 3. 3    | Analysis Time: 17:16 |                         |
|           |               | Instrument I | ID: I5  | -                    | •                       |
| Manganese | 90.8          | 1.8          | mg/kg   | SW846 6010B          | 11/07-11/12/02 FCDCX1A1 |
|           |               | Dilution Fac | ctor: 1 | Analysis Time: 17:16 | Analyst ID: 002260      |
|           |               | Instrument I | ID: 15  |                      |                         |
| Nickel    | 5.3           | 4.9          | wg/kg   | SW846 6010B          | 11/07-11/12/02 FCDCX1A2 |
|           |               | Dilution Fac | tor: 1  | Analysis Time: 17:16 | Analyst ID: 002260      |
|           |               | Instrument I | D: 15   |                      |                         |
| Potassium | 500 B,J       | 609          | mg/kg   | SW846 6010B          | 11/07-11/12/02 FCDCX1A3 |
|           |               | Dilution Fac | tor: 1  | Analysis Time: 17:16 | Analyst ID: 002260      |
|           |               | Instrument I | ID: 15  |                      |                         |
| Silver    | ND            | 1.2          | mg/kg   | SW846 6010B          | 11/07-11/12/02 FCDCX1A4 |
|           |               | Dilution Fac | tor: 1  | Analysis Time: 17:16 | Analyst ID: 002260      |
|           |               | Instrument I | D: 15   |                      |                         |
| Sodium    | ND            | 609          | mg/kg   | SW846 6010B          | 11/07-11/12/02 FCDCX1AA |
|           |               | Dilution Fac | tor: 1  | Analysis Time: 17:16 | Analyst ID: 002260      |

(Continued on next page)

Instrument ID..: I5

STL North Canton 52

. Client Sample ID: 5GP-3(9-10')

# TOTAL Metals

Lot-Sample #...: A2K040189-012

Matrix..... SO

|           |         | REPORTI:     | NG      |                      | PREPARATION-   | WORK     |
|-----------|---------|--------------|---------|----------------------|----------------|----------|
| PARAMETER | RESULT  | LIMIT        | UNITS   | METHOD               | ANALYSIS DATE  | ORDER #  |
| Vanadium  | 54.3    | 6.1          | mg/kg   | SW846 6010B          | 11/07-11/12/02 | FCDCX1AC |
|           |         | Dilution Fac | ctor: 1 | Analysis Time: 17:16 | Analyst ID     | : 002260 |
|           |         | Instrument   | ID: 15  |                      |                |          |
| Zinc      | 18.6    | 2.4          | mg/kg   | SW846 6010B          | 11/07-11/12/02 | FCDCX1AD |
|           |         | Dilution Fa  | ctor: 1 | Analysis Time: 17:16 | Analyst ID     | : 002260 |
|           |         | Instrument   | ID: 15  |                      |                |          |
| Mercury   | 0.057 в | 0.12         | mg/kg   | SW846 7471A          | 11/07-11/08/02 | FCDCX1AE |
|           |         | Dilution Fac | ctor: 1 | Analysis Time: 11:35 | Analyst ID     | : 001644 |
|           |         | Instrument   | ID: H1  |                      |                |          |

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: 5GP-8(7-8')

# TOTAL Metals

Lot-Sample #...: A2K040189-013 Matrix....: SO

Date Sampled...: 10/31/02 15:50 Date Received..: 11/02/02

**% Moisture....:** 16

| PARAMETER                | RESULT                | REPORTING LIMIT UNITS                                 | METHOD                                  | PREPARATION- WORK ANALYSIS DATE ORDER #       |
|--------------------------|-----------------------|-------------------------------------------------------|-----------------------------------------|-----------------------------------------------|
| Prep Batch #<br>Aluminum | .: 2311117<br>14200 J | 23.7 mg/kg Dilution Factor: 1 Instrument ID: I5       | <b>SW846 6010B</b> Analysis Time: 17:21 | 11/07-11/12/02 FCDC01AM Analyst ID: 002260    |
| Arsenic                  | 4.1                   | 1.2 mg/kg Dilution Factor: 1 Instrument ID: I5        | <b>SW846 6010B</b> Analysis Time: 17:21 | 11/07-11/12/02 FCDC01AH<br>Analyst ID: 002260 |
| Lead                     | 9.6                   | 0.36 mg/kg Dilution Factor: 1 Instrument ID.:: I5     | <b>SW846 6010B</b> Analysis Time: 17:21 | 11/07-11/12/02 FCDC01AJ Analyst ID: 002260    |
| Antimony                 | 1.1 B                 | 7.1 mg/kg Dilution Factor: 1 Instrument ID: I5        | <b>SW846 6010B</b> Analysis Time: 17:21 | 11/07-11/12/02 FCDC01AN Analyst ID: 002260    |
| Barium                   | 46.1 J                | 23.7 mg/kg Dilution Factor: 1 Instrument ID: I5       | <b>SW846 6010B</b> Analysis Time: 17:21 | 11/07-11/12/02 FCDC01AP Analyst ID: 002260    |
| Selenium                 | ND                    | 0.59 mg/kg Dilution Factor: 1 Instrument ID: IS       | SW846 6010B<br>Analysis Time: 17:21     | 11/07-11/12/02 FCDC01AK<br>Analyst ID: 002260 |
| Beryllium                | 1.3                   | 0.59 mg/kg Dilution Factor: 1 Instrument ID.:: 15     | SW846 6010B Analysis Time: 17:21        | 11/07-11/12/02 FCDC01AQ<br>Analyst ID: 002260 |
| Thallium                 | ND                    | 1.2 mg/kg Dilution Factor: 1 Instrument ID: I5        | SW846 6010B<br>Analysis Time: 17:21     | 11/07-11/12/02 FCDC01AL<br>Analyst ID: 002260 |
| Cadmium                  | ND                    | 0.59 mg/kg<br>Dilution Factor: 1<br>Instrument ID: I5 | SW846 6010B<br>Analysis Time: 17:21     | 11/07-11/12/02 FCDC01AR<br>Analyst ID: 002260 |
| Calcium                  | 159 B                 | 592 mg/kg Dilution Factor: 1 Instrument ID: I5        | <b>SW846 6010B</b> Analysis Time: 17:21 | 11/07-11/12/02 FCDC01AT Analyst ID: 002260    |

Client Sample ID: 5GP-8(7-8')

# TOTAL Metals

Lot-Sample #...: A2K040189-013 Matrix.....: S0

|           |        | REPORTING     | 3             |          |                | PREPARATION-   | WORK     |
|-----------|--------|---------------|---------------|----------|----------------|----------------|----------|
| PARAMETER | RESULT | LIMIT         | UNITS         | METHOI   | D              | ANALYSIS DATE  | ORDER #  |
| Chromium  | 21.6   | 1.2           | mg/kg         | SW846    | 6010B          | 11/07-11/12/02 | FCDC01AU |
|           |        | Dilution Fact | or: 1         | Analysis | Time: 17:21    | Analyst ID     | : 002260 |
|           |        | Instrument II | ): <b>I</b> 5 |          |                |                |          |
| Cobalt    | 11.6   | 5.9           | mg/kg         | SW846    | 6010B          | 11/07-11/12/02 | FCDC01AV |
|           |        | Dilution Fact | or: 1         | Analysis | Time: 17:21    | Analyst ID     | : 002260 |
|           |        | Instrument ID | ): 15         |          |                |                |          |
| Copper    | 16.8   | 3.0           | mg/kg         | SW846    | 6010B          | 11/07-11/12/02 | FCDC01AW |
|           |        | Dilution Fact | or: 1         | Analysis | Time: 17:21    | Analyst ID     | : 002260 |
|           |        | Instrument II | ): I5         |          |                |                |          |
| Iron      | 28400  | 11.8          | mg/kg         | SW846    | 6010B          | 11/07-11/12/02 | FCDC01AX |
|           |        | Dilution Fact | or: 1         | Analysis | Time: 17:21    | Analyst ID     | : 002260 |
|           |        | Instrument II | ): 15         |          |                |                |          |
| Magnesium | 1410   | 592           | mg/kg         | SW846    | 6010B          | 11/07-11/12/02 | FCDC01A0 |
|           |        | Dilution Fact | or: 1         | Analysis | Time: 17:21    | Analyst ID     | : 002260 |
|           |        | Instrument II | ): 15         |          |                |                |          |
| Manganese | 242    | 1.8           | mg/kg         | SW846    | 6010B          | 11/07-11/12/02 | FCDC01A1 |
|           |        | Dilution Fact | or: 1         | Analysis | Time: 17:21    | Analyst ID     | : 002260 |
|           |        | Instrument II | ): I5         |          |                |                |          |
| Nickel    | 10.7   | 4.7           | mg/kg         | SW846    | 6010B          | 11/07-11/12/02 | FCDC01A2 |
|           |        | Dilution Fact | or: 1         | Analysis | Time: 17:21    | Analyst ID     | : 002260 |
|           |        | Instrument II | ): 15         |          |                |                |          |
| Potassium | 1090 J | 592           | mg/kg         | SW846    | 601 <b>0</b> B | 11/07-11/12/02 | FCDC01A3 |
|           |        | Dilution Fact | or: 1         | Analysis | Time: 17:21    | Analyst ID     | : 002260 |
|           |        | Instrument II | ): 15         |          |                |                |          |
| Silver    | ND     | 1.2           | , mg/kg       | SW846    | 6010B          | 11/07-11/12/02 | FCDC01A4 |
|           |        | Dilution Fact |               | Analysis | Time: 17:21    | Analyst ID     | : 002260 |
|           |        | Instrument ID | ): 15         |          |                |                |          |
| Sodium    | ND     | 592           | mg/kg         | SW846    | 6010B          | 11/07-11/12/02 | FCDC01AA |
|           |        | Dilution Fact |               | Analysis | Time: 17:21    | Analyst ID     | : 002260 |
|           |        | Instrument ID | ): I5         |          |                |                |          |

(Continued on next page)

STL North Canton 55

Client Sample ID: 5GP-8(7-8')

### TOTAL Metals

Lot-Sample #...: A2K040189-013

Matrix..... S0

|           |         | REPORTING      | ;      |                     | PREPARATION-   | WORK      |
|-----------|---------|----------------|--------|---------------------|----------------|-----------|
| PARAMETER | RESULT  | LIMIT_         | UNITS_ | METHOD              | ANALYSIS DATE  | ORDER #_  |
| Vanadium  | 26.7    | 5.9            | mg/kg  | SW846 6010B         | 11/07-11/12/02 | FCDC01AC  |
|           |         | Dilution Facto | or: 1  | Analysis Time: 17:2 | Analyst ID     | .: 002260 |
|           |         | Instrument ID  | : 15   |                     |                |           |
| Zinc      | 23.9    | 2.4            | mg/kg  | SW846 6010B         | 11/07-11/12/02 | FCDC01AD  |
|           |         | Dilution Facto | or: 1  | Analysis Time: 17:2 | l Analyst ID   | .: 002260 |
|           |         | Instrument ID  | : I5   |                     |                |           |
| Mercury   | 0.023 B | 0.12           | mg/kg  | SW846 7471A         | 11/07-11/08/02 | FCDC01AE  |
|           |         | Dilution Fact  | or: 1  | Analysis Time: 11:3 | 3 Analyst ID   | .: 001644 |
|           |         | Instrument ID  | : H1   |                     |                |           |

NOTE(S):

J. Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: 5GP-8(11-12') ·

### TOTAL Metals

Lot-Sample #...: A2K040189-014 Matrix.....: S0

Date Sampled...: 10/31/02 16:05 Date Received..: 11/02/02

**% Moisture....:** 17

| PARAMETER _           | RESULT                | REPORTING LIMIT UNITS_                            | METHOD                                  | PREPARATION- WORK ANALYSIS DATE ORDER #       |
|-----------------------|-----------------------|---------------------------------------------------|-----------------------------------------|-----------------------------------------------|
|                       |                       |                                                   |                                         |                                               |
| Prep Batch # Aluminum | .: 2311117<br>19600 J | 24.0 mg/kg Dilution Factor: 1 Instrument ID: I5   | <b>SW846 6010B</b> Analysis Time: 17:26 | 11/07-11/12/02 FCDC11AM Analyst ID: 002260    |
| Arsenic               | 3.4                   | 1.2 mg/kg Dilution Factor: 1 Instrument ID.:: 15  | <b>SW846 6010B</b> Analysis Time: 17:26 | 11/07-11/12/02 FCDC11AH<br>Analyst ID: 002260 |
| Lead                  | 9.6                   | 0.36 mg/kg Dilution Factor: 1 Instrument ID.:: I5 | <b>SW846 6010B</b> Analysis Time: 17:26 | 11/07-11/12/02 FCDC11AJ<br>Analyst ID: 002260 |
| Antimony              | 1.2 B                 | 7.2 mg/kg Dilution Factor: 1 Instrument ID: 15    | <b>SW846 6010B</b> Analysis Time: 17:26 | 11/07-11/12/02 FCDC11AN Analyst ID: 002260    |
| Barium                | 61.4 J                | 24.0 mg/kg Dilution Factor: 1 Instrument ID: I5   | <b>SW846 6010B</b> Analysis Time: 17:26 | 11/07-11/12/02 FCDC11AP Analyst ID: 002260    |
| Selenium              | ND                    | 0.60 mg/kg Dilution Factor: 1 Instrument ID.:: I5 | SW846 6010B<br>Analysis Time: 17:26     | 11/07-11/12/02 FCDC11AK<br>Analyst ID: 002260 |
| Beryllium             | 0.81                  | 0.60 mg/kg Dilution Factor: 1 Instrument ID.:: I5 | SW846 6010B Analysis Time: 17:26        | 11/07-11/12/02 FCDC11AQ<br>Analyst ID: 002260 |
| Thallium              | ND                    | 1.2 mg/kg Dilution Factor: 1 Instrument ID.:: I5  | SW846 6010B Analysis Time: 17:26        | 11/07-11/12/02 FCDC11AL<br>Analyst ID: 002260 |
| Cadmium               | ND                    | 0.60 mg/kg Dilution Factor: 1 Instrument ID.:: I5 | SW846 6010B Analysis Time: 17:26        | 11/07-11/12/02 FCDC11AR<br>Analyst ID: 002260 |
| Calcium               | 576 B                 | 599 mg/kg Dilution Factor: 1 Instrument ID.:: 15  | <b>SW846 6010B</b> Analysis Time: 17:26 | 11/07-11/12/02 FCDC11AT Analyst ID: 002260    |

# Client Sample ID: 5GP-8(11-12')

### TOTAL Metals

Lot-Sample #...: A2K040189-014

Matrix....: SO

|           |        | REPORTING                      | 3             |                      | PREPARATION- WORK       |
|-----------|--------|--------------------------------|---------------|----------------------|-------------------------|
| PARAMETER | RESULT | LIMIT                          | UNITS         | METHOD               | ANALYSIS DATE ORDER #   |
| Chromium  | 26.9   | 1.2                            | mg/kg         | SW846 6010B          | 11/07-11/12/02 FCDC11AU |
|           |        | Dilution Fact                  | or: 1         | Analysis Time: 17:20 | Analyst ID: 002260      |
|           |        | Instrument ID                  | ): I5         |                      |                         |
| Cobalt    | 10.0   | 6.0                            | mg/kg         | SW846 6010B          | 11/07-11/12/02 FCDC11AV |
|           |        | Dilution Fact                  | or: 1         | Analysis Time: 17:26 | Analyst ID: 002260      |
|           |        | Instrument ID                  | ): I5         |                      |                         |
| Copper    | 14.8   | 3.0                            | mg/kg         | SW846 6010B          | 11/07-11/12/02 FCDC11AW |
|           |        | Dilution Fact                  | or: 1         | Analysis Time: 17:26 | Analyst ID: 002260      |
|           |        | Instrument ID                  | ): I5         |                      |                         |
| Iron      | 29000  | 12.0                           | mg/kg         | SW846 6010B          | 11/07-11/12/02 FCDC11AX |
|           |        | Dilution Fact                  | or: 1         | Analysis Time: 17:26 | Analyst ID: 002260      |
|           |        | Instrument ID                  | ): <b>I</b> 5 |                      |                         |
| Magnesium | 1560   | 599                            | mg/kg         | SW846 6010B          | 11/07-11/12/02 FCDC11A0 |
|           |        | Dilution Fact                  | or: 1         | Analysis Time: 17:26 | Analyst ID: 002260      |
|           |        | Instrument ID                  | ): I5         |                      |                         |
| Manganese | 372    | 1.8                            | mg/kg         | SW846 6010B          | 11/07-11/12/02 FCDC11A1 |
|           |        | Dilution Fact                  |               | Analysis Time: 17:26 | Analyst ID: 002260      |
|           |        | Instrument ID                  | ): I5         |                      |                         |
| Nickel    | 11.0   | 4.8                            | mg/kg         | SW846 6010B          | 11/07-11/12/02 FCDC11A2 |
|           |        | Dilution Fact                  |               | Analysis Time: 17:26 | Analyst ID: 002260      |
|           |        | Instrument ID                  | ): <b>1</b> 5 |                      |                         |
| Potassium | 1420 Ј | 599                            | mg/kg         | SW846 6010B          | 11/07-11/12/02 FCDC11A3 |
|           |        | Dilution Fact                  | or: 1         | Analysis Time: 17:26 | Analyst ID: 002260      |
|           |        | Instrument ID                  | ): I5         |                      |                         |
| Silver    | ND     | 1.2                            | mg/kg         | SW846 6010B          | 11/07-11/12/02 FCDC11A4 |
|           |        | Dilution Fact<br>Instrument ID |               | Analysis Time: 17:26 | Analyst ID: 002260      |
|           |        |                                |               |                      |                         |
| Sodium    | ND     | 599                            | mg/kg         | SW846 6010B          | 11/07-11/12/02 FCDC11AA |
|           |        | Dilution Fact                  | or: 1         | Analysis Time: 17:26 | Analyst ID: 002260      |
|           |        | Instrument ID                  | : I5          |                      |                         |

Client Sample ID: 5GP-8(11-12')

#### TOTAL Metals

Lot-Sample #...: A2K040189-014

Matrix..... SO

|           |          | REPORTII     | <b>N</b> G |                      | PREPARATION- WORK       |
|-----------|----------|--------------|------------|----------------------|-------------------------|
| PARAMETER | _ RESULT | LIMIT        | UNITS      | METHOD               | ANALYSIS DATE ORDER #   |
| Vanadium  | 55.2     | 6.0          | mg/kg      | SW846 6010B          | 11/07-11/12/02 FCDC11AC |
|           |          | Dilution Fac | ctor: 1    | Analysis Time.: 17:2 | 6 Analyst ID: 002260    |
|           |          | Instrument 1 | ID: 15     |                      |                         |
| Zinc      | 33.8     | 2.4          | mg/kg      | SW846 6010B          | 11/07-11/12/02 FCDC11AD |
|           |          | Dilution Fac | ctor: 1    | Analysis Time: 17:2  | 6 Analyst ID: 002260    |
|           |          | Instrument 1 | D: 15      |                      |                         |
| Mercury   | 0.057 B  | 0.12         | mg/kg      | SW846 7471A          | 11/07-11/08/02 FCDC11AE |
|           |          | Dilution Fac | ctor: 1    | Analysis Time: 11:3  | 6 Analyst ID: 001644    |
|           |          | Instrument 1 | ID: H1     |                      |                         |
|           |          |              |            | Analysis Time: 11:3  | 6 Analyst ID: 001644    |

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: 5GP-16(3-4')

#### TOTAL Metals

Lot-Sample #...: A2K040189-015 Matrix.....: SO

Date Sampled...: 10/31/02 17:00 Date Received..: 11/02/02

**% Moisture....:** 19

| PARAMETER                | RESULT                | REPORTING LIMIT UNITS                                 | METHOD                                  | PREPARATION- WORK ANALYSIS DATE ORDER #       |
|--------------------------|-----------------------|-------------------------------------------------------|-----------------------------------------|-----------------------------------------------|
| Prep Batch #<br>Aluminum | .: 2311117<br>17000 J | 24.8 mg/kg Dilution Factor: 1 Instrument ID: I5       | <b>SW846 6010B</b> Analysis Time: 17:44 | 11/07-11/12/02 FCDC21AM Analyst ID: 002260    |
| Arsenic                  | 4.0                   | 1.2 mg/kg Dilution Factor: 1 Instrument ID: I5        | <b>SW846 6010B</b> Analysis Time: 17:44 | 11/07-11/12/02 FCDC21AH<br>Analyst ID: 002260 |
| Lead                     | 11.4                  | 0.37 mg/kg Dilution Factor: 1 Instrument ID: I5       | <b>SW846 6010B</b> Analysis Time: 17:44 | 11/07-11/12/02 FCDC21AJ Analyst ID: 002260    |
| Antimony                 | 1.1 B                 | 7.4 mg/kg Dilution Factor: 1 Instrument ID: I5        | <b>SW846 6010B</b> Analysis Time: 17:44 | 11/07-11/12/02 FCDC21AN Analyst ID: 002260    |
| Barium                   | 51.2 J                | 24.8 mg/kg Dilution Factor: 1 Instrument ID: I5       | <b>SW846 6010B</b> Analysis Time: 17:44 | 11/07-11/12/02 FCDC21AP Analyst ID: 002260    |
| Selenium                 | ND                    | 0.62 mg/kg<br>Dilution Factor: 1<br>Instrument ID: I5 | SW846 6010B<br>Analysis Time: 17:44     | 11/07-11/12/02 FCDC21AK<br>Analyst ID: 002260 |
| Beryllium                | 0.40 B                | 0.62 mg/kg Dilution Factor: 1 Instrument ID: I5       | SW846 6010B<br>Analysis Time: 17:44     | 11/07-11/12/02 FCDC21AQ Analyst ID: 002260    |
| Thallium                 | ND                    | 1.2 mg/kg Dilution Factor: 1 Instrument ID: I5        | SW846 6010B<br>Analysis Time: 17:44     | 11/07-11/12/02 FCDC21AL<br>Analyst ID: 002260 |
| Cadmium                  | ND .                  | 0.62 mg/kg Dilution Factor: 1 Instrument ID: I5       | SW846 6010B<br>Analysis Time: 17:44     | 11/07-11/12/02 FCDC21AR Analyst ID: 002260    |
| Calcium                  | 1020                  | 620 mg/kg Dilution Factor: 1 Instrument ID: I5        | <b>SW846 6010B</b> Analysis Time: 17:44 | 11/07-11/12/02 FCDC21AT Analyst ID: 002260    |

Client Sample ID: 5GP-16(3-4')

# TOTAL Metals

Lot-Sample #...: A2K040189-015 Matrix.....: S0

| DA DA MEGGE        | RESULT        | REPORTIN                       | G<br>UNITS | METHOI   | <b>.</b>       | PREPARATION-<br>ANALYSIS DATE | WORK<br>ORDER # |
|--------------------|---------------|--------------------------------|------------|----------|----------------|-------------------------------|-----------------|
| PARAMETER Chromium | <u>RESULT</u> | <u>BIMII</u>                   | mg/kg      |          | 6010B          | 11/07-11/12/02                |                 |
| CITTOMTUM          | 24.4          | Dilution Fact                  | J. J       |          | Time: 17:44    | Analyst ID                    |                 |
|                    |               | Instrument II                  |            | Midlysis | 11me: 1/:44    | Miaryst ID                    | .: 002250       |
| Cobalt             | 8.2           | 6.2                            | mg/kg      | SW846    | 6010B          | 11/07-11/12/02                | FCDC21AV        |
|                    |               | Dilution Fact<br>Instrument II |            | Analysis | Time: 17:44    | Analyst ID                    | : 002260        |
| Copper             | 10.6          | 3.1                            | mg/kg      | SW846    | 6010B          | 11/07-11/12/02                | FCDC21AW        |
|                    |               | Dilution Fact                  | tor: 1     | Analysis | Time: 17:44    | Analyst ID                    | : 002260        |
|                    |               | Instrument II                  | D: I5      |          |                |                               |                 |
| Iron               | 28200         | 12.4                           | mg/kg      | SW846    | 6010B          | 11/07-11/12/02                | FCDC21AX        |
|                    |               | Dilution Fact                  | tor: 1     | Analysis | Time: 17:44    | Analyst ID                    | : 002260        |
|                    |               | Instrument II                  | D: I5      |          |                |                               |                 |
| Magnesium          | 812           | 620                            | mg/kg      | SW846    | 6010B          | 11/07-11/12/02                | FCDC21A0        |
|                    |               | Dilution Fact<br>Instrument II |            | Analysis | Time: 17:44    | Analyst ID                    | : 002260        |
| Manganese          | 393           | 1.9                            | mg/kg      | SW846    | 6010B          | 11/07-11/12/02                | FCDC21A1        |
|                    |               | Dilution Fact                  | tor: 1     | Analysis | Time: 17:44    | Analyst ID                    | : 002260        |
|                    |               | Instrument II                  | D: I5      |          |                |                               |                 |
| Nickel             | 6.3           | 5.0                            | mg/kg      | SW846    | 6010B          | 11/07-11/12/02                | FCDC21A2        |
|                    |               | Dilution Fact                  |            | Analysis | Time: 17:44    | Analyst ID                    | : 002260        |
|                    |               | Instrument II                  | D: I5      |          |                |                               |                 |
| Potassium          | 561 B,J       | 620                            | mg/kg      | SW846    | 6010B          | 11/07-11/12/02                | FCDC21A3        |
|                    |               | Dilution Fact                  |            | Analysis | Time: 17:44    | Analyst ID                    | : 002260        |
|                    |               | Instrument II                  | D: I5      |          |                |                               |                 |
| Silver             | ND            | 1.2                            | mg/kg      |          | 6 <b>0</b> 10B | 11/07-11/12/02                |                 |
|                    |               | Dilution Fact<br>Instrument II |            | Analysis | Time: 17:44    | Analyst ID                    | : 002260        |
| Sodium             | ND            | 620                            | mg/kg      | SW846    | 6010B          | 11/07-11/12/02                | FCDC21AA        |
|                    |               | Dilution Fact                  | tor: 1     | Analysis | Time: 17:44    | Analyst ID                    | : 002260        |
|                    |               | Instrument II                  | D: I5      |          |                |                               |                 |

Client Sample ID: 5GP-16(3-4')

### TOTAL Metals

Lot-Sample #...: A2K040189-015

**Matrix....**: SO

|           |         | REPORTI      | NG      |                      | PREPARATION-   | WORK      |
|-----------|---------|--------------|---------|----------------------|----------------|-----------|
| PARAMETER | RESULT  | LIMIT        | UNITS_  | METHOD               | ANALYSIS DATE  | ORDER #_  |
| Vanadium  | 55.4    | 6.2          | mg/kg   | SW846 6010B          | 11/07-11/12/02 | FCDC21AC  |
|           |         | Dilution Fac | ctor: 1 | Analysis Time: 17:44 | Analyst ID     | .: 002260 |
|           |         | Instrument : | ID: I5  |                      |                |           |
| Zinc      | 20.2    | 2.5          | mg/kg   | SW846 6010B          | 11/07-11/12/02 | FCDC21AD  |
|           |         | Dilution Fac | ctor: 1 | Analysis Time: 17:44 | Analyst ID     | .: 002260 |
|           |         | Instrument : | ID: I5  |                      |                |           |
| Mercury   | 0.070 B | 0.12         | mg/kg   | SW846 7471A          | 11/07-11/08/02 | FCDC21AE  |
|           |         | Dilution Fac | ctor: 1 | Analysis Time: 11:37 | Analyst ID     | .: 001644 |
|           |         | Instrument   | ID: H1  |                      |                |           |
|           |         |              |         |                      |                |           |

Results and reporting limits have been adjusted for dry weight.

NOTE(S):

J. Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: 5GP-12(3-4')

#### TOTAL Metals

Lot-Sample #...: A2K040189-016 Matrix.....: S0

Date Sampled...: 10/31/02 16:40 Date Received..: 11/02/02

**% Moisture....:** 20

| PARAMETER_            | RESULT                | REPORTING LIMIT_ UNITS                            | METHOD                                  | PREPARATION- WORK ANALYSIS DATE ORDER #       |
|-----------------------|-----------------------|---------------------------------------------------|-----------------------------------------|-----------------------------------------------|
|                       |                       |                                                   |                                         |                                               |
| Prep Batch # Aluminum | .: 2311117<br>19600 J | 25.0 mg/kg Dilution Factor: 1 Instrument ID: I5   | <b>SW846 6010B</b> Analysis Time: 17:49 | 11/07-11/12/02 FCDC41AM Analyst ID: 002260    |
| Arsenic               | 2.7                   | 1.2 mg/kg Dilution Factor: 1 Instrument ID: I5    | <b>SW846 6010B</b> Analysis Time: 17:49 | 11/07-11/12/02 FCDC41AH<br>Analyst ID: 002260 |
| Lead                  | 12.6                  | 0.37 mg/kg Dilution Factor: 1 Instrument ID.:: I5 | <b>SW846 6010B</b> Analysis Time: 17:49 | 11/07-11/12/02 FCDC41AJ Analyst ID: 002260    |
| Antimony              | 1.6 B                 | 7.5 mg/kg Dilution Factor: 1 Instrument ID: I5    | <b>SW846 6010B</b> Analysis Time: 17:49 | 11/07-11/12/02 FCDC41AN Analyst ID: 002260    |
| Barium                | 56.2 J                | 25.0 mg/kg Dilution Factor: 1 Instrument ID: I5   | <b>SW846 6010B</b> Analysis Time: 17:49 | 11/07-11/12/02 FCDC41AP Analyst ID: 002260    |
| Selenium              | ND                    | 0.62 mg/kg Dilution Factor: 1 Instrument ID: I5   | SW846 6010B<br>Analysis Time: 17:49     | 11/07-11/12/02 FCDC41AK<br>Analyst ID: 002260 |
| Beryllium             | 0.55 B                | 0.62 mg/kg Dilution Factor: 1 Instrument ID.:: 15 | <b>SW846 6010B</b> Analysis Time: 17:49 | 11/07-11/12/02 FCDC41AQ Analyst ID: 002260    |
| Thallium              | ND                    | 1.2 mg/kg Dilution Factor: 1 Instrument ID.:: I5  | SW846 6010B<br>Analysis Time: 17:49     | 11/07-11/12/02 FCDC41AL<br>Analyst ID: 002260 |
| Cadmium               | ND                    | 0.62 mg/kg Dilution Factor: 1 Instrument ID: I5   | SW846 6010B<br>Analysis Time: 17:49     | 11/07-11/12/02 FCDC41AR Analyst ID: 002260    |
| Calcium               | 3200                  | 624 mg/kg Dilution Factor: 1 Instrument ID: 15    | <b>SW846 6010B</b> Analysis Time: 17:49 | 11/07-11/12/02 FCDC41AT Analyst ID: 002260    |

# Client Sample ID: 5GP-12(3-4')

# TOTAL Metals

Lot-Sample #...: A2K040189-016 Matrix.....: SO

|                       | DECLIE E       | REPORTIN     |                  | METHOD            |            | PREPARATION-<br>ANALYSIS DATE | WORK<br>ORDER #  |
|-----------------------|----------------|--------------|------------------|-------------------|------------|-------------------------------|------------------|
| PARAMETER<br>Chromium | RESULT<br>27.0 | LIMIT 1.2    | UNITS<br>mq/kq   | SW846 6           |            | 11/07-11/12/02                |                  |
| CITOUTUM              | 27.0           | Dilution Fac | J- J             |                   | ime: 17:49 | Analyst ID                    |                  |
|                       |                | Instrument I |                  | Analysis i        | Ine 17.39  | Maryst ID                     | . 002200         |
| Cobalt                | 9.1            | 6.2          | mg/kg            | SW846 6           | 010B       | 11/07-11/12/02                | FCDC41AV         |
|                       |                | Dilution Fac | tor: 1           | Analysis T        | ime: 17:49 | Analyst ID                    | : 002260         |
|                       |                | Instrument I | D: I5            |                   |            |                               |                  |
| Copper                | 13.6           | 3.1          | mg/kg            | SW846 6           | 010В       | 11/07-11/12/02                | FCDC41AW         |
|                       |                | Dilution Fac | tor: 1           | Analysis T        | ime: 17:49 | Analyst ID                    | : 00226 <b>0</b> |
|                       |                | Instrument I | D: I5            |                   |            |                               |                  |
| Iron                  | 33400          | 12.5         | mg/kg            | SW846 6           | 010B       | 11/07-11/12/02                | FCDC41AX         |
|                       |                | Dilution Fac | tor: 1           | Analysis T        | ime: 17:49 | Analyst ID                    | : 002260         |
|                       |                | Instrument I | D: 15            |                   |            |                               |                  |
| Magnesium             | 2200           | 624          | mg/kg            | SW846 6           | 010B       | 11/07-11/12/02                | FCDC41A0         |
|                       |                | Dilution Fac | tor: 1           | Analysis T        | ime: 17:49 | Analyst ID                    | : 002260         |
|                       |                | Instrument I | D: 15            |                   |            |                               |                  |
| Manganese             | 457            | 1.9          | mg/kg            | SW846 6           | 010B       | 11/07-11/12/02                | FCDC41A1         |
|                       |                | Dilution Fac | tor: 1           | Analysis <b>T</b> | ime: 17:49 | Analyst ID                    | : 002260         |
|                       |                | Instrument I | D: 15            |                   |            |                               |                  |
| Nickel                | 8.2            | 5.0          | mg/kg            | SW846 6           | 010B       | 11/07-11/12/02                | FCDC41A2         |
|                       |                | Dilution Fac | tor: 1           | Analysis T        | ime: 17:49 | Analyst ID                    | : 00226 <b>0</b> |
|                       |                | Instrument I | D: 15            |                   |            |                               |                  |
| Potassium             | 915 J          | 624          | mg/kg            | SW846 6           | 010B       | 11/07-11/12/02                | PCDC41A3         |
|                       |                | Dilution Fac | tor: 1           | Analysis T        | ime: 17:49 | Analyst ID                    | : 002260         |
|                       |                | Instrument I | D <sub></sub> 15 |                   |            |                               |                  |
| Silver                | ND             | 1.2          | mg/kg            | SW846 6           | 010B       | 11/07-11/12/02                | FCDC41A4         |
|                       |                | Dilution Fac | tor: 1           | Analysis T        | ime: 17:49 | Analyst ID                    | : 002260         |
|                       |                | Instrument I | D: I5            |                   |            |                               |                  |
| Sodium                | ND             | 624          | mg/kg            | SW846 6           | 010B       | 11/07-11/12/02                | FCDC41AA         |
|                       |                | Dilution Fac | tor: 1           | Analysis T        | ime: 17:49 | Analyst ID                    | : 002260         |
|                       |                | Instrument I | D: I5            |                   |            |                               |                  |

(Continued on next page)

STL North Canton 64

Client Sample ID: 5GP-12(3-4')

### TOTAL Metals

Lot-Sample #...: A2K040189-016

Matrix..... SO

|           |         | REPORTII     | NG           |                      | PREPARATION-   | WORK     |
|-----------|---------|--------------|--------------|----------------------|----------------|----------|
| PARAMETER | RESULT  | LIMIT        | <u>UNITS</u> | METHOD               | ANALYSIS DATE  | ORDER #  |
| Vanadium  | 61.8    | 6.2          | mg/kg        | SW846 6010B          | 11/07-11/12/02 | FCDC41AC |
|           |         | Dilution Fac | ctor: 1      | Analysis Time: 17:49 | Analyst ID     | : 002260 |
|           |         | Instrument : | ID: 15       |                      |                |          |
| Zinc      | 32.1    | 2.5          | mg/kg        | SW846 6010B          | 11/07-11/12/02 | FCDC41AD |
|           |         | Dilution Fac | ctor: 1      | Analysis Time: 17:49 | Analyst ID     | : 002260 |
|           |         | Instrument   | ID: 15       |                      |                |          |
| Mercury   | 0.049 B | 0.12         | mg/kg        | SW846 7471A          | 11/07-11/08/02 | FCDC41AE |
|           |         | Dilution Fac | ctor: 1      | Analysis Time: 11:38 | Analyst ID     | : 001644 |
|           |         | Instrument   | гр: н1       |                      |                |          |

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: 7GP-1(1-3')

### General Chemistry

Lot-Sample #...: A2K040189-001 Work Order #...: FCDAQ Matrix.....: SO

Date Sampled...: 11/01/02 10:00 Date Received..: 11/02/02

**% Moisture....:** 15

| PARAMETER<br>Cyanide, Total | RESULT<br>ND | RL<br>0.59          | UNITS<br>mg/kg | METHOD<br>SW846 9012A | PREPARATION-<br>ANALYSIS DATE<br>11/09/02 | PREP BATCH # 2313125 |
|-----------------------------|--------------|---------------------|----------------|-----------------------|-------------------------------------------|----------------------|
| Percent Solids              | 85.3 J       | 10.0<br>lution Fact | <b>%</b>       | MCAWW 160.3 MOD       | 11/05-11/06/02                            | 2310319              |
| NOTE(S):                    |              |                     |                |                       |                                           |                      |

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: 7GP-2(8-12')

### General Chemistry

Lot-Sample #...: A2K040189-002 Work Order #...: FCDA5 Matrix.....: SO

Date Sampled...: 11/01/02 10:40 Date Received..: 11/02/02

**% Moisture....:** 18

| PARAMETER      | RESULT    | RL_                | UNITS             | METHOD          | PREPARATION-<br>ANALYSIS DATE | PREP<br>BATCH # |
|----------------|-----------|--------------------|-------------------|-----------------|-------------------------------|-----------------|
| Cyanide, Total | ND<br>Dil | 0.61<br>ution Fact | mg/kg<br>or: 1    | SW846 9012A     | 11/09/02                      | 2313125         |
| Percent Solids | 82.3 J    | 10.0<br>ution Fact | <b>%</b><br>or: 1 | MCAWW 160.3 MOD | 11/05-11/06/02                | 2310319         |
| NOTE (S):      |           |                    | <del>-</del>      |                 |                               |                 |

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: 7GP-2(13.5-14.5')

### General Chemistry

Lot-Sample #...: A2K040189-003 Work Order #...: FCDA7 Matrix.....: SO

Date Sampled...: 11/01/02 11:05 Date Received..: 11/02/02

**% Moisture....:** 18

| PARAMETER      | RESULT    | RL                  | UNITS          | METHOD          | PREPARATION-<br>ANALYSIS DATE | PREP<br>BATCH # |
|----------------|-----------|---------------------|----------------|-----------------|-------------------------------|-----------------|
| Cyanide, Total | ND<br>Dil | 0.61<br>ution Facto | mg/kg<br>or: 1 | SW846 9012A     | 11/09/02                      | 2313125         |
| Percent Solids | 82.3 J    | 10.0                | %<br>or: 1     | MCAWW 160.3 MOD | 11/05-11/06/02                | 2310319         |
| NOTE(S):       |           |                     | _ <del></del>  |                 |                               |                 |

# RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: 7GP-3(10-11')

# General Chemistry

Lot-Sample #...: A2K040189-004 Work Order #...: FCDCC Matrix....: S0

Date Sampled...: 11/01/02 11:25 Date Received..: 11/02/02

**% Moisture....:** 21

| PARAMETER      | RESULT     | RL                  | UNITS              | METHOD          | PREPARATION -<br>ANALYSIS DATE | PREP<br>BATCH # |
|----------------|------------|---------------------|--------------------|-----------------|--------------------------------|-----------------|
| Cyanide, Total | 0.69 : Dil | 0.63<br>Lution Fact | mg/kg              | SW846 9012A     | 11/09/02                       | 2313125         |
| Percent Solids | 79.2 J     | 10.0<br>Lution Fact | <b>%</b><br>tor: 1 | MCAWW 160.3 MOD | 11/05-11/06/02                 | 2310319         |
| NOTE(S):       |            |                     |                    |                 |                                |                 |

RL Reporting Limit

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: 7GP-8(5-8')

# General Chemistry

Lot-Sample #...: A2K040189-005 Work Order #...: FCDCE Matrix.....: SO

Date Sampled...: 11/01/02 12:15 Date Received..: 11/02/02

**% Moisture....:** 19

| PARAMETER      | RESULT    | RL                 | UNITS             | METHOD_         | PREPARATION-<br>ANALYSIS DATE | PREP<br>BATCH # |
|----------------|-----------|--------------------|-------------------|-----------------|-------------------------------|-----------------|
| Cyanide, Total | ND<br>Dil | 0.62<br>ution Fact | mg/kg<br>or: 1    | SW846 9012A     | 11/09/02                      | 2313125         |
| Percent Solids | 80.9 J    | 10.0<br>ution Fact | <b>%</b><br>or: 1 | MCAWW 160.3 MOD | 11/05-11/06/02                | 2310319         |

### NOTE(S):

RL Reporting Limit

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: 7GP-5(6-11')

# General Chemistry

Lot-Sample #...: A2K040189-006 Work Order #...: FCDCG Matrix.....: SO

Date Sampled...: 11/01/02 12:50 Date Received..: 11/02/02

**% Moisture....:** 17

| PARAMETER      | RESULT     | RL                  | UNITS             | METHOD          | PREPARATION-<br>ANALYSIS DATE | PREP<br>BATCH # |
|----------------|------------|---------------------|-------------------|-----------------|-------------------------------|-----------------|
| Cyanide, Total | ND<br>Dila | 0.60<br>ution Facto | mg/kg<br>or: 1    | SW846 9012A     | 11/11-11/12/02                | 2315220         |
| Percent Solids | 83.0 J     | 10.0                | <b>%</b><br>or: 1 | MCAWW 160.3 MOD | 11/05-11/06/02                | 2310319         |

### NOTE(S):

RL Reporting Limit

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: 7GP-16(3-4')

# General Chemistry

Lot-Sample #...: A2K040189-007 Work Order #...: FCDCL Matrix.....: SO

Date Sampled...: 11/01/02 13:30 Date Received..: 11/02/02

**% Moisture....:** 17

| PARAMETER      | RESULT | RL                  | UNITS          | METHOD          | PREPARATION-<br>ANALYSIS DATE | PREP<br>BATCH # |
|----------------|--------|---------------------|----------------|-----------------|-------------------------------|-----------------|
| Cyanide, Total | ND     | 0.60<br>ution Facto | mg/kg<br>or: 1 | SW846 9012A     | 11/09/02                      | 2313125         |
| Percent Solids | 83.0 J | 10.0                | %<br>or: 1     | MCAWW 160.3 MOD | 11/05-11/06/02                | 2310319         |
| NOTE (S):      |        |                     |                |                 |                               |                 |

# RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: 7GP-4(3-4')

### General Chemistry

Lot-Sample #...: A2K040189-008 Work Order #...: FCDCP Matrix.....: SO

Date Sampled...: 11/01/02 13:45 Date Received..: 11/02/02

**% Moisture....:** 15

| PARAMETER      | RESULT    | RL                  | UNITS             | METHOD          | PREPARATION-<br>ANALYSIS DATE | PREP<br>BATCH # |
|----------------|-----------|---------------------|-------------------|-----------------|-------------------------------|-----------------|
| Cyanide, Total | ND<br>Dil | 0.59<br>ution Facto | mg/kg<br>or: 1    | SW846 9012A     | 11/11-11/12/02                | 2315220         |
| Percent Solids | 85.4 J    | 10.0<br>ution Facto | <b>%</b><br>or: 1 | MCAWW 160.3 MOD | 11/05-11/06/02                | 2310319         |

# NOTE(S):

RL Reporting Limit

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: 5GP-1(1-2')

### General Chemistry

Lot-Sample #...: A2K040189-009 Work Order #...: FCDCQ Matrix...... SO

Date Sampled...: 10/31/02 13:10 Date Received..: 11/02/02

**% Moisture....:** 19

| PARAMETER      | RESULT    | RL                  | UNITS             | METHOD          | PREPARATION-<br>ANALYSIS DATE | PREP<br>BATCH # |
|----------------|-----------|---------------------|-------------------|-----------------|-------------------------------|-----------------|
| Cyanide, Total | ND<br>Dil | 0.62<br>ution Facto | mg/kg<br>or: 1    | SW846 9012A     | 11/11-11/12/02                | 2315220         |
| Percent Solids | 80.9 J    | 10.0<br>ution Facto | <b>%</b><br>or: 1 | MCAWW 160.3 MOD | 11/05-11/06/02                | 2310319         |

#### NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: 5GP-1(9-10')

# General Chemistry

Lot-Sample #...: A2K040189-010 Work Order #...: FCDCT Matrix.....: SO

Date Sampled...: 10/31/02 13:10 Date Received..: 11/02/02

**% Moisture....:** 15

| PARAMETER      | RESULT | RL                 | UNITS             | METHOD          | PREPARATION-<br>ANALYSIS DATE | PREP<br>BATCH # |
|----------------|--------|--------------------|-------------------|-----------------|-------------------------------|-----------------|
| Cyanide, Total | 0.13 B | 0.59               | mg/kg             | SW846 9012A     | 11/11-11/12/02                | 2315220         |
| Percent Solids | 85.4 J | 10.0<br>ution Fact | <b>%</b><br>or: 1 | MCAWW 160.3 MOD | 11/05-11/06/02                | 2310319         |

### NOTE(S):

RL Reporting Limit

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: 5GP-6(10-11')

### General Chemistry

Lot-Sample #...: A2K040189-011 Work Order #...: FCDCW Matrix.....: SO

Date Sampled...: 10/31/02 13:50 Date Received..: 11/02/02

**% Moisture....:** 17

| PARAMETER      | RESULT | RL                 | UNITS          | METHOD          | PREPARATION-<br>ANALYSIS DATE | PREP<br>BATCH # |
|----------------|--------|--------------------|----------------|-----------------|-------------------------------|-----------------|
| Cyanide, Total | 0.11 B | 0.60<br>ution Fact | mg/kg<br>or: 1 | SW846 9012A     | 11/11-11/12/02                | 2315220         |
| Percent Solids | 82.8 J | 10.0<br>ution Fact | ቼ<br>or: 1     | MCAWW 160.3 MOD | 11/05-11/06/02                | 2310319         |

#### NOTE(S):

RL Reporting Limit

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: 5GP-3(9-10')

# General Chemistry

Lot-Sample #...: A2K040189-012 Work Order #...: FCDCX Matrix.....: SO

Date Sampled...: 10/31/02 14:30 Date Received..: 11/02/02

**% Moisture....:** 18

| PARAMETER      | RESULT     | RL                  | UNITS             | METHOD          | PREPARATION -<br>ANALYSIS DATE | PREP<br>BATCH # |
|----------------|------------|---------------------|-------------------|-----------------|--------------------------------|-----------------|
| Cyanide, Total | ND<br>Dile | 0.61<br>ution Facto | mg/kg<br>or: 1    | SW846 9012A     | 11/11-11/12/02                 | 2315220         |
| Percent Solids | 82.1 J     | 10.0<br>ution Facto | <b>%</b><br>or: 1 | MCAWW 160.3 MOD | 11/05-11/06/02                 | 2310319         |

# NOTE(S):

RL Reporting Limit

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: 5GP-8(7-8')

# General Chemistry

Lot-Sample #...: A2K040189-013 Work Order #...: FCDC0 Matrix.....: SO

Date Sampled...: 10/31/02 15:50 Date Received..: 11/02/02

**% Moisture....:** 16

| PARAMETER      | RESULT    | RL                 | UNITS             | METHOD          | PREPARATION - ANALYSIS DATE | PREP<br>BATCH # |
|----------------|-----------|--------------------|-------------------|-----------------|-----------------------------|-----------------|
| Cyanide, Total | ND<br>Dil | 0.59<br>ution Fact | mg/kg<br>or: 1    | SW846 9012A     | 11/11-11/12/02              | 2315220         |
| Percent Solids | 84.5 J    | 10.0<br>ution Fact | <b>%</b><br>or: 1 | MCAWW 160.3 MOD | 11/05-11/06/02              | 2310319         |

### NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: 5GP-8(11-12')

### General Chemistry

Lot-Sample #...: A2K040189-014 Work Order #...: FCDC1 Matrix.....: SO

Date Sampled...: 10/31/02 16:05 Date Received..: 11/02/02

**% Moisture....:** 17

| PARAMETER      | RESULT    | RL                  | UNITS             | METHOD          | PREPARATION-<br>ANALYSIS DATE | PREP<br>BATCH # |
|----------------|-----------|---------------------|-------------------|-----------------|-------------------------------|-----------------|
| Cyanide, Total | ND<br>Dil | 0.60<br>ution Facto | mg/kg<br>or: 1    | SW846 9012A     | 11/11-11/12/02                | 2315220         |
| Percent Solids | 83.5 J    | 10.0<br>ution Facto | <b>%</b><br>or: 1 | MCAWW 160.3 MOD | 11/05-11/06/02                | 2310319         |

# NOTE(S):

**RL Reporting Limit** 

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: 5GP-16(3-4')

# General Chemistry

Lot-Sample #...: A2K040189-015 Work Order #...: FCDC2 Matrix.....: SO

Date Sampled...: 10/31/02 17:00 Date Received..: 11/02/02

**% Moisture....:** 19

| PARAMETER      | RESULT        | RL                 | UNITS              | METHOD          | PREPARATION-<br>ANALYSIS DATE | PREP<br>BATCH # |
|----------------|---------------|--------------------|--------------------|-----------------|-------------------------------|-----------------|
| Cyanide, Total | ND<br>Di      | 0.62<br>lution Fac | mg/kg<br>tor: 1    | SW846 9012A     | 11/11-11/12/02                | 2315220         |
| Percent Solids | <b>80.7 J</b> | 10.0<br>lution Fac | <b>%</b><br>tor: 1 | MCAWW 160.3 MOD | 11/05-11/06/02                | 2310319         |
| NOTE (S) :     |               | _                  |                    |                 | _                             |                 |

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

J. Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: 5GP-12(3-4')

### General Chemistry

Lot-Sample #...: A2K040189-016 Work Order #...: FCDC4 Matrix.....: SO

Date Sampled...: 10/31/02 16:40 Date Received..: 11/02/02

**% Moisture....:** 20

| PARAMETER      | RESULT | RL                 | UNITS             | METHOD          | PREPARATION-<br>ANALYSIS DATE | PREP<br>BATCH # |
|----------------|--------|--------------------|-------------------|-----------------|-------------------------------|-----------------|
| Cyanide, Total | ND     | 0.62<br>ution Fact | mg/kg<br>or: 1    | SW846 9012A     | 11/11-11/12/02                | 2315220         |
| Percent Solids | 80.1 J | 10.0<br>ution Fact | <b>%</b><br>or: 1 | MCAWW 160.3 MOD | 11/05-11/06/02                | 2310319         |

# NOTE (S):

Results and reporting limits have been adjusted for dry weight.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

### APPENDIX C

WASTE CHARACTERIZATION LABORATORY ANALYTICAL RESULTS

#### CHAIN OF CUSTC 'RECORD

| .aboratory:                           | Lancaster    | Laboratories, In | c. 2425 N     | ew Holland | Pike, Lancas                                 | ler, PA 17605-                        | 2425 (717)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 656-2300     | <u>-</u>   | <del></del> |              |                                        |            |                    |                                                   |                   |                |
|---------------------------------------|--------------|------------------|---------------|------------|----------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|-------------|--------------|----------------------------------------|------------|--------------------|---------------------------------------------------|-------------------|----------------|
| Chent;                                | Draper Ade   | n Associates     | Ţ             | Consultan  | nt:                                          |                                       | Oraper Ader                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Associates   | 5          | Sample      | Site:        | ************************************** | RF.        | AAP                | Project Specific (PS) or Ba                       | tch (B) QC: ☑s    | <b>□</b> •     |
| Attn:                                 |              | ff/ Ross Miller  | l             | Attn:      |                                              |                                       | Janet C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |            |             | •            |                                        |            |                    | Sample Collection for Proje                       |                   |                |
| \ddress:                              | 2206 South   | Main Street      |               | Address:   |                                              |                                       | 2206 South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Main Street  | t          | Location    | 1;           | Mon                                    | ilgomery ( | County, Virginia   |                                                   | √res              | NO             |
|                                       |              | Virginia 24060   |               |            |                                              |                                       | Blacksburg, V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | 50         |             |              |                                        |            |                    |                                                   | \v.               |                |
| hone:                                 |              | 52-0444          |               | Phone:     |                                              |                                       | (540) 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |            | Event:      |              | HWMU-                                  |            | MU-7 Investigation | Carrier: FED R                                    | <u>X</u>          |                |
| Fax:                                  |              | 52-0291          | 1             | Fax:       |                                              |                                       | (540) 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52-0291      |            | DAA JN      | :            |                                        | 8022       | 71-01              | Tracking Number:                                  |                   |                |
| Fax:                                  | (540) 5      | 52-0291          |               |            |                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |            | Lab JN:     |              |                                        |            |                    |                                                   |                   |                |
| 3ox 1: Matrix                         | _            |                  |               | Boy 2: Br  | eservative                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |            | Box 3:      | Filtered/Ur  | filtered                               |            | Box 4: Sample      | invoice                                           |                   |                |
| SW Surface Wa                         | iler         | T Trip Blank     |               | A HCL      |                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E NaOH       |            | F Fil       |              | iiii(e) eu                             |            | Type               | 11140104                                          |                   |                |
| GW Groundwal                          |              | E Equipment      | Blank         | B HNC      |                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F ZnAc       |            | 1           | nfiltered    |                                        |            | G Grab             | Copy to Consultant:                               | <b>⊘</b> ves      | <b>□</b> №0    |
| L Leachale                            |              | P Product        | ,             | C H₂S      | -                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G Other (    | Specify\   |             |              | ntainer Typ                            |            | C Composite        | BIII:                                             |                   |                |
| S Soil                                |              | O Other          |               | D NaH      |                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H None       | (Opcony)   | P Plastic   | Campio Co    | V VOA                                  | ,,,        | Composite          | Preserved and shipped on                          | Learn             | _              |
| 0 00.                                 |              | G                |               | D 110.     |                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 110110    |            | AG Ambe     | r Glass      | CG Clear                               | Glass      |                    | Trosurvad and ampped on                           | ICe: ☑ YES B      | . □~           |
|                                       | Box 4 · Sa   | imple Type       |               | I          | G                                            | G                                     | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |            |             |              |                                        |            | GENERAL NOTES      | : See attached target analyte                     | Ber Full TCL List | for all        |
|                                       |              | red/Unfiltered   |               |            | U                                            |                                       | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | +          |             |              | 1                                      |            |                    |                                                   |                   |                |
|                                       |              | H of Sample      |               |            | <u> </u>                                     | <del>.</del>                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            | +-         |             |              | +                                      |            | analytes, usir     | ig SW846 Test Method                              | IS (82/00, 8081A  | , 8082)        |
|                                       |              | eservative       |               |            | D                                            | н                                     | _ u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | +          |             | <del> </del> | <del> </del>                           |            | -                  |                                                   |                   |                |
|                                       |              | Container Typ    | 18            |            | VOA                                          | 1-500ml G                             | \$ 500m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _            | +          |             | ·            | + -                                    |            | 1                  |                                                   |                   |                |
|                                       | OX U OSIMPIO | Jonathan Typ     | <del>,,</del> |            | <u> </u>                                     | 1.000,,,,,                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Y</b>     | _          |             |              | +                                      |            | -                  |                                                   |                   |                |
|                                       | ļ            | j                | )             |            | 1/4                                          | ,                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |            | }           |              |                                        |            |                    |                                                   |                   |                |
|                                       |              | ] [              |               | i          | 3                                            | 1                                     | COERCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |            |             |              |                                        |            |                    |                                                   |                   |                |
|                                       |              |                  |               |            | (4/                                          | 0                                     | <b>2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -ئى ا        |            |             |              |                                        |            |                    |                                                   |                   |                |
|                                       |              | \                | Ī             |            |                                              | Į į                                   | ₹ <i>~</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-2          |            |             |              | 1                                      |            |                    |                                                   |                   |                |
|                                       |              |                  | 1             |            | \                                            | . \$                                  | \$ 1 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 2          |            |             |              |                                        |            |                    |                                                   |                   |                |
|                                       |              |                  |               | Bottle     | \ <b>!</b>                                   | ě                                     | 15 CT 25 CT | 50           |            |             |              |                                        |            |                    |                                                   |                   |                |
|                                       | 9            |                  | Matrix        | ě          | <b>W</b>                                     | <u> </u>                              | 6.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EE           |            |             |              |                                        |            |                    |                                                   |                   |                |
|                                       | 2002         |                  | ž             | ō          | 1.1                                          | # # # # # # # # # # # # # # # # # # # | 3 7 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23           |            | 1           | 1            |                                        |            |                    |                                                   |                   |                |
|                                       | j j          | 2                | ×             | å          | <b>I</b>                                     | 2                                     | Tac.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22           |            |             |              |                                        |            |                    |                                                   |                   |                |
| Sample ID                             | a a          | Time             | Box           | 5          | 1/                                           | į                                     | r 3 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24           |            |             |              |                                        |            |                    |                                                   |                   |                |
| -2') 5GP. / .                         | 10/31        | 13:10            | s /           | ¥ 1        |                                              | X                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |            |             |              |                                        |            | 56P-1              | (1-2')                                            |                   |                |
| 1 +10 SGP. / ~                        | 110/31       | 13:10            | s∖            | 341        | <b> </b>                                     | x                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1            |            |             |              |                                        |            | 56P-               | 1 19-10)                                          |                   |                |
| C-11 6GP. 6                           | 19/21        | 13:50            | S             | A          | * /                                          | х                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |            |             |              |                                        |            | 56P-               | <del>, , , , , , , , , , , , , , , , , , , </del> | -                 |                |
|                                       | 751          | <del></del>      | s             | *          | $A \rightarrow$                              | ×                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |            |             | <del> </del> | -                                      | <u> </u>   | <del></del>        | <del></del>                                       |                   |                |
| -10) 5GP. 3                           | <u> </u>     | 14:30            |               |            | <b>-A1</b>                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            | _          |             |              |                                        |            | 56P-               | 3 (9-10')                                         |                   | <u> </u>       |
| -8 5GP. 8                             | 1            | 15:50            | S             | 1          |                                              | x                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |            |             |              |                                        |            | 5GP.               | 8 (7-81)                                          |                   |                |
| -121 SGP- 8                           | 1/1          | 16:05            | s             | 1          | / <b>H</b>                                   | ×                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |            |             |              |                                        |            | 56P-               | 8 (11-121)                                        |                   |                |
| -4')5GP. 12                           | . 1          | 16:40            | s             | 1          | / 6                                          | ×                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |            |             |              |                                        |            | 56P-               |                                                   |                   |                |
| -4) 5GP. 16                           | 10/31        | 17:00            | s             | 1          | <u> </u>                                     | x                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 1          | <b> </b>    |              |                                        |            | 5 GP.              |                                                   |                   |                |
| FULTCLP                               | 11/1         | 13.55            | 5             | 1          | _                                            |                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |            |             |              |                                        | _          | Till Ch            | LAKAETEK 12ATTON                                  | TCLP              |                |
| Pull red                              | · / ·        | 17.5.5           |               | —└—-}      | _                                            |                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |            |             |              | + -                                    |            |                    |                                                   |                   |                |
| LA HWMU-5                             | 1            |                  |               |            |                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |            |             |              |                                        |            | PRINTER            | uty , corrosium                                   | IY , REACTIV      | 119            |
| Clients Special Ins                   | tructions:   |                  |               |            |                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |            |             |              |                                        |            |                    |                                                   | _                 |                |
|                                       |              |                  | N1-           | C          | -I lata et                                   | V                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |            | Dogguesi    | - 100        |                                        | N          |                    |                                                   |                   |                |
| Received by lab in G<br>-             |              | res              | NO            | Custody Se | ar intact                                    | _ Yes i                               | no rempera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ature upon a | arrivat    | Received (  | on ice       | _ Yes                                  | . 140      |                    |                                                   |                   | ļ              |
| Describe problems.                    |              |                  |               |            |                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |            | /           | 1            |                                        |            |                    |                                                   |                   |                |
| Sampler Name .                        |              | /-               |               |            | 11.                                          | #1 Relinquis                          | hed V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>     | V          | 1. 0        | /            | 71                                     | #2 Relin   | quished            |                                                   |                   | 1              |
| Sampler Name                          | PREN         | Due              | ell           | Date: [1   | 11/02                                        | by (Signatur                          | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pu           | ~ M        | elwar       | Date: 4      | (/1/02                                 | by (Sign   | ature):            |                                                   | Date:             | Sample Storage |
| Sampler                               |              | 10               |               |            |                                              | Company -                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | — <i>v</i> |             |              |                                        | Compar     |                    |                                                   |                   | Time Requested |
| 17                                    | ALLE         | 1130             | 100011        | Time: [(   | (130)                                        | Company<br>Name:                      | DAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |            |             | Time:        | 7:30                                   | Name:      | .,                 |                                                   | Time:             | l i            |
| Signature \(\frac{1}{2}\rightarrow \) |              | -00.0            | moun          | anne. (N   | <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |            |             | +            |                                        |            |                    |                                                   | TRITE.            | 30 DYS ORG/6   |
| Sampler Name                          |              |                  | İ             |            |                                              | #1 Received                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |            |             | Data         |                                        | #2 Rece    |                    |                                                   |                   | MTHS INORG     |
| Print)                                |              | -                |               | Dale:      |                                              | by (Signatur                          | e):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |            |             | Date.        |                                        | by (Sign   |                    |                                                   | Date:             | <b>-</b>       |
| Sampler                               |              |                  |               |            |                                              | Company                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |            |             |              |                                        | Compar     | ıy                 |                                                   |                   |                |
| Signature                             |              |                  |               | Time:      |                                              | Name:                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |            |             | Time:        | 1                                      | Name:      |                    |                                                   | Time:             | 1 1            |

#### CHAIN OF CUST Y RECORD

| Client:                 |                                                  | n Associates                                     | _        | Consultar          | nt:         | D            | raper Aden                                       |                | S            | Sample S     | iite:        |                    | RI                                               | FAAP                | Project Specific (PS) or Batch (B)    |                     | ⊡rs<br>-t-t)  | □в          |
|-------------------------|--------------------------------------------------|--------------------------------------------------|----------|--------------------|-------------|--------------|--------------------------------------------------|----------------|--------------|--------------|--------------|--------------------|--------------------------------------------------|---------------------|---------------------------------------|---------------------|---------------|-------------|
| Attn:<br>Address:       |                                                  | f/ Ross Miller<br>Main Street                    |          | Attn:<br>Address:  |             | 2            | Janet C.<br>206 South                            |                |              | Location     |              | Mont               | nomeni                                           | County, Virginia    | Sample Collection for Project Con     |                     | ote 1)<br>□∾o |             |
|                         |                                                  | /Irginia 24060                                   | )        | Addiess.           |             |              | icksburg, V                                      |                |              | Location     | •            | MOIII              | gomery                                           | County, Virginia    | (C-7)                                 | <b>Ø</b> YES        | NO            |             |
| Phone:                  |                                                  | 52-0444                                          |          | Phone:             |             |              | (540) 55                                         | 2-0444         |              | Event:       |              | HWMU-5             |                                                  | VMU-7 Investigation | Carrier: YED EX                       |                     |               | _           |
| Fax:                    | (540) 5                                          |                                                  |          | Fax:               |             |              | (540) 55                                         | 2-0291         |              | DAA JN:      |              |                    | B02                                              | 271-01              | Tracking Number:                      |                     |               | _           |
| Fax:                    | (540) 5                                          | 52-0291                                          |          | İ                  |             |              |                                                  |                |              | Lab JN:      |              |                    |                                                  |                     | <del></del>                           |                     |               | -           |
| Box 1: Matrix           |                                                  |                                                  | -        | 1                  | reservative |              |                                                  | -              |              | 1            | litered/Un   | filtered           |                                                  | Box 4: Sample       | Invoice                               |                     |               |             |
| SW Surface Wate         |                                                  | T Trip Blant                                     |          | A HCL              |             |              |                                                  | E NaOI         | 4            | F Filt       |              |                    |                                                  | Туре                |                                       |                     |               |             |
| GW Groundwater          |                                                  | E Equipme                                        | nt Blank | B HNC              | -           |              |                                                  | F ZnAc         | <b></b>      |              | filtered     |                    |                                                  | G Grab              | Copy to Consultant:                   | ₹ YES               | □ №0          |             |
| L Leachate<br>S Soil    |                                                  | P Product O Other                                |          | C H <sub>2</sub> S |             |              |                                                  | H None         | (Specify)    | P Plastic    | sample Co    | ntainer Type V VOA | •                                                | C Composite         | Bill:                                 | _                   | _             |             |
| 3 .300                  |                                                  | O Other                                          |          | Divar              | 1304        |              |                                                  | ri Hone        |              | AG Ambe      | Class        | CG Clear           | Glass                                            |                     | rieserved and shipped on ice.         | ☑ ves e             | ю □no         |             |
|                         | Box 4 - Sa                                       | mple Type                                        |          |                    | G           | G            | C                                                |                |              |              |              |                    |                                                  | GENERAL NOTES       | : See attached target analyte list. F | ull TCL Lis         | t for all a   | nalyte      |
|                         | 3 • Filter                                       | ed/Unfiltered                                    | 1        |                    | U           | U            | u                                                |                |              |              | ļ            |                    |                                                  |                     | Test Methods (8270C, 8081             |                     |               |             |
|                         |                                                  | H of Sample                                      |          |                    | <u> </u>    |              | -                                                |                |              |              | ļ            |                    |                                                  |                     |                                       |                     |               |             |
|                         |                                                  | eservative                                       |          |                    | D           | H            | 217                                              | <u></u>        | ļ            | +            | <del> </del> |                    | 1                                                | ┦ .                 |                                       |                     |               |             |
| Bo                      | 5 - Sample                                       | Container T                                      | уре      | <del></del> -      | VOA         | 1-500ml G    | 1 3 SC                                           | <b>o</b> m c G | 1            | +            |              | -                  | +                                                | 4                   |                                       |                     |               |             |
|                         |                                                  |                                                  |          |                    |             |              | HARACIERIZA                                      | l              |              | 1            |              |                    |                                                  |                     |                                       |                     |               |             |
|                         |                                                  |                                                  |          |                    |             |              | <u>                                    </u>      |                |              |              | Ì            |                    |                                                  |                     |                                       |                     |               |             |
|                         | İ                                                |                                                  |          |                    | Į.          | <u> </u>     | 18                                               |                | l            |              |              |                    |                                                  |                     |                                       |                     |               |             |
|                         |                                                  |                                                  |          |                    | يو          | Its/PCB      | ₹                                                |                |              |              |              |                    |                                                  |                     |                                       |                     |               |             |
|                         |                                                  |                                                  |          |                    | 5035        | ļ ķ          | ₹ .                                              | ì              |              |              |              |                    |                                                  |                     |                                       |                     |               |             |
|                         |                                                  |                                                  |          | Bottle             |             | ě            | 130                                              |                |              |              |              |                    |                                                  |                     |                                       |                     |               |             |
|                         | ~                                                |                                                  | Matrix   | ı Š                | 8260BV      | }            |                                                  | <u>,</u>       | 1            |              |              |                    | Ì                                                |                     |                                       |                     |               |             |
|                         | 2002                                             |                                                  | ž        | ١١٥                |             | 2            | 13.                                              | إد             |              |              |              |                    |                                                  |                     |                                       |                     |               |             |
|                         | Date                                             | <b>2</b>                                         | ¥        | lumber             | į           | 2            | Tuel<br>10                                       | 1              |              |              |              |                    |                                                  |                     |                                       |                     |               |             |
| Sample ID               | ٥                                                | Time                                             | Вох      | N. N.              | N 0         | Ser          | 77                                               |                | _            |              |              |                    |                                                  |                     |                                       |                     |               |             |
| 7GP- / V                | TIL                                              | 10:00                                            | s        | 4                  | ×           | ×            |                                                  |                |              |              |              |                    |                                                  |                     |                                       |                     |               |             |
| 12/), 7GP- 2            |                                                  | 10:40                                            | s        |                    | ×           | ×            |                                                  |                |              |              |              |                    |                                                  |                     |                                       |                     |               |             |
| -14.5 pp. 2             | + -                                              | 11:05                                            | s        |                    | ×           | ×            | <del>                                     </del> |                |              |              |              |                    |                                                  |                     |                                       |                     |               |             |
| 11) 7GP- 3              | 1                                                | 11:25                                            | s        |                    | ×           | x            | <del>                                     </del> | <u> </u>       |              |              | _            |                    |                                                  |                     |                                       |                     |               |             |
| ··-/                    |                                                  | <del>'                                    </del> | s        | $\vdash$           | ×           | ×            |                                                  |                | +            | <del> </del> |              |                    | <del>                                     </del> |                     | <del></del>                           |                     |               |             |
| <u> </u>                | <del>                                     </del> | 12:15                                            |          | 12                 | ×           |              | <del>                                     </del> | -              |              |              |              | <del>-</del>       |                                                  | + n/2               | IMSD                                  |                     |               |             |
| 11) 7GP. 5              |                                                  | 12:50                                            |          | 10                 |             | <del> </del> | -                                                |                | <del> </del> | <del> </del> |              | <del> </del>       |                                                  | + MS                | /MSD                                  |                     |               |             |
| 4') 7GP. 16.            |                                                  | 13:30                                            | S        | 1                  | ×           |              |                                                  | ļ              | ļ            |              |              | <del> </del>       | <u> </u>                                         |                     |                                       |                     |               |             |
| 1 7GP. 4 -              |                                                  | 13:45                                            | <u> </u> | 4                  | ×           | ×            | <u> </u>                                         | ļ              |              | <u> </u>     |              |                    | ļ                                                | A 2.1/A             | RACTERIZATION TO                      | <del>- 17 . \</del> |               | <del></del> |
| anit 7 TCLP             | 11/                                              | 14:00                                            | 5_       |                    |             |              | X,                                               | 1              |              |              |              |                    |                                                  | FULL EHA            | RACTERIZATION TO                      | COL                 | 10481         | 1174        |
| Cilents Special Instr   | uctions:                                         | _                                                |          |                    |             |              |                                                  |                |              |              |              |                    |                                                  | -                   |                                       | REA                 | enver         | 4           |
| Received by lab in Go   | and Condition                                    | Yes                                              | No       | Custody Se         | eal Intact  | Yes          | No Tem                                           | perature u     | oon arrival  | Rec          | eived on ici | e Yes              | 1                                                | No.                 |                                       |                     | <u>;</u>      | -           |
| Describe problems, if   |                                                  | , , , ,                                          |          | ,                  |             |              |                                                  | ,              |              |              |              |                    |                                                  |                     |                                       |                     |               |             |
| Sampler Name            |                                                  |                                                  |          |                    | 11          | #1 Relinquis | shed                                             | <u> </u>       |              | A. W         | )Ø .         | 11                 |                                                  | elinquished         |                                       |                     |               |             |
| Sampler Name<br>(Print) | EN                                               | CLDWG                                            | al C     | Date: ( )          | 11/02       | by (Signatur | re): 🚣                                           | mu.            | بالجليد      | iduus        | Dale:        | 1/1/02             | by (S                                            | ignature):          | Da                                    | te:                 | , Sample      | -           |
| Sampler                 |                                                  | 104-                                             | ام ال    | d                  | .~-         | Company      | 7. 1                                             | л <sup>-</sup> | _            |              | ,            |                    | Com                                              | pany                |                                       |                     | Time Re       | !queste     |
| Signature 4             | our                                              | ~KXX                                             | rwer     | 1 Time: / 6        | :30         | Name:        | <u> ۲</u>                                        | A              |              |              | Time: /      | 7:30               | Nam                                              | e:                  | Tii                                   | ne:                 | _             |             |
| Sampler Name            |                                                  |                                                  |          |                    |             | #1 Receive   | d .                                              |                |              |              |              |                    | 7                                                | eceived             |                                       |                     | 30 DYS        |             |
| Print)                  |                                                  |                                                  |          | Date:              |             | by (Signatu  |                                                  |                |              |              | Date:        |                    | 1                                                | Signature):         | Da                                    | le:                 | MTHS          | INORG       |
|                         |                                                  |                                                  |          | 1                  | _           | Company      | <del></del>                                      |                |              |              | 1            |                    | Com                                              |                     |                                       |                     | 7             |             |
| Sampler                 |                                                  |                                                  |          |                    |             |              |                                                  |                |              |              |              |                    | 1 Com                                            | Dany                |                                       |                     |               |             |

226



## REPAINT

Dru

Page 1 of 2

3933082 Lancaster Laboratories Sample No.

Collected:11/01/2002 13:55 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:38 2206 South Main Street Blacksburg VA 24060

Discard: 12/26/2002

HWMU-5 Composite Soil Sample HWMU-5 & HWMU-7 Investigation

SDG#: RAR01-20 MWMU5

|       |                                                                                              |                 |                   | Dry                |           |          |
|-------|----------------------------------------------------------------------------------------------|-----------------|-------------------|--------------------|-----------|----------|
| CAT   |                                                                                              |                 | Dry               | Method             |           | Dilution |
| No.   | Analysis Name                                                                                | CAS Number      | Result            | Detection<br>Limit | Units     | Factor   |
| 00111 | Moisture                                                                                     | n.a.            | 15.3              | 0.50               | %         | 1        |
|       | "Moisture" represents the loss i $103$ - $105$ degrees Celsius. The $\pi$ as-received basis. | _               | reported above i  | 1 3                |           |          |
| 00394 | pH                                                                                           | n.a.            | 7.38              | 0.010              |           | 1        |
|       | The pH was performed on a 1:1 sl                                                             | urry (25 gms.   | of sample and 25  | ml.                |           |          |
|       | of deionized water) after being                                                              | tumbled for 30  | min.              |                    |           |          |
| 00496 | Corrosivity                                                                                  | n.a.            | See Below         |                    | See Below | 1        |
|       | Corrosivity:                                                                                 |                 |                   |                    |           |          |
|       | The pH of a 1:1 slurry (with dei                                                             | onized water)   | was 7.38 indicati | ng                 |           |          |
|       | that the waste is not corrosive.                                                             |                 |                   |                    |           |          |
|       | A waste is corrosive if it exhib                                                             | oits a pH equal | to or less than   | 2                  |           |          |
|       | or equal to or greater than 12.5                                                             |                 |                   |                    |           |          |
| 00542 | Ignitability                                                                                 | n.a.            | See Below         |                    | See Below | 1        |
|       | The sample did not spontaneously                                                             | gnite when e    | xposed to air or  | water.             |           |          |
|       | The sample did not ignite by fri                                                             | ction.          |                   |                    |           |          |
|       | The sample vapors did not ignite closed cup apparatus.                                       | when exposed    | to a flame using  | a                  |           |          |
| 01121 | Reactivity                                                                                   | n.a.            | See Below         |                    | See Below | 1        |
|       | Reactivity:                                                                                  |                 |                   |                    | 200 2020  | -        |
|       | The sample was extracted by the                                                              | interim method  | described in SW   | 846.               |           |          |
|       | Chapter 7.3. This solution was                                                               |                 |                   |                    |           |          |
|       | This waste is not considered rea                                                             | ctive and haza  | rdous because it  | does               |           |          |
|       | not generate a quantity of hydro                                                             | gen cyanide ex  | ceeding 250 mg/kg | or                 |           |          |
|       | hydrogen sulfide exceeding 500 m                                                             |                 | <b>-</b>          |                    |           |          |
|       | established by the Solid Waste B                                                             | ranch of EPA,   | July, 1992. Thes  | e results          |           |          |
|       | do not reflect total cyanide or                                                              |                 | _                 |                    |           |          |
| 01122 | Sulfide (Reactivity)                                                                         | n.a.            | N.D.              | 27.                | mq/kq     | 1        |
| 01123 | Cyanide (Reactivity)                                                                         | n.a.            | N.D.              | 98.                | mg/kg     | 1        |
|       |                                                                                              |                 |                   |                    | ٥. ٥      |          |

Laboratory Chronicle

CATAnalysis Dilution Yo. Analysis Name Method Trial# Date and Time Analyst Factor







Page 2 of 2

#### Lancaster Laboratories Sample No. SW 3933082

Collected: 11/01/2002 13:55 Account

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:38

Discard: 12/26/2002

HWMU-5 Composite Soil Sample HWMU-5 & HWMU-7 Investigation Account Number: 11200

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

| MWMU5 | SDG#: RAR01-20       |                         |   |                  |                  |   |
|-------|----------------------|-------------------------|---|------------------|------------------|---|
| 00111 | Moisture             | EPA 160.3 modified      | 1 | 11/07/2002 09:55 | Nadine Fegley    | 1 |
| 00394 | рН                   | SW-846 9045C (modified) | 1 | 11/05/2002 16:35 | Luz M Groff      | 1 |
| 00496 | Corrosivity          | SW-846 Chapter 7        | 1 | 11/05/2002 16:35 | Luz M Groff      | 1 |
| 00542 | Ignitability         | 40 CFR 261.21           | 1 | 11/15/2002 18:50 | Justin M Bowers  | 1 |
| 01121 | Reactivity           | SW-846 Chapter 7.3      | 1 | 11/15/2002 07:40 | Susan E Hibner   | 1 |
| 01122 | Sulfide (Reactivity) | SW-846 9034             | 1 | 11/15/2002 07:40 | Susan E Hibner   | 1 |
| 01123 | Cyanide (Reactivity) | SW-846 9012A (modified) | 1 | 11/15/2002 21:03 | Venia B McFadden | 1 |



As Received

Page 1 of 3

Lancaster Laboratories Sample No. TL 3933083

Collected:11/01/2002 13:55 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc. Reported: 11/25/2002 at 14:38 2206 South Main Street

Discard: 12/26/2002 Blacksburg VA 24060

HWMU-5 Composite Soil Sample TCLP NON-VOLATILE EXTRACTION HWMU-5 & HWMU-7 Investigation

M5NVE SDG#: RAR01-21

|       |                                  |                 |                   | AS RECEIVED        |       |          |
|-------|----------------------------------|-----------------|-------------------|--------------------|-------|----------|
| CAT   |                                  |                 | As Received       | Method             |       | Dilution |
| No.   | Analysis Name                    | CAS Number      | Result            | Detection<br>Limit | Units | Factor   |
| 00259 | Mercury                          | 7439-97-6       | N.D.              | 0.000079           | mg/l  | 1        |
|       | The metal analyses were performe | ed on a non-vol | atile leachate p  | orepared           |       |          |
|       | according to the procedure speci | fied in SW-846  | , Chapter 7.4 (F  | Revision 3,        |       |          |
|       | December, 1994). A sample is con | sidered to hav  | re failed the Tox | cicity             |       |          |
|       | Characteristic (TC) test and is  | considered a h  | azardous waste i  | f any of the       |       |          |
|       | metal concentrations (mg/l) in t | he leachate ex  | ceed the followi  | ing maxima         |       |          |
|       | (100 times the Primary Drinking  | Water Standard  | ls):              |                    |       |          |
|       |                                  |                 |                   |                    |       |          |
|       | Arsenic 5.0 Cadmium              | 1.0 Lead        | 5.0 Sele          | enium 1.0          |       |          |
|       | Barium 100.0 Chromium            | 5.0 Mercu       | ry 0.2 Silv       | ver 5.0            |       |          |
| 01335 | Arsenic                          | 7440-38-2       | 0.0091 J          | 0.0049             | mg/l  | 1        |
| 01336 | Selenium                         | 7782-49-2       | N.D.              | 0.0048             | mg/l  | 1        |
| 01746 | Barium                           | 7440-39-3       | 0.714             | 0.00044            | mg/l  | 1        |
| 01749 | Cadmium                          | 7440-43-9       | N.D.              | 0.00094            | mg/l  | 1        |
| 01751 | Chromium                         | 7440-47-3       | N.D.              | 0.0020             | mg/l  | 1        |
| 01755 | Lead                             | 7439-92-1       | 0.0116 J          | 0.0089             | mg/l  | 1        |
| 01766 | Silver                           | 7440-22-4       | N.D.              | 0.0014             | mg/l  | 1        |
|       |                                  |                 |                   |                    |       |          |
| 00950 | TCLP Pesticides                  |                 |                   |                    |       |          |
|       |                                  |                 |                   |                    |       |          |
| 01972 | Gamma BHC - Lindane              | 58-89-9         | N.D.              | 0.000012           | mg/1  | 1        |
| 01973 | Heptachlor                       | 76-44-8         | N.D.              | 0.000010           | mg/l  | 1        |
| 01974 | Heptachlor Epoxide               | 1024-57-3       | N.D.              | 0.000016           | mg/l  | 1        |
| 01975 | Methoxychlor                     | 72-43-5         | N.D.              | 0.00010            | mg/l  | 1        |
| 01976 | Endrin                           | 72-20-8         | N.D.              | 0.000024           | mg/l  | 1        |
| 01977 | Chlordane                        | 57-74-9         | N.D.              | 0.00025            | mg/l  | 1        |
| 01978 | Toxaphene                        | 8001-35-2       | N.D.              | 0.0015             | mg/l  | 1        |
|       |                                  |                 |                   |                    |       |          |
| 00952 | TCLP Herbicides                  |                 |                   |                    |       |          |
|       |                                  |                 |                   |                    |       |          |
| 01979 | 2,4~D                            | 94-75-7         | N.D.              | 0.0020             | mg/l  | 1        |
| 01980 | 2,4,5-TP                         | 93-72-1         | N.D.              | 0.00020            | mg/l  | 1        |
|       |                                  |                 |                   |                    |       |          |
| 00949 | TCLP Acid Base/Neutrals          |                 |                   |                    |       |          |
|       |                                  |                 |                   |                    |       |          |
| 13324 | Pyridine                         | 110-86-1        | N.D.              | 0.0040             | mg/]  | 1        |
|       |                                  |                 |                   |                    |       |          |



Page 2 of 3

Lancaster Laboratories Sample No. TL 3933083

Collected:11/01/2002 13:55 Account Number: 11200

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:38

Discard: 12/26/2002

HWMU-5 Composite Soil Sample TCLP NON-VOLATILE EXTRACTION HWMU-5 & HWMU-7 Investigation

M5NVE SDG#: RAR01-21

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

As Received

| CAT   |                                                                                                   |                | As Received        | Method             |       | Dilution |
|-------|---------------------------------------------------------------------------------------------------|----------------|--------------------|--------------------|-------|----------|
| No.   | Analysis Name                                                                                     | CAS Number     | Result             | Detection<br>Limit | Units | Factor   |
| 03325 | 1,4-Dichlorobenzene                                                                               | 106-46-7       | N.D.               | 0.0020             | mg/1  | 1        |
| 03326 | 2-Methylphenol                                                                                    | 95-48-7        | N.D.               | 0.0020             | mg/l  | 1        |
| 03327 | 4-Methylphenol                                                                                    | 106-44-5       | N.D.               | 0.0040             | mg/l  | 1        |
|       | 3-Methylphenol and 4-methylphenochromatographic conditions used for 4-methylphenol represents the | for sample and | alysis. The result | -                  |       |          |
| 03328 | Hexachloroethane                                                                                  | 67-72-1        | N.D.               | 0.0020             | mg/l  | 1        |
| 03329 | Nitrobenzene                                                                                      | 98-95-3        | N.D.               | 0.0020             | mg/l  | 1        |
| 03330 | Hexachlorobutadiene                                                                               | 87-68-3        | N.D.               | 0.0020             | mg/l  | 1        |
| 03331 | 2,4,6-Trichlorophenol                                                                             | 88-06-2        | N.D.               | 0.0020             | mg/l  | 1        |
| 03332 | 2,4,5-Trichlorophenol                                                                             | 95-95-4        | N.D.               | 0.0020             | mg/l  | 1        |
| 03333 | 2,4-Dinitrotoluene                                                                                | 121-14-2       | N.D.               | 0.0020             | mg/l  | 1        |
| 03334 | Hexachlorobenzene                                                                                 | 118-74-1       | N.D.               | 0.0020             | mg/l  | 1        |
| 03335 | Pentachlorophenol                                                                                 | 87-86-5        | N.D.               | 0.0060             | mg/l  | 1        |

#### Laboratory Chronicle

|                         | паротасоту                                                                                                                                                                                          | CHILO.                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IIICIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Analysis Name           | Method                                                                                                                                                                                              | Trial#                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date and Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mercury                 | SW-846 7470A                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/08/2002 06:52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Deborah A Krady                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Arsenic                 | SW-846 6010B                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/11/2002 03:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Donna R Sackett                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Selenium                | SW-846 6010B                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/12/2002 06:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Donna R Sackett                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Barium                  | SW-846 6010B                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/11/2002 03:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Donna R Sackett                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cadmium                 | SW-846 6010B                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/12/2002 06:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Donna R Sackett                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Chromium                | SW-846 6010B                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/12/2002 06:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Donna R Sackett                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>Le</b> ad            | SW-846 6010B                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/12/2002 06:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Donna R Sackett                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Silver                  | SW-846 6010B                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/11/2002 03:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Donna R Sackett                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TCLP Pesticides         | SW-846 8081A                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/08/2002 13:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Douglas D Seitz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TCLP Herbicides         | SW-846 8151A                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/09/2002 02:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Michele D Hamilton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TCLP Acid Base/Neutrals | SW-846 8270C                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/08/2002 15:54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chad A Moline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Water Sample Herbicide  | SW-846 8151A                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/08/2002 08:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Amanda W Herr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Extract                 |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Water Sample Pest.      | SW-846 3510C                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/07/2002 23:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sharon L Jones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Extraction              |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TCLP Non-volatile       | SW-846 1311                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/06/2002 13:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Carlene A Landis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Extraction              |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                         | Mercury Arsenic Selenium Barium Cadmium Chromium Lead Silver TCLP Pesticides TCLP Herbicides TCLP Acid Base/Neutrals Water Sample Herbicide Extract Water Sample Pest. Extraction TCLP Non-volatile | Analysis Name Method  Mercury SW-846 7470A  Arsenic SW-846 6010B  Selenium SW-846 6010B  Barium SW-846 6010B  Cadmium SW-846 6010B  Chromium SW-846 6010B  Lead SW-846 6010B  Silver SW-846 6010B  TCLP Pesticides SW-846 6010B  TCLP Herbicides SW-846 8081A  TCLP Herbicides SW-846 8151A  TCLP Acid Base/Neutrals SW-846 8270C  Water Sample Herbicide SW-846 8151A  Extract  Water Sample Pest SW-846 3510C  Extraction  TCLP Non-volatile SW-846 1311 | Analysis Name Method Trial#  Mercury SW-846 7470A 1  Arsenic SW-846 6010B 1  Selenium SW-846 6010B 1  Barium SW-846 6010B 1  Cadmium SW-846 6010B 1  Chromium SW-846 6010B 1  Lead SW-846 6010B 1  Silver SW-846 6010B 1  TCLP Pesticides SW-846 6010B 1  TCLP Herbicides SW-846 8081A 1  TCLP Acid Base/Neutrals SW-846 8151A 1  Water Sample Herbicide SW-846 8151A 1  Extract  Water Sample Pest SW-846 8151A 1  Extract  Water Sample Pest SW-846 8151A 1  Extract  Extraction  TCLP Non-volatile SW-846 1311 1 | Analysis Name         Method         Trial#         Date and Time           Mercury         SW-846 7470A         1         11/08/2002 06:52           Arsenic         SW-846 6010B         1         11/11/2002 03:40           Selenium         SW-846 6010B         1         11/12/2002 06:42           Barium         SW-846 6010B         1         11/12/2002 06:42           Cadmium         SW-846 6010B         1         11/12/2002 06:42           Chromium         SW-846 6010B         1         11/12/2002 06:42           Silver         SW-846 6010B         1         11/12/2002 06:42           Silver         SW-846 6010B         1         11/12/2002 06:42           Silver         SW-846 8081A         1         11/08/2002 13:04           TCLP Pesticides         SW-846 8081A         1         11/08/2002 02:40           TCLP Acid Base/Neutrals         SW-846 8151A         1         11/08/2002 15:54           Water Sample Herbicide         SW-846 8151A         1         11/08/2002 23:00           Extract         Water Sample Pest         SW-846 8151A         1         11/07/2002 23:00           Extraction         TCLP Non-volatile         SW-846 1311         1         11/06/2002 13:40 | Analysis Name Method Trial# Date and Time Analyst  Mercury SW-846 7470A 1 11/08/2002 06:52 Deborah A Krady  Arsenic SW-846 6010B 1 11/11/2002 03:40 Donna R Sackett  Selenium SW-846 6010B 1 11/12/2002 06:42 Donna R Sackett  Barium SW-846 6010B 1 11/12/2002 06:42 Donna R Sackett  Cadmium SW-846 6010B 1 11/12/2002 06:42 Donna R Sackett  Chromium SW-846 6010B 1 11/12/2002 06:42 Donna R Sackett  Chromium SW-846 6010B 1 11/12/2002 06:42 Donna R Sackett  Lead SW-846 6010B 1 11/12/2002 06:42 Donna R Sackett  Lead SW-846 6010B 1 11/12/2002 06:42 Donna R Sackett  Silver SW-846 6010B 1 11/12/2002 06:42 Donna R Sackett  TCLP Pesticides SW-846 8081A 1 11/08/2002 03:40 Donna R Sackett  TCLP Herbicides SW-846 8151A 1 11/08/2002 13:04 Douglas D Seitz  TCLP Acid Base/Neutrals SW-846 8270C 1 11/08/2002 15:54 Chad A Moline  Water Sample Herbicide SW-846 8151A 1 11/08/2002 15:54 Chad A Moline  Extract  Water Sample Pest SW-846 3510C 1 11/07/2002 23:00 Sharon L Jones  Extraction  TCLP Non-volatile SW-846 1311 1 1 11/06/2002 13:40 Carlene A Landis |



## Analysis Report





## REPRINT

Page 3 of 3

Lancaster Laboratories Sample No. TL 3933083

Collected:11/01/2002 13:55 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:38 2206 South Main Street

Discard: 12/26/2002 Blacksburg VA 24060 HWMU-5 Composite Soil Sample

TCLP NON-VOLATILE EXTRACTION

HWMU-5 & HWMU-7 Investigation

M5NVE SDG#: RAR01-21 04731 TCLP Leachate Extraction SW-846 3510C 11/07/2002 17:25 JoElla L Rice

WW/TL SW 846 ICP Digest SW-846 3010A 11/07/2002 22:10 Annamaria Stipkovits 05705 (tot)

SW-846 7470A WW SW846 Hg Digest 11/07/2002 20:21 Nelli S Markaryan 05713 1





Page 1 of 1

Lancaster Laboratories Sample No. TL 3933084

Collected:11/01/2002 13:55

Account Number: 11200

Submitted: 11/02/2002 10:20

Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:38

2206 South Main Street Blacksburg VA 24060

Discard: 12/26/2002

HWMU-5 Composite Soil Sample TCLP ZERO HEADSPACE EXTRACTION HWMU-5 & HWMU-7 Investigation

M5ZHE

SDG#: RAR01-22\*

|       |                      |                 |             | As Received        |       |          |
|-------|----------------------|-----------------|-------------|--------------------|-------|----------|
| CAT   |                      |                 | As Received | Method             |       | Dilution |
| No.   | Analysis Name        | CAS Number      | Result      | Detection<br>Limit | Units | Factor   |
| 03636 | TCLP by 8260         |                 |             |                    |       |          |
| 05386 | Vinyl Chloride       | 75-01-4         | N.D.        | 0.020              | mg/l  | 20       |
| 05390 | 1,1-Dichloroethene   | 75-35-4         | N.D.        | 0.016              | mg/1  | 20       |
| 05396 | Chloroform           | 67-66-3         | N.D.        | 0.016              | mg/l  | 20       |
| 05399 | Carbon Tetrachloride | 56-23-5         | N.D.        | 0.020              | mg/l  | 20       |
| 05401 | Benzene              | 71-43-2         | N.D.        | 0.010              | mg/l  | 20       |
| 05402 | 1,2-Dichloroethane   | 107-06-2        | N.D.        | 0.020              | mg/l  | 20       |
| 05403 | Trichloroethene      | 79-01-6         | N.D.        | 0.020              | mg/l  | 20       |
| 05409 | Tetrachloroethene    | 127-18-4        | N.D.        | 0.016              | mg/l  | 20       |
| 05413 | Chlorobenzene        | 108-90-7        | N.D.        | 0.016              | mg/l  | 20       |
| 06305 | 2-Butanone           | 78-93 <b>-3</b> | N.D.        | 0.060              | mg/l  | 20       |

#### Laboratory Chronicle

| CAT   |                      |              | -      | Analysis         |                   | Dilution |
|-------|----------------------|--------------|--------|------------------|-------------------|----------|
| No.   | Analysis Name        | Method       | Trial# | Date and Time    | Analyst           | Factor   |
| 03636 | TCLP by 8260         | SW-846 8260B | 1      | 11/10/2002 19:54 | Susan McMahon-Luu | 20       |
| 00946 | TCLP Zero Headspace  | SW-846 1311  | 1      | 11/04/2002 12:45 | David G Splain Jr | n.a.     |
|       | Extraction           |              |        |                  |                   |          |
| 01163 | GC/MS VOA Water Prep | SW-846 5030B | 1      | 11/10/2002 19:54 | Susan McMahon-Luu | n.a.     |







Page 1 of 2

Lancaster Laboratories Sample No. SW 3933071

Collected:11/01/2002 14:00 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:35 2206 South Main Street
Discard: 12/26/2002 Blacksburg VA 24060

Unit 7 TCLP Composite Soil Sample HWMU-5 & HWMU-7 Investigation

UNIT7 SDG#: RAR01-09

|       |                                                                                        |                      |                    | Dry                |           |          |
|-------|----------------------------------------------------------------------------------------|----------------------|--------------------|--------------------|-----------|----------|
| CAT   |                                                                                        |                      | Dry                | Method             |           | Dilution |
| No.   | Analysis Name                                                                          | CAS Number           | Result             | Detection<br>Limit | Units     | Factor   |
| 00111 | Moisture                                                                               | n.a.                 | 15.5               | 0.50               | %         | 1        |
|       | "Moisture" represents the loss<br>103 - 105 degrees Celsius. The<br>as-received basis. |                      |                    |                    |           |          |
| 00394 | рН                                                                                     | n.a.                 | 7.15               | 0.010              |           | 1        |
|       | The pH was performed on a 1:1 s                                                        | lurry (25 gms.       | of sample and 25   | ml.                |           |          |
|       | of deionized water) after being                                                        | tumbled for 3        | 0 min.             |                    |           |          |
| 00496 | Corrosivity                                                                            | n.a.                 | See Below          |                    | See Below | 1        |
|       | Corrosivity:                                                                           |                      |                    |                    |           |          |
|       | The pH of a 1:1 slurry (with de                                                        | ionized water)       | was 7.15 indicat.  | ing                |           |          |
|       | that the waste is not corrosive                                                        |                      |                    |                    |           |          |
|       | A waste is corrosive if it exhi                                                        | bits a pH equa       | l to or less than  | 2                  |           |          |
|       | or equal to or greater than 12.                                                        | 5.                   |                    |                    |           |          |
| 00542 | Ignitability                                                                           | n.a.                 | See Below          |                    | See Below | 1        |
|       | The sample did not spontaneously                                                       | y ignite when        | exposed to air or  | water.             |           |          |
|       | The sample did not ignite by fr                                                        | iction.              |                    |                    |           |          |
|       | The sample vapors did not ignite                                                       | e when exposed       | to a flame using   | a                  |           |          |
|       | closed cup apparatus.                                                                  |                      |                    |                    |           |          |
| 01121 | Reactivity                                                                             | n.a.                 | See Below          |                    | See Below | 1        |
|       | Reactivity:                                                                            |                      |                    |                    |           |          |
|       | The sample was extracted by the                                                        | interim metho        | d described in SW  | 846,               |           |          |
|       | Chapter 7.3. This solution was                                                         | analyzed for         | cyanide and sulfic | de.                |           |          |
|       | This waste is not considered rea                                                       | active and haz       | ardous because it  | does               |           |          |
|       | not generate a quantity of hydro                                                       | ogen cyanide e       | xceeding 250 mg/kg | g or               |           |          |
|       | hydrogen sulfide exceeding 500 m                                                       | ng/kg. Thes <b>e</b> | interim threshold  | limits were        |           |          |
|       | established by the Solid Waste 1                                                       | Branch of EPA,       | July, 1992. The    | se r <b>esults</b> |           |          |
|       | do not reflect total cyanide or                                                        | total sulfide        |                    |                    |           |          |
| 01122 | Sulfide (Reactivity)                                                                   | n.a.                 | N.D.               | 27.                | mg/kg     | 1        |
| 01123 | Cyanide (Reactivity)                                                                   | n.a.                 | N.D.               | 100.               | mg/kg     | 1        |

Laboratory Chronicle

CAT Analysis Name Method Trial# Date and Time Analyst Factor



Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

## Analysis Report





333

Page 2 of 2

#### Lancaster Laboratories Sample No. SW 3933071

Collected:11/01/2002 14:00 Acc

Submitted: 11/02/2002 10:20 Reported: 11/25/2002 at 14:35

Discard: 12/26/2002

Unit 7 TCLP Composite Soil Sample HWMU-5 & HWMU-7 Investigation

Account Number: 11200

Draper Aden Associates, Inc.

2206 South Main Street Blacksburg VA 24060

| UNIT7 | SDG#: RAR01-09       |                    |   |                  |                  |   |
|-------|----------------------|--------------------|---|------------------|------------------|---|
| 00111 | Moisture             | EPA 160.3 modified | 1 | 11/07/2002 09:55 | Nadine Fegley    | 1 |
| 00394 | рн                   | SW-846 9045C       | 1 | 11/05/2002 16:35 | Luz M Groff      | 1 |
|       |                      | (modified)         |   |                  |                  |   |
| 00496 | Corrosivity          | SW-846 Chapter 7   | 1 | 11/05/2002 16:35 | Luz M Groff      | 1 |
| 00542 | Ignitability         | 40 CFR 261.21      | 1 | 11/15/2002 18:50 | Justin M Bowers  | 1 |
| 01121 | Reactivity           | SW-846 Chapter 7.3 | 1 | 11/15/2002 07:40 | Susan E Hibner   | 1 |
| 01122 | Sulfide (Reactivity) | SW-846 9034        | 1 | 11/15/2002 07:40 | Susan E Hibner   | 1 |
| 01123 | Cyanide (Reactivity) | SW-846 9012A       | 1 | 11/15/2002 21:01 | Venia B McFadden | 1 |
|       |                      | (modified)         |   |                  |                  |   |





Blacksburg VA 24060

Page 1 of 3

Lancaster Laboratories Sample No. 3933072

Collected:11/01/2002 14:00 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc. 2206 South Main Street

Reported: 11/25/2002 at 14:36

Discard: 12/26/2002

Unit 7 TCLP Composite Soil Sample TCLP NON-VOLATILE EXTRACTION HWMU-5 & HWMU-7 Investigation

U7NVE SDG#: RAR01-10

|           |                                  |                       |                        | As Received        |              |          |
|-----------|----------------------------------|-----------------------|------------------------|--------------------|--------------|----------|
| CAT       |                                  |                       | As Received            | Method             |              | Dilution |
| No.       | Analysis Name                    | CAS Number            | Result                 | Detection<br>Limit | Units        | Factor   |
| 00259     | Mercury                          | 7439-97-6             | N.D.                   | 0.000079           | mg/l         | 1        |
|           | The metal analyses were performe |                       |                        |                    |              |          |
|           | according to the procedure speci | ified in SW-846       | 6, Chapter 7.4 (Re     | evision 3,         |              |          |
|           | December, 1994). A sample is con |                       |                        | •                  |              |          |
|           | Characteristic (TC) test and is  | considered a h        | azardous waste ii      | any of the         |              |          |
|           | metal concentrations (mg/l) in t |                       |                        | ng maxima          |              |          |
|           | (100 times the Primary Drinking  | Water Standard        | ls):                   |                    |              |          |
|           | Arsenic 5.0 Cadmium              | 10 11                 | 5.0 0.1                | ,                  |              |          |
|           | Barium 100.0 Chromium            | 1.0 Lead<br>5.0 Mercu | 5.0 Selerary 0.2 Silve |                    |              |          |
| 01335     | Arsenic Chromitum                | 7440-38-2             | 0.0056 J               | 0.0049             | / I          |          |
| 01335     | Selenium                         | 7782-49-2             | N.D.                   | 0.0049             | mg/l<br>mg/l | 1        |
| 01336     | Barium                           | 7440-39-3             | N.B.<br>0.521          | 0.0048             | mg/l         | 1        |
| 01749     | Cadmium                          | 7440-43-9             | N.D.                   | 0.00044            | mg/l         | 1        |
| 01751     | Chromium                         | 7440-47-3             | N.D.                   | 0.0020             | mg/l         | 1        |
| 01755     | Lead                             | 7439-92-1             | N.D.                   | 0.0020             | mg/l         | 1        |
| 01766     | Silver                           | 7440-22-4             | N.D.                   | 0.0014             | mg/l         | 1        |
|           | 322102                           |                       | 11.2.                  | 0.0014             | 1119/1       | _        |
| 00950     | TCLP Pesticides                  |                       |                        |                    |              |          |
|           |                                  |                       |                        |                    |              |          |
| 01972     | Gamma BHC - Lindane              | 58-89-9               | N.D.                   | 0.000012           | mg/l         | 1        |
| 01973     | Heptachlor                       | 76-44-8               | N.D.                   | 0.000010           | mg/l         | 1        |
| 01974     | Heptachlor Epoxide               | 1024-57-3             | N.D.                   | 0.000016           | mg/1         | 1        |
| 01975     | Methoxychlor                     | 72-43-5               | N.D.                   | 0.00010            | mg/l         | 1        |
| 01976     | Endrin                           | 72-20-8               | N.D.                   | 0.000024           | mg/l         | 1        |
| 01977     | Chlordane                        | 57-74-9               | N.D.                   | 0.00025            | mg/l         | 1        |
| 01978     | Toxaphene                        | 8001-35-2             | N.D.                   | 0.0015             | mg/l         | 1        |
|           |                                  |                       |                        |                    |              |          |
| 00952     | TCLP Herbicides                  |                       |                        |                    |              |          |
| 01979     | 2,4-D                            | 94-75-7               | N.D.                   | 0.0020             | mg/l         | 1        |
| 01980     | 2,4,5-TP                         | 93-72-1               | N.D.                   | 0.00020            | mg/l         | 1        |
|           | • • •                            | · <del>-</del> -      |                        | 0.00020            | 9/ 1         | 1        |
| 00949     | TCLP Acid Base/Neutrals          |                       |                        |                    |              |          |
| 0.3.7.+ : |                                  |                       |                        |                    |              |          |
| 03324     | Pyridine                         | 110-86-1              | N.D.                   | 0.0040             | mg/l         | 1        |

335





Page 2 of 3

Lancaster Laboratories Sample No. TL 3933072

Collected:11/01/2002 14:00 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:36 2206 South Main Street Discard: 12/26/2002 Blacksburg VA 24060

Unit 7 TCLP Composite Soil Sample TCLP NON-VOLATILE EXTRACTION

HWMU-5 & HWMU-7 Investigation

U7NVE SDG#: RAR01-10

|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                   | As Received        |       |          |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|--------------------|-------|----------|
| CAT   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | As Received       | Method             |       | Dilution |
| No.   | Analysis Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CAS Number    | Result            | Detection<br>Limit | Units | Factor   |
| 03325 | 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 106-46-7      | N.D.              | 0.0020             | mg/l  | 1        |
| 03326 | 2-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95-48-7       | N.D.              | 0.0020             | mg/l  | 1        |
| 03327 | 4-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 106-44-5      | N.D.              | 0.0040             | mg/l  | 1        |
|       | 3-Methylphenol and 4-methylphenol chromatographic conditions used for 4-methylphenol represents the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of | for sample an | alysis. The resul | t reported         |       |          |
| 03328 | Hexachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67-72-1       | N.D.              | 0.0020             | mg/l  | 1        |
| 03329 | Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 98 - 95 - 3   | N.D.              | 0.0020             | mg/l  | 1        |
| 03330 | Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 87-68-3       | N.D.              | 0.0020             | mg/l  | 1        |
| 03331 | 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88-06-2       | N.D.              | 0.0020             | mg/l  | 1        |
| 03332 | 2,4,5-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95-95-4       | N.D.              | 0.0020             | mg/l  | 1        |
| 03333 | 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 121-14-2      | N.D.              | 0.0020             | mg/l  | 1        |
| 03334 | Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 118-74-1      | N.D.              | 0.0020             | mg/l  | 1        |
| 03335 | Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87-86-5       | N.D.              | 0.0060             | mg/l  | 1        |

#### Laboratory Chronicle

|       |                         | Haboracory   | CITTO  | 117.07.6         |                    |               |
|-------|-------------------------|--------------|--------|------------------|--------------------|---------------|
| CAT   |                         |              |        | Analysis         |                    | Dilution      |
| No.   | Analysis Name           | Method       | Trial# | Date and Time    | Analyst            | <b>Factor</b> |
| 00259 | Mercury                 | SW-846 7470A | 1      | 11/08/2002 06:46 | Deborah A Krady    | 1             |
| 01335 | Arsenic                 | SW-846 6010B | 1      | 11/11/2002 03:23 | Donna R Sackett    | 1             |
| 01336 | Selenium                | SW-846 6010B | 1      | 11/12/2002 06:29 | Donna R Sackett    | 1             |
| 01746 | Barium                  | SW-846 6010B | 1      | 11/11/2002 03:23 | Donna R Sackett    | 1             |
| 01749 | Cadmium                 | SW-846 6010B | 1      | 11/12/2002 06:29 | Donna R Sackett    | 1             |
| 01751 | Chromium                | SW-846 6010B | 1      | 11/12/2002 06:29 | Donna R Sackett    | 1             |
| 01755 | Lead                    | SW-846 6010B | 1      | 11/12/2002 06:29 | Donna R Sackett    | 1             |
| 01766 | Silver                  | SW-846 6010B | 1      | 11/11/2002 03:23 | Donna R Sackett    | 1             |
| 00950 | TCLP Pesticides         | SW-846 8081A | 1      | 11/08/2002 12:23 | Douglas D Seitz    | 1             |
| 00952 | TCLP Herbicides         | SW-846 8151A | 1      | 11/08/2002 23:24 | Michele D Hamilton | 1             |
| 00949 | TCLP Acid Base/Neutrals | SW-846 8270C | 1      | 11/08/2002 13:59 | Chad A Moline      | 1             |
| 00816 | Water Sample Herbicide  | SW-846 8151A | 1      | 11/08/2002 08:25 | Amanda W Herr      | 1             |
|       | Extract                 |              |        |                  |                    |               |
| 00817 | Water Sample Pest.      | SW-846 3510C | 1      | 11/07/2002 23:00 | Sharon L Jones     | 1             |
|       | Extraction              |              |        |                  |                    |               |
| 00947 | TCLP Non-volatile       | SW-846 1311  | 1      | 11/06/2002 13:40 | Carlene A Landis   | n.a.          |
|       | Extraction              |              |        |                  |                    |               |

## Analysis Report

336





Page 3 of 3

Lancaster Laboratories Sample No. TL 3933072

Collected:11/01/2002 14:00 Account Number: 11200

Submitted: 11/02/2002 10:20 Draper Aden Associates, Inc.

Reported: 11/25/2002 at 14:36 2206 South Main Street Discard: 12/26/2002 Blacksburg VA 24060

Unit 7 TCLP Composite Soil Sample
TCLP NON-VOLATILE EXTRACTION

U7NVE SDG#: RAR01-10

HWMU-5 & HWMU-7 Investigation

04731 TCLP Leachate Extraction SW-846 3510C 1 11/07/2002 17:25 JoElla L Rice 1 05705 WW/TL SW 846 ICP Digest SW-846 3010A 1 11/07/2002 22:10 Annamaria Stipkovits 1

(tot)

05713 WW SW846 Hg Digest SW-846 7470A 1 11/07/2002 20:21 Nelli S Markaryan 1



## Analysis Report

337





Page 1 of 1

Lancaster Laboratories Sample No. TL 3933073

Collected:11/01/2002 14:00 Account Number: 11200

 Submitted: 11/02/2002 10:20
 Draper Aden Associates, Inc.

 Reported: 11/25/2002 at 14:36
 2206 South Main Street

Discard: 12/26/2002 Blacksburg VA 24060

Unit 7 TCLP Composite Soil Sample TCLP ZERO HEADSPACE EXTRACTION HWMU-5 & HWMU-7 Investigation

U7ZHE SDG#: RAR01-11

| Analysis Name        | CAS Number                                                                                                                                                 | As Received<br>Result                                                                                                                                                                                                                 | As Received<br>Method<br>Detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Units                                                                                                                                                                                                                                                                                                                                                                                      | Dilution<br>Factor                     |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                      |                                                                                                                                                            |                                                                                                                                                                                                                                       | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
| TCLP by 8260         |                                                                                                                                                            |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
| Vinyl Chloride       | 75-01-4                                                                                                                                                    | N.D.                                                                                                                                                                                                                                  | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/l                                                                                                                                                                                                                                                                                                                                                                                       | 20                                     |
| 1,1-Dichloroethene   | 75-35-4                                                                                                                                                    | N.D.                                                                                                                                                                                                                                  | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/l                                                                                                                                                                                                                                                                                                                                                                                       | 20                                     |
| Chloroform           | 67-66-3                                                                                                                                                    | N.D.                                                                                                                                                                                                                                  | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/l                                                                                                                                                                                                                                                                                                                                                                                       | 20                                     |
| Carbon Tetrachloride | 56-23-5                                                                                                                                                    | N.D.                                                                                                                                                                                                                                  | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/1                                                                                                                                                                                                                                                                                                                                                                                       | 20                                     |
| Benzene              | 71-43-2                                                                                                                                                    | N.D.                                                                                                                                                                                                                                  | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/l                                                                                                                                                                                                                                                                                                                                                                                       | 20                                     |
| 1,2-Dichloroethane   | 107-06-2                                                                                                                                                   | N.D.                                                                                                                                                                                                                                  | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/1                                                                                                                                                                                                                                                                                                                                                                                       | 20                                     |
| Trichloroethene      | 79-01-6                                                                                                                                                    | N.D.                                                                                                                                                                                                                                  | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/l                                                                                                                                                                                                                                                                                                                                                                                       | 20                                     |
| Tetrachloroethene    | 127-18-4                                                                                                                                                   | N.D.                                                                                                                                                                                                                                  | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/1                                                                                                                                                                                                                                                                                                                                                                                       | 20                                     |
| Chlorobenzene        | 108-90-7                                                                                                                                                   | N.D.                                                                                                                                                                                                                                  | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/1                                                                                                                                                                                                                                                                                                                                                                                       | 20                                     |
| 2-Butanone           | 78-93-3                                                                                                                                                    | N.D.                                                                                                                                                                                                                                  | 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/1                                                                                                                                                                                                                                                                                                                                                                                       | 20                                     |
|                      | TCLP by 8260  Vinyl Chloride 1,1-Dichloroethene Chloroform Carbon Tetrachloride Benzene 1,2-Dichloroethane Trichloroethene Tetrachloroethene Chlorobenzene | TCLP by 8260  Vinyl Chloride 75-01-4 1,1-Dichloroethene 75-35-4 Chloroform 67-66-3 Carbon Tetrachloride 56-23-5 Benzene 71-43-2 1,2-Dichloroethane 107-06-2 Trichloroethene 79-01-6 Tetrachloroethene 127-18-4 Chlorobenzene 108-90-7 | Analysis Name         CAS Number         Result           TCLP by 8260         Vinyl Chloride         75-01-4         N.D.           1,1-Dichloroethene         75-35-4         N.D.           Chloroform         67-66-3         N.D.           Carbon Tetrachloride         56-23-5         N.D.           Benzene         71-43-2         N.D.           1,2-Dichloroethane         107-06-2         N.D.           Trichloroethene         79-01-6         N.D.           Tetrachloroethene         127-18-4         N.D.           Chlorobenzene         108-90-7         N.D. | Analysis Name  CAS Number Result Detection Limit  TCLP by 8260  Vinyl Chloride 75-01-4 N.D. 0.020 1,1-Dichloroethene 75-35-4 N.D. 0.016 Chloroform 67-66-3 N.D. 0.016 Carbon Tetrachloride 56-23-5 N.D. 0.020 Benzene 71-43-2 N.D. 0.010 1,2-Dichloroethane 107-06-2 N.D. 0.020 Trichloroethene 79-01-6 N.D. 0.020 Tetrachloroethene 127-18-4 N.D. 0.016 Chlorobenzene 108-90-7 N.D. 0.016 | As Received Method   Detection   Units |

### Laboratory Chronicle

| CAT   |                      |              |        | Analysis         |                   | Dilution |
|-------|----------------------|--------------|--------|------------------|-------------------|----------|
| No.   | Analysis Name        | Method       | Trial# | Date and Time    | Analyst           | Factor   |
| 03636 | TCLP by 8260         | SW-846 8260B | 1      | 11/10/2002 19:28 | Susan McMahon-Luu | 20       |
| 00946 | TCLP Zero Headspace  | SW-846 1311  | 1      | 11/04/2002 12:45 | David G Splain Jr | n.a.     |
|       | Extraction           |              |        |                  |                   |          |
| 01163 | GC/MS VOA Water Prep | SW-846 5030B | 1      | 11/10/2002 19:28 | Susan McMahon-Luu | n.a.     |

### APPENDIX D

HAZARDOUS WASTE MANAGEMENT UNIT CAP REPAIR DOCUMENTATION

8090 Villa Park Drive Richmond, Virginia 23228 (804) 264-2228 • Fax: (804) 264-8773 daa@daa.com • www.daa.com

January 3, 2003

Mr. Jerome Redder Alliant Ammunition and Powder Company, LLC P.O. Box 1 RAAP Radford, Virginia 24141

> RE: Radford Army Ammunitions Plant PVC Cap Repair – HWMU 7 DAA No. R02564-01

Dear Mr. Redder:

From December 19, to December 20, 2002 Draper Aden Associates (DAA) conducted PVC liner repair inspection for the above noted project. Site visit reports, photographs, and repair location sketches are attached for work performed during this period. The work was performed by Landsaver Environmental (Landsaver). The work performed at each repair location was in accordance with the approved VDEQ closure plan dated May 27, 1988 and the attached VDEQ comments. Each repair was conducted as follows:

- Excavated the topsoil and cover soil (3' thick); no filter fabric was encountered
- Excavated the sand drainage layer (1' thick)
- The existing 30 mil PVC liner was wiped free of dirt and dust
- Applied a bonding adhesive to the existing 30 mil PVC Liner
- Installed a new 30 mil PVC patch with a minimum 6" overlap in all directions
- Applied a bonding adhesive to the overlap (minimum 2" perimeter bonding area) and applied pressure to the two bonding surfaces
- After allowing the adhesive to cure, the patch was Air Lance Tested in accordance with ASTM D4437-99
- The repair location was backfilled and compacted with a 1 foot layer of sand drainage layer and 3' of topsoil/cover soil material. Topsoil/cover soil material was compacted in 1 foot lifts with use of a hand tamper and the excavator bucket. The compaction of each lift was verified with the use of a probe rod.

Based on our field observations and documentation, laboratory test results and geotechnical engineering experience, we conclude that the liner installation and repairs

Mr. Jerome Redder January 3, 2003 Page 2 of 2

on the above referenced project site has been completed in accordance with industry standard and acceptable engineering practices.

If you should have any further questions, please feel free to contact Ken Piazza or myself at (804) 264-2228.

Sincerely,

DRAPER ADEN ASSOCIATES

Robert H. Vester, Jr., P.E.

Project Manager

Attachments:

DAA Site visit Reports Construction Photos Repair Location Sketch

Landsaver Environmental Repair Log

**VDEQ Comments** 

cc: Mr. Andrew Kassoff

File



| Project:                    | Radf          | ord Ammunition Plant |                   |            |
|-----------------------------|---------------|----------------------|-------------------|------------|
| Job No.: R02564-01          |               | Date: 19-Dec-02      |                   |            |
| Location: Radford, VA       |               |                      |                   |            |
| Visit by: RLS               |               | Page: 1              | of                | 2          |
|                             |               |                      |                   |            |
| Personnel - Constru         | <u>uction</u> | Equi                 | pment             |            |
| Contractor / Subcontractor: |               | Description          | No. on Site       | No. in Use |
| Andrew - Landsaver          |               | Trackhoe             |                   |            |
|                             |               | Bobcat Backhoe       | 1                 | 1          |
|                             |               | Dozer                | 1                 |            |
|                             |               | Front End Loader     |                   |            |
| Personnel - Inspection      | / Other       | Track Loader         |                   |            |
| Engineer (QA / QC):         |               | Pan / Scraper        |                   |            |
| Ryan Sadler                 | DAA           | Grader               |                   | ,          |
| Ross Miller                 | DAA           | Sheepsfoot Roller    |                   |            |
| · _                         |               | Smooth Drum Roller   |                   |            |
| Owner Representatives:      |               | Dump Truck           |                   |            |
| Jerry Redder                | Alliant       | Hand Tamp            | 1                 | 1          |
|                             | <del></del>   |                      |                   |            |
| Visitors:                   |               |                      |                   |            |
|                             |               | ļ                    |                   |            |
|                             |               | L                    |                   |            |
| <b>Materials Delive</b>     | <u>red</u>    | Weather !            | <b>Conditions</b> |            |
| Description                 | Quantity      | Morning: Cool        |                   |            |
|                             |               |                      | Temp:             | 42         |
|                             |               | Noon: Cool           |                   |            |
|                             |               |                      | Temp:             | 56         |
|                             |               | Evening: Cool        |                   |            |
|                             | 1             |                      | Temp:             | 52         |

| Project No.: R02564-01                                                                   | Page_       | 2                                       | _ of                                             | 2           |
|------------------------------------------------------------------------------------------|-------------|-----------------------------------------|--------------------------------------------------|-------------|
|                                                                                          | Date:       | 19-Dec-                                 | 02_                                              |             |
| <del></del>                                                                              |             |                                         |                                                  |             |
| Arrived on-site @ 8:00 am and proceeded to get a visitor's pass at the gate. Landsaver v | was late ar | d arrived                               |                                                  |             |
| around 10:30. Ross, myself, and the two Landsaver guys proceeded to the Administration   | on buildin  | g where                                 |                                                  |             |
| we waited for Mr. Redder for approximately 30 minutes. Another half-hour was spent g     | etting a ca | amera pas                               | s                                                |             |
| for the site. Next we went to Shipping and Receiving to pick up the hand tamper and the  | e Bobcat.   | The Bob                                 | cat                                              |             |
| had to be driven from S & R to the project site. We started with HWMU 7 by the river.    | The hole    | s were ma                               | arked                                            | <del></del> |
| by flagging so we proceded to dig with the Bobcat down to the liner. Approx. 3 feet of   | soil cover  | ed the line                             | er on                                            |             |
| top of a 1 foot drainage layer of a fine stone. The holes were cleared enough to make ro | om for th   | e patches                               | and                                              |             |
| air lance testing. Four holes were dug and patched today. No air testing was performed   | Holes 2     | ,3,10 & 1                               | 1                                                |             |
| were patched today. Patching consisted of cleaning the area - cutting a round patch to c | over the h  | ole -                                   |                                                  |             |
| then a pvc cement was applied beneath the patch - pressure was applied to the patch to a | issure a go | od bond.                                |                                                  |             |
|                                                                                          |             |                                         |                                                  |             |
|                                                                                          |             |                                         |                                                  |             |
|                                                                                          |             |                                         |                                                  |             |
|                                                                                          |             |                                         |                                                  |             |
|                                                                                          |             |                                         |                                                  |             |
|                                                                                          |             |                                         |                                                  |             |
|                                                                                          |             |                                         |                                                  |             |
|                                                                                          |             |                                         |                                                  |             |
|                                                                                          |             |                                         |                                                  |             |
|                                                                                          |             |                                         |                                                  |             |
|                                                                                          |             |                                         |                                                  |             |
|                                                                                          |             |                                         |                                                  |             |
|                                                                                          |             |                                         |                                                  |             |
|                                                                                          |             |                                         |                                                  |             |
|                                                                                          |             | *************************************** |                                                  |             |
|                                                                                          | 1/          |                                         | <del>/                                    </del> |             |

| Project:                         | Radi            | Ford Ammunition Plant   |                                                  |             |
|----------------------------------|-----------------|-------------------------|--------------------------------------------------|-------------|
| Job No.: R02564-01               |                 | Date: 20-Dec-02         |                                                  |             |
| Location: Radford, VA            |                 |                         |                                                  |             |
| Visit by: RLS                    |                 | Page: 1                 | of                                               | 2           |
| Dorgonnal Constru                | action          | F:                      |                                                  |             |
| Personnel - Constru              | iction          |                         | pment                                            | N . VI      |
| Contractor / Subcontractor:      |                 | Description Trackhoe    | No. on Site                                      | No. in Use  |
| Andrew - Landsaver               |                 |                         |                                                  |             |
|                                  |                 | Bobcat Backhoe<br>Dozer | 1                                                |             |
|                                  |                 | Front End Loader        | <del>                                     </del> |             |
| Parsannal - Inspection           | /Other          | Track Loader            | <del> </del>                                     |             |
| Personnel - Inspection / Other   |                 | Pan / Scraper           |                                                  |             |
| Engineer (QA / QC):  Ryan Sadler | DAA             | Grader                  | <del> </del>                                     |             |
| Ross Miller                      | DAA             | Sheepsfoot Roller       | <del> </del>                                     | <u></u>     |
| Ross Milici                      | DAA             | Smooth Drum Roller      | <del> </del> -                                   |             |
| Owner Representatives:           |                 | Dump Truck              | <del></del>                                      | <del></del> |
| Jerry Redder                     | Alliant         | Hand Tamp               |                                                  | 1           |
| Jeny Reddel                      | Aman            | Tand Tamp               |                                                  |             |
| Visitors:                        |                 |                         |                                                  |             |
|                                  |                 |                         |                                                  |             |
| Materials Deliver<br>Description | red<br>Quantity | Weather (               | Conditions                                       |             |
| 2 compiler                       | 7               | Mining. Cool            | Temp:                                            | 42          |
|                                  |                 | Noon: Cool              | Temp.                                            |             |
|                                  |                 | 110011. COOI            | Temp:                                            | 56          |
|                                  |                 | Evening: Cool           | remp.                                            |             |
|                                  |                 |                         | Temp:                                            | 52          |

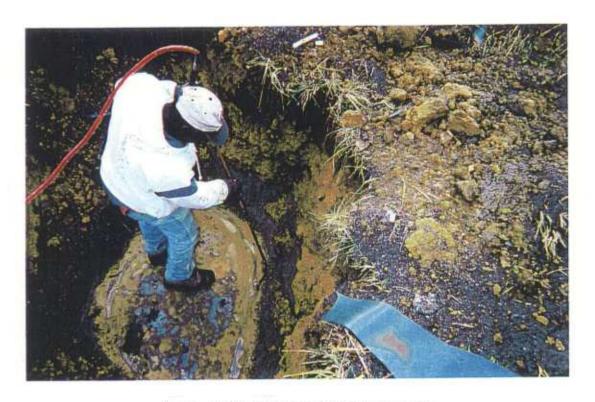
| Project No.: R02564-01                                                                      | Page_<br>Date: | 2<br>20-Dec |             | 2             |
|---------------------------------------------------------------------------------------------|----------------|-------------|-------------|---------------|
| Arrived on-site @ 8:00 am. Ross, Landsaver, and myself proceeded through the security       |                |             |             |               |
| to HWMU 7. We finished uncovering and patching the remaining holes in the morning.          | After a l      | unch bre    | ak          |               |
| the patches were air lance tested to assure a good bond. All testing passed and the holes   | were bac       | kfilled ar  | nd          |               |
| compacted. The equipment was then loaded up and we headed over to HWMU 5. Upon              | leaving        | today for   | ır of       |               |
| the holes were patched and all of the holes were excavated. No air testing was attempted    | today o        | 1 HWMU      | J 5.        |               |
| Patching consisted on cleaning the repair area - cutting a rounded patch to cover the area  | - placing      | a pvc_      |             |               |
| cement down under the patch - applying pressure to assure a good bond. Air testing cons     | sisted of      | shooting    | a           | <del></del> . |
| concentrated stream of compressed air around the edge of the patch and visually observing   | g for the      | patch to    | _           |               |
| bubble up as a result of an unsuitable bond. Failing air tests were repaired accordingly be | fore back      | cfilling.   |             |               |
|                                                                                             |                |             |             |               |
|                                                                                             | _              |             |             |               |
|                                                                                             |                |             |             |               |
|                                                                                             |                |             |             |               |
|                                                                                             |                |             |             |               |
|                                                                                             | <del></del>    |             |             |               |
|                                                                                             |                |             |             |               |
|                                                                                             |                |             |             |               |
|                                                                                             | <del></del>    | <del></del> |             |               |
|                                                                                             |                |             |             |               |
|                                                                                             |                |             |             |               |
|                                                                                             |                | <del></del> | <del></del> |               |
|                                                                                             |                |             | <del></del> |               |
|                                                                                             |                |             |             |               |
|                                                                                             |                |             | <del></del> | <del></del>   |
|                                                                                             |                |             |             |               |
|                                                                                             | —              |             | >           |               |
| Signature.                                                                                  | 2              |             |             |               |



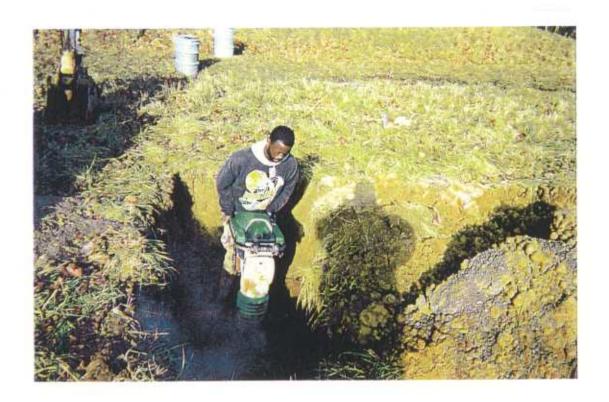
EXCAVATION OF SOIL CAP AT REPAIR LOCATON (ABOVE) EXCAVATION OF SOIL CAP AT REPAIR LOCATION (BELOW)

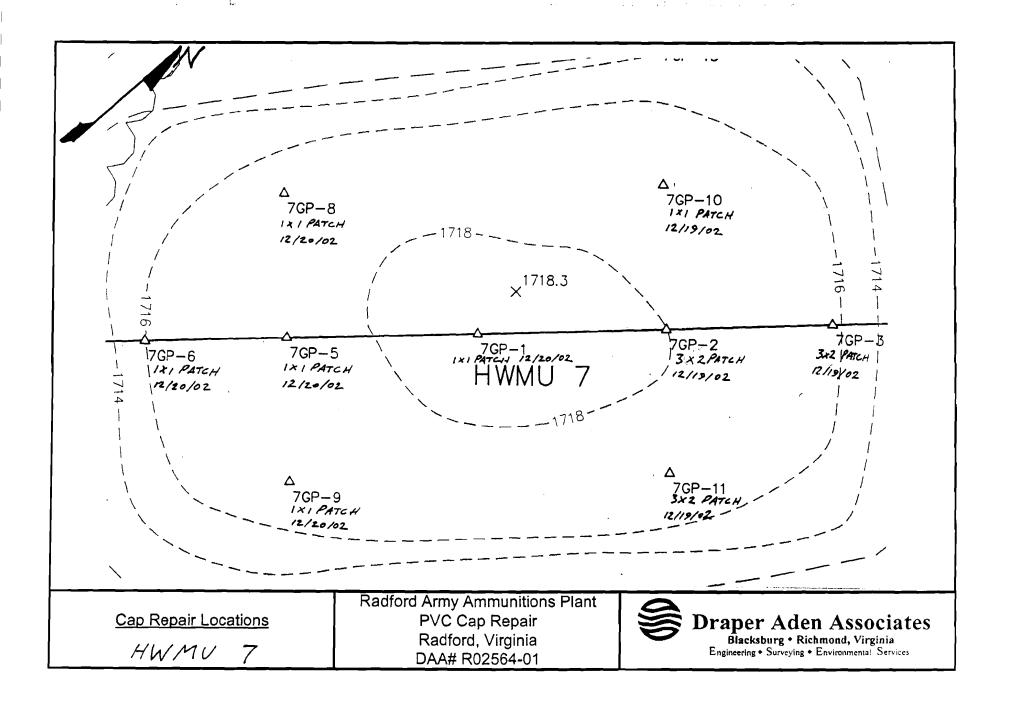





HAND EXCAVATION OF SOIL CAP NEAR MEMBRANE INTERFACE (ABOVE) EXCAVATED REPAIR AREA PRIOR TO PATCHING (BELOW)







INSTALLATION OF 30 MIL PVC PATCH AND APPLICATION OF ADHESIVE (ABOVE) APPLICATION OF PRESSURE TO ENSURE STRONG BOND (BELOW)





AIR LANCE SEAM TESTING (ABOVE)
BACKFILLING OF REPAIR LOCATION WITH A HAND TAMPER (BELOW)





F

### LANDSAVER ENVIRONMENTAL

2831 Cardwell Rd. Richmond, VA 23234

(800) 588-9223 Fax: (804) 271-8044

| Job Name:     | Radford Army Ammunition Plant Cap Repair | Contractor: Draper Aden |
|---------------|------------------------------------------|-------------------------|
| Job Location: | Radford VA                               | Engineer:               |
| Date:         | 12-19-02 12-20-02                        | QA/QC:                  |

## **GEOMEMBRANE REPAIR LOG**

| Repair           |               | Repair Location |             |       | I I                                              |          |                  |       | Airlance |
|------------------|---------------|-----------------|-------------|-------|--------------------------------------------------|----------|------------------|-------|----------|
| Repair           | Seam, Panel   | Repair Location | Repair      | Log   | Recorded                                         | Comments | Repair           | Test  | Pass/    |
| JD No.           | or Repair No. | Description     | type        | Date  | by                                               |          | Date             | Date  | Failed   |
| R- 10            | 7GP-2         | 3'X2'           | P           | 12/19 | AR                                               |          | 12/19            | 12/19 | Р        |
| - 11             | 7GP-3         | 3'X2'           | P           | 12/19 | AR                                               |          | 12/19            | 12/19 | Р        |
| - 12             | 7GP-10        | 1'X1'           | P           | 12/19 | . AR                                             | <u>-</u> | 12/19            | 12/19 | Р        |
| R- 13            | 7GP-11        | 3'X2'           | Р           | 12/19 | AR                                               |          | 12/19            | 12/19 | Р        |
| R- 14            | 7GP-1         | 1'X1'           | P           | 12/20 | AR                                               |          | 12/20            | 12/20 | Р        |
| - 15             | 7GP-5         | 1'X1'           | P           | 12/20 | AR                                               |          | 12/20            | 12/20 | P        |
| - 16             | 7GP-6         | 1'X1'           | P           | 12/20 | AR                                               |          | 12/20            | 12/20 | Р        |
| R- 17            | 7GP-8         | 1'X1'           | Р           | 12/20 | AR                                               |          | 12/20            | 12/20 | P        |
| - 18             | 7GP-9         | 1'X1'           | Р           | 12/20 | AR                                               |          | 12/20            | 12/20 | Р        |
| -                |               |                 |             |       |                                                  |          |                  |       |          |
| ∥R-              |               |                 |             |       |                                                  |          |                  |       |          |
| R-               |               |                 |             |       |                                                  |          |                  |       |          |
| -                |               |                 |             |       |                                                  |          |                  | •     |          |
| <u> </u>         | <del></del> - |                 |             |       |                                                  |          |                  |       |          |
| R-               |               |                 |             |       |                                                  |          |                  |       |          |
| F                |               |                 |             |       |                                                  |          |                  | _     |          |
| _ =              |               |                 |             |       |                                                  |          |                  |       |          |
| R-               | -             |                 |             | -     |                                                  |          |                  |       |          |
| R-               |               |                 |             |       |                                                  |          |                  |       |          |
|                  |               |                 | <del></del> |       |                                                  |          |                  |       |          |
|                  |               |                 |             |       | <del>                                     </del> |          |                  |       |          |
| R-               |               |                 |             |       |                                                  |          |                  |       |          |
| 11.5             |               |                 |             |       |                                                  | -        | _                |       |          |
|                  |               | -               |             |       |                                                  |          |                  |       |          |
| In .             |               | -               |             |       |                                                  |          | <del>  -</del>   |       |          |
| R-               |               |                 | -           |       | +                                                |          | <del> </del>     |       |          |
| '' <del>'</del>  |               | -               |             |       |                                                  |          |                  |       |          |
|                  | -             | -               |             |       |                                                  |          | <del>-</del>     |       |          |
|                  |               | -               |             |       |                                                  |          |                  |       | -        |
| R-               |               |                 |             |       |                                                  |          | <del> </del> — — |       | _        |
|                  | <del> </del>  |                 |             |       |                                                  |          |                  |       |          |
| <u>_</u>         |               | <u> </u>        |             |       | <del> </del>                                     |          | ļ                | ļ     |          |
| R-               |               |                 |             |       | <b></b>                                          |          | <b>_</b>         |       |          |
| ο                |               |                 |             |       |                                                  |          |                  |       |          |
| \ <del></del>    |               |                 |             |       |                                                  |          | <u> </u>         |       |          |
| ή <del>ς</del> - |               |                 |             |       |                                                  |          |                  |       | ļ        |
| R-               |               | -               |             |       |                                                  |          |                  |       |          |
| ; <u>-</u>       |               |                 |             |       | ļ                                                |          |                  |       |          |
| <u>.</u>         |               |                 |             |       |                                                  |          |                  |       |          |
| R-               |               |                 |             |       |                                                  |          |                  |       |          |
| <u></u>          |               |                 |             |       |                                                  |          |                  |       |          |
|                  |               |                 |             |       |                                                  |          |                  |       |          |
| 1                |               |                 |             |       |                                                  |          |                  |       |          |
| F.               |               |                 |             |       |                                                  | -        |                  |       |          |

Radford Army Ammunition Plant Ms. C. A. Jake Page 2 TEQ CRITERIA

The Department's Office of Waste Permitting (the Department) would like to provide the following comments concerning the development of the removal activities for Units 5 and 7:

- 1. <u>Task 1, Subsurface Evaluation, paragraph 1</u> In addition to the subsurface evaluations, the Department also recommends reviewing the plans and drawings provided in the approved post-closure reports to assist in determining the nature of wastes closed in place and the approximate limits and final grades of the closed units.
- 2. During the telephone conference, it was indicated that the sample locations would be backfilled with bentonite to the level of the existing geomembrane liner. This method of restoring the low permeability layer beneath the geomembrane liner is acceptable.
- 3. Task 1, Subsurface Evaluation, paragraph 2 Any penetrations of or damage to the existing liner must be repaired as soon as practicable after the sample is collected. The repairs shall be made using new liner material that is, at least, of equivalent grade as and compatible with the existing liner. The method of repair (e.g., weld, glue, etc.) shall be such that the integrity of the existing liner or patch will not be compromised over the anticipated life of the cover (at minimum, the current remaining post-closure care period of that unit). All of the manufacturer's QA/QC procedures (e.g., test seams/patches, destructive testing, non-destructive testing, certified/trained installers, etc.) shall be followed in making the repairs. Also, RFAAP shall comply with the most up-to-date versions of the QA/QC procedures specified in the approved closure plan (e.g., ASTM D4437-99 as opposed to D4437) for field seaming of the geomembrane.
- 4. Task 1, Subsurface Evaluation, paragraph 2 The soil cover overlying the geomembrane liner shall be restored with like materials (i.e., one foot drainage sand layer, filter fabric, one foot cover soil, and one foot of topsoil with grass cover), placed and compacted, and revegetated to the requirements of the approved closure plan. The filter fabric shall be repaired in accordance with manufacturer recommendations and the approved closure plan.
- 5. Since the final covers will be disturbed and then repaired, RFAAP must provide for each unit a certification that the unit has been repaired to meet the design standards specified in the approved closure plan. Pursuant to 40 CFR 264.115, the certification must be signed by an independent P.E. registered in the Commonwealth of Virginia and the owner or operator.
- 6. Task 1, Subsurface Evaluation, paragraph 3 Although the Department is aware that RFAAP must analyze for CERCLA TAL/TCL constituents, we recommend that the following constituents be included in the initial study/investigation phase:
  - a. all hazardous waste constituents that were handled at the unit (this list may be found in the approved closure plan); and
  - b. all groundwater monitoring constituents that have been detected above background levels.

8090 Villa Park Drive Richmond, Virginia 23228 (804) 264-2228 • Fax: (804) 264-8773 daa@daa.com • www.daa.com

January 3, 2002

Mr. Jerome Redder Alliant Ammunition and Powder Company, LLC P.O. Box 1 RAAP Radford, Virginia 24141

RE: Radford Army Ammunitions Plant PVC Cap Repair – HWMU 5 DAA No. R02564-01

Dear Mr. Redder:

From December 20, to December 22, 2002 Draper Aden Associates (DAA) conducted PVC liner repair inspection for the above noted project. Site visit reports, photographs, and repair location sketches are attached for work performed during this period. The work was performed by Landsaver Environmental (Landsaver). The work performed at each repair location was in accordance with the approved VDEQ closure plan dated May 27, 1988 and the attached VDEQ comments. The each repair was conducted as follows:

- Excavated the topsoil and cover soil (3' thick); no filter fabric was encountered
- Excavated the sand drainage layer (1' thick)
- The existing 30 mil PVC liner was wiped free of dirt and dust
- Applied a bonding adhesive to the existing 30 mil PVC Liner
- Installed a new 30 mil PVC patch with a minimum 6" overlap in all directions
- Applied a bonding adhesive to the overlap (minimum 2" perimeter bonding area) and applied pressure to the two bonding surfaces
- After allowing the adhesive to cure, the patch was Air Lance Tested in accordance with ASTM D4437-99
- The repair location was backfilled and compacted with a 1 foot layer of sand drainage layer and 3' of topsoil/cover soil material. Topsoil/cover soil material was compacted in 1 foot lifts with use of a hand tamper and the excavator bucket. The compaction of each lift was verified with the use of a probe rod.

Based on our field observations and documentation, laboratory test results and geotechnical engineering experience, we conclude that the liner installation and repairs

Mr. Jerome Redder January 3, 2003 Page 2 of 2

on the above referenced project site has been completed in accordance with industry standard and acceptable engineering practices.

If you should have any further questions, please feel free to contact Ken Piazza or myself at (804) 264-2228.

Sincerely,

DRAPER ADEN ASSOCIATES

Robert H. Vester, Jr., P.E.

Project Manager

Attachments:

DAA Site visit Reports Construction Photos Repair Location Sketch

Landsaver Environmental Repair Log

**VDEQ** Comments

cc: Mr. Andrew Kassoff

File



| Project:                                     | Radf                 | ord Ammunition Plant     |             |            |
|----------------------------------------------|----------------------|--------------------------|-------------|------------|
| <b>Job No.:</b> R02564-01                    | •                    | Date: 20-Dec-02          |             |            |
| Location: Radford, VA                        |                      |                          |             |            |
| Visit by: RLS                                |                      | Page: 1                  | of          | 2          |
| Personnel - Construct                        | ion                  | Equi                     | pment       | -          |
| Contractor / Subcontractor:                  |                      | Description              | No. on Site | No. in Use |
| Andrew - Landsaver                           |                      | Trackhoe                 |             |            |
|                                              |                      | Bobcat Backhoe           | 1           | 1          |
|                                              |                      | Dozer                    |             |            |
|                                              |                      | Front End Loader         |             |            |
| Personnel - Inspection /                     | <u>Other</u>         | Track Loader             |             |            |
| Engineer (QA / QC):                          |                      | Pan / Scraper            |             |            |
| Ryan Sadler                                  | DAA                  | Grader                   |             |            |
| Ross Miller                                  | DAA                  | Sheepsfoot Roller        |             |            |
|                                              |                      | Smooth Drum Roller       |             |            |
| Owner Representatives:                       |                      | Dump Truck               |             |            |
| Jerry Redder                                 | Alliant              | Hand Tamp                | 1           | 1          |
| Visitors:                                    |                      |                          |             |            |
| Materials Delivered Description              | <u>d</u><br>Quantity | Weather of Morning: Cool | Conditions  |            |
| <u>.                                    </u> |                      |                          | Temp:       | 42         |
|                                              |                      | Noon: Cool               |             |            |
|                                              |                      |                          | Temp:       | 56         |
|                                              |                      | Evening: Cool            | <u>.</u>    |            |
|                                              |                      |                          | Temp:       | 52         |

| Project No.: R02564-01                                                                     | ٠.         | 2<br>20-Dec |             | 2 |
|--------------------------------------------------------------------------------------------|------------|-------------|-------------|---|
| Arrived on-site @ 8:00 am. Ross, Landsaver, and myself proceeded through the securit       |            |             |             |   |
| to HWMU 7. We finished uncovering and patching the remaining holes in the morning          |            |             |             |   |
| the patches were air lance tested to assure a good bond. All testing passed and the hole   |            |             |             |   |
| compacted. The equipment was then loaded up and we headed over to HWMU 5. Upon             |            |             |             |   |
| the holes were patched and all of the holes were excavated. No air testing was attempted.  |            |             | <i>)</i> 3. |   |
| Patching consisted on cleaning the repair area - cutting a rounded patch to cover the are  |            |             |             |   |
| cement down under the patch - applying pressure to assure a good bond. Air testing co      |            |             |             |   |
| concentrated stream of compressed air around the edge of the patch and visually observ     |            |             |             |   |
| bubble up as a result of an unsuitable bond. Failing air tests were repaired accordingly b | eiore daci | cauing.     |             |   |
|                                                                                            |            |             |             |   |
|                                                                                            |            |             |             |   |
| <del></del>                                                                                |            |             |             |   |
| ·                                                                                          |            |             |             |   |
|                                                                                            |            |             |             |   |
|                                                                                            |            |             | _           |   |
|                                                                                            |            |             |             |   |
|                                                                                            |            | <u> </u>    |             |   |
| <del></del>                                                                                |            |             |             |   |
|                                                                                            |            |             |             |   |
|                                                                                            |            |             |             |   |
| <del></del>                                                                                |            | _           |             |   |
|                                                                                            | _          |             |             |   |
|                                                                                            |            | -           |             |   |
|                                                                                            |            | <u> </u>    |             |   |
|                                                                                            |            |             | >           |   |
| Signature/                                                                                 | 1          |             | _           |   |



|                                                                   |                      |                   | <u></u>    |
|-------------------------------------------------------------------|----------------------|-------------------|------------|
| Project: Radford Army Ammunition                                  | Plant Cap Repair     |                   |            |
|                                                                   |                      |                   |            |
| Job No.: R02564-01                                                | Date: 12/22/02       |                   |            |
| Location: Rasford Annualties Blacksburg                           | VA                   |                   |            |
| Location: Radford Annualties Blacksburg<br>Visit by: Darren Spier | Page:                | of 2              |            |
| ,                                                                 |                      |                   |            |
| Personnel - Construction                                          | Equipment            |                   |            |
| Contractor / Subcontractor:                                       | Description          | No. on Site       | No. in Use |
| DE Landsoner                                                      | Trackhoe             | \                 |            |
|                                                                   | Rubber Tired Backhoe |                   |            |
|                                                                   | Dozer                | <u> </u>          |            |
|                                                                   | Front End Loader     |                   |            |
| Personnel - Inspection / Other                                    | Track Loader         |                   |            |
| Engineer (QA / QC):                                               | Pan / Scraper        |                   |            |
| Darrier Spier DAN                                                 | Grader               |                   |            |
|                                                                   | Sheepsfoot Roller    |                   |            |
|                                                                   | Smooth Drum Roller   |                   |            |
| Owner Representatives:                                            | Dump Truck           |                   |            |
| Jerry Rather                                                      |                      |                   |            |
|                                                                   |                      |                   |            |
|                                                                   |                      |                   |            |
| Visitors:                                                         |                      |                   |            |
|                                                                   |                      |                   |            |
|                                                                   |                      | 1                 |            |
|                                                                   |                      |                   | <u> </u>   |
|                                                                   |                      |                   |            |
| Materials Delivered                                               | Weather (            | <u>Conditions</u> |            |
| Description Quantity                                              | Morning: PC          | <del></del>       |            |
|                                                                   |                      | Temp:             | 45         |
|                                                                   | Noon: wind           |                   |            |
|                                                                   |                      | Temp:             |            |
|                                                                   | Evening:             |                   |            |
|                                                                   | )                    | Temo:             | J          |

| Project No.: RO2564-01                        | Page 2 of 2                   |
|-----------------------------------------------|-------------------------------|
|                                               | Date: 12/22/02                |
|                                               |                               |
| The nine boring holes for the second          | closure had been encavated    |
| the previous workday. Excavations where the   | e liner puncture has not been |
| located were hand dig near the liver to avole |                               |
| The boring punctures were then cleaned        |                               |
| inches in radius. Any want tears due to sh    | lovel excavation were treated |
| the same as bore punctures and dressed in the | c same tashiba (-) we was     |
| then applied and a patch of 30 mil PVI        | was cut to a size and         |
| slope so as to cover damaged liner, At        | least on took diameter        |
| patches were used. The patches were then.     |                               |
| After 30 minutes of evering the patcher       | s were air fared around       |
| their entire perimeters. No bubbling indi     | cating failure was found      |
| The cuts were then backfilled in roughly      | are foot lifts and compacted  |
| with the bucket of the backhoe. I probed      | each lift with a god to       |
| Ensure compaction. The final lift was tra     | cked with the backhoe to      |
| compact.                                      | <u> </u>                      |
|                                               |                               |
|                                               |                               |
|                                               |                               |
|                                               |                               |
|                                               |                               |
|                                               |                               |
|                                               |                               |
|                                               |                               |
| · · · · · · · · · · · · · · · · · · ·         |                               |
|                                               |                               |
| Sign                                          | nature: DMna. 20              |



EXCAVATION OF SOIL CAP AT REPAIR LOCATION (ABOVE) EXCAVATION OF SOIL CAP AT REPAIR LOCATION (BELOW)

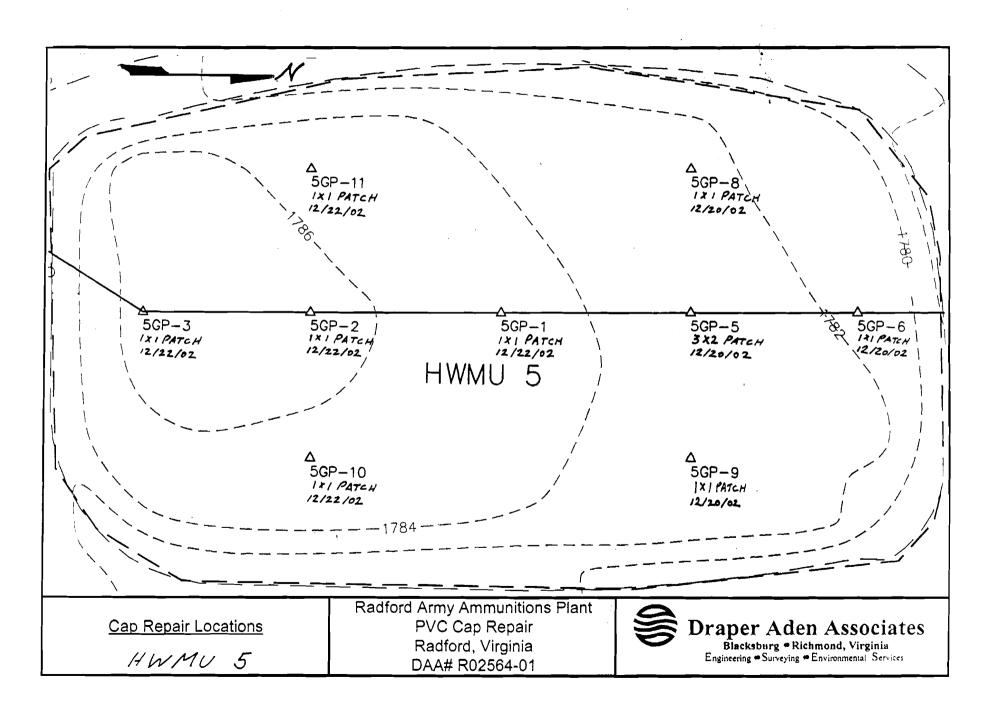




HAND EXCAVATION OF SOIL CAP NEAR MEMBRANE INTERFACE (ABOVE) EXCAVATED REPAIR AREA PRIOR TO PATCHING (BELOW)






INSTALLATION OF 30 MIL PVC PATCH AND APPLICATION OF ADHESIVE (ABOVE) APPLICATION OF PRESSURE TO ENSURE STRONG BOND (BELOW)





AIR LANCE SEAM TESTING (ABOVE)
BACKFILLING OF REPAIR LOCATION WITH A HAND TAMPER (BELOW)







#### LANDSAVER ENVIRONMENTAL

2831 Cardwell Rd. Richmond, VA 23234

(800) 588-9223 Fax: (804) 271-8044

| Job Name:     | Radford Army Ammunition Plant Cap Repair | Contractor: Draper Aden |
|---------------|------------------------------------------|-------------------------|
| Job Location: | Radford VA                               | Engineer:               |
| Date:         | 12-20-02 12-22-02                        | QA/QC:                  |

### **GEOMEMBRANE REPAIR LOG**

|                  |                              | Repair Location                                  |                 | •           | Bd                                               | Comments     | Danais                                           | Airlance     | Airlance<br>Pass/ |
|------------------|------------------------------|--------------------------------------------------|-----------------|-------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------|-------------------|
| Repair<br>ID No. | Seam, Panel<br>or Repair No. | Repair Location Description                      | Repair<br>type_ | Log<br>Date | Recorded by                                      | Comments     | Repair<br>Date                                   | Test<br>Date | Failed            |
| R- 1             | 5GP-5                        | 3'X2'                                            | P               | 12/20       | AR                                               |              | 12/20                                            | 12/20        | Р                 |
| Q. 2             | 5GP-6                        | 1'X1'                                            | Р               | 12/20       | AR                                               |              | 12/20                                            | 12/20        | Р                 |
| ₹- 3             | 5GP-8                        | 1'X1'                                            | Р               | 12/20       | AR                                               |              | 12/20                                            | 12/20        | Р                 |
| rR- 4            | 5GP-9                        | 1'X1'                                            | Р               | 12/20       | AR                                               |              | 12/20                                            | 12/20        | P                 |
| R- 5             | 5GP-1                        | 1'X1'                                            | Р               | 12/22       | AR                                               | - <u>-</u>   | 12/22                                            | 12/22        | Р                 |
| ₹- 6             | 5GP-2                        | 1'X1'                                            | Р               | 12/22       | AR                                               |              | 12/22                                            | 12/22        | Р                 |
| ₹- 7             | 5GP-3                        | 1'X1'                                            | P               | 12/22       | AR                                               |              | 12/22                                            | 12/22        | P                 |
| R- 8             | 5GP-10                       | 1'X1'                                            | P               | 12/22       | AR                                               |              | 12/22                                            | 12/22        | _ P               |
| lq <u>.</u> 9    | 5GP-11                       | 1'X1'                                            | Р               | 12/22       | AR                                               |              | 12/22                                            | 12/22        | <u>P</u>          |
| ₹-               |                              |                                                  |                 |             |                                                  |              |                                                  |              |                   |
| R                |                              |                                                  | _               |             |                                                  |              |                                                  |              |                   |
| R-               |                              | <u> </u>                                         |                 |             |                                                  | <del></del>  |                                                  |              |                   |
| ₹-<br>₹-         |                              |                                                  |                 |             | 1                                                |              | <del></del>                                      |              |                   |
|                  |                              |                                                  | _               |             |                                                  |              |                                                  | ļ            |                   |
| R                | _                            |                                                  |                 |             | -                                                |              |                                                  |              |                   |
| ·                |                              |                                                  |                 |             |                                                  |              |                                                  |              |                   |
| <u>\</u>         |                              | <del> </del>                                     | _               |             | <del> </del>                                     |              | <del></del>                                      |              |                   |
| K-               |                              |                                                  |                 |             | <del>                                     </del> |              | +                                                |              |                   |
| R-               |                              |                                                  |                 |             | <del> </del>                                     | <del>-</del> |                                                  |              | <u> </u>          |
| <u>}-</u>        | <del></del>                  | <del></del>                                      |                 |             | <del> </del>                                     |              | +                                                |              |                   |
| \-<br> -         |                              | <del> </del>                                     |                 |             |                                                  |              |                                                  |              | <del> </del>      |
| R-               |                              |                                                  | <del> </del>    |             |                                                  |              | +                                                |              |                   |
|                  |                              | <del> </del>                                     |                 |             | +                                                |              | +                                                |              |                   |
| <u>⊱</u><br>IK-  |                              | <del>                                     </del> | _               |             | +                                                |              | <del> </del>                                     |              |                   |
| R-               |                              | <del>                                     </del> | _               |             | <del>                                     </del> |              | +                                                |              |                   |
| - t-             |                              |                                                  | _               |             |                                                  |              |                                                  |              |                   |
| <u>-</u>         | -                            | <del></del>                                      |                 |             | -                                                | <del> </del> |                                                  |              | <del> </del>      |
| R-               |                              |                                                  |                 |             | <del>                                     </del> | -            | +                                                |              |                   |
| <u> </u>         |                              |                                                  | _               |             | <u> </u>                                         |              |                                                  |              |                   |
| ;-               |                              |                                                  |                 |             | <del>                                     </del> |              | <del>                                     </del> |              | <del></del>       |
| [K               |                              |                                                  |                 |             | 1                                                |              | <del> </del>                                     |              |                   |
| R-               |                              |                                                  |                 |             |                                                  |              |                                                  |              |                   |
|                  |                              |                                                  |                 |             | 1                                                |              | 1                                                |              | <del> </del>      |
|                  |                              |                                                  |                 |             |                                                  |              |                                                  |              |                   |
| R-               |                              |                                                  |                 |             | T                                                |              |                                                  |              |                   |
| -                |                              |                                                  |                 |             |                                                  |              |                                                  |              | <del></del> -     |
|                  |                              |                                                  |                 |             |                                                  |              | <u> </u>                                         |              |                   |
| R-               |                              |                                                  |                 |             |                                                  |              |                                                  |              |                   |
| R                |                              |                                                  |                 |             |                                                  |              |                                                  |              |                   |
|                  |                              |                                                  |                 |             |                                                  |              |                                                  |              |                   |
| t —              |                              |                                                  |                 |             |                                                  |              |                                                  |              |                   |
|                  | <u> </u>                     |                                                  |                 |             |                                                  |              |                                                  |              |                   |

TEQ CRITERIA

Radford Army Ammunition Plant Ms. C. A. Jake Page 2

The Department's Office of Waste Permitting (the Department) would like to provide the following comments concerning the development of the removal activities for Units 5 and 7:

- 1. <u>Task 1, Subsurface Evaluation, paragraph 1</u> In addition to the subsurface evaluations, the Department also recommends reviewing the plans and drawings provided in the approved post-closure reports to assist in determining the nature of wastes closed in place and the approximate limits and final grades of the closed units.
- 2. During the telephone conference, it was indicated that the sample locations would be backfilled with bentonite to the level of the existing geomembrane liner. This method of restoring the low permeability layer beneath the geomembrane liner is acceptable.
- 3. Task 1, Subsurface Evaluation, paragraph 2 Any penetrations of or damage to the existing liner must be repaired as soon as practicable after the sample is collected. The repairs shall be made using new liner material that is, at least, of equivalent grade as and compatible with the existing liner. The method of repair (e.g., weld, glue, etc.) shall be such that the integrity of the existing liner or patch will not be compromised over the anticipated life of the cover (at minimum, the current remaining post-closure care period of that unit). All of the manufacturer's QA/QC procedures (e.g., test seams/patches, destructive testing, non-destructive testing, certified/trained installers, etc.) shall be followed in making the repairs. Also, RFAAP shall comply with the most up-to-date versions of the QA/QC procedures specified in the approved closure plan (e.g., ASTM D4437-99 as opposed to D4437) for field seaming of the geomembrane.
- 4. Task 1, Subsurface Evaluation, paragraph 2 The soil cover overlying the geomembrane liner shall be restored with like materials (i.e., one foot drainage sand layer, filter fabric, one foot cover soil, and one foot of topsoil with grass cover), placed and compacted, and revegetated to the requirements of the approved closure plan. The filter fabric shall be repaired in accordance with manufacturer recommendations and the approved closure plan.
- 5. Since the final covers will be disturbed and then repaired, RFAAP must provide for each unit a certification that the unit has been repaired to meet the design standards specified in the approved closure plan. Pursuant to 40 CFR 264.115, the certification must be signed by an independent P.E. registered in the Commonwealth of Virginia and the owner or operator.
- 6. Task 1, Subsurface Evaluation, paragraph 3 Although the Department is aware that RFAAP must analyze for CERCLA TAL/TCL constituents, we recommend that the following constituents be included in the initial study/investigation phase:
  - a. all hazardous waste constituents that were handled at the unit (this list may be found in the approved closure plan); and
  - b. all groundwater monitoring constituents that have been detected above background levels.

X G

**\*** 

けいかいこうけん カ・ヒュトロ シスカードス せい

#### APPENDIX E

## ALTERNATE SOURCE DEMONSTRATION FOR TRICHLOROETHENE HAZARDOUS WASTE MANAGEMENT UNIT 5

# ALTERNATE SOURCE DEMONSTRATION FOR TRICHLOROETHENE

#### HAZARDOUS WASTE MANAGEMENT UNIT 5 RADFORD ARMY AMMUNITION PLANT RADFORD, VIRGINIA

#### Submitted to:

Virginia Department of Environmental Quality 629 East Main Street Richmond, Virginia 23219 (800) 592-5482

#### Prepared for:

Alliant Ammunition and Powder Company, L.L.C.
Radford Army Ammunition Plant
Route 114
Radford, Virginia 24141-0100

#### Prepared by:

Draper Aden Associates 2206 South Main Street Blacksburg, Virginia 24060 (540) 552-0444

> February 2001 DAA Job No. B00316

| TABLE    | E OF C | ONTENTS                                                       |
|----------|--------|---------------------------------------------------------------|
| 1.0      | INTRO  | DDUCTION1                                                     |
| 2.0      | SITE I | DESCRIPTION2                                                  |
| 2.1      | FA     | CILITY DESCRIPTION2                                           |
| 2.2      | TC     | E AREA OF CONCERN                                             |
|          | 2.2.1  | Hazardous Waste Management Unit 52                            |
|          | 2.2.2  | Cleaning Solvents Used in Facility Operations2                |
|          | 2.2.3  | Potential Source Areas for TCE                                |
| 3.0      | HYDR   | OGEOLOGIC FRAMEWORK5                                          |
| 3.1      | To     | POGRAPHY5                                                     |
| 3.2      | GE     | OLOGIC SETTING5                                               |
| 3.3      | Ka     | RST HYDROLOGY6                                                |
|          | 3.3.1  | Fracture Trace Analysis6                                      |
|          | 3.3.2  | Sinkhole Delineation6                                         |
| 3.4      |        | CURRENCE OF GROUNDWATER                                       |
| 3.5      | RE     | LATION OF HYDROGEOLOGIC FEATURES TO POTENTIAL SOURCES OF TCE8 |
| 4.0      | GROU   | NDWATER ANALYTICAL RESULTS9                                   |
|          | 4.1    | HISTORIC TCE CONCENTRATIONS9                                  |
|          | 4.2    | DECEMBER 12-14, 2000 GROUNDWATER SAMPLING EVENT9              |
| 5.0      | CONC   | LUSIONS                                                       |
| 6.0      | REFE   | RENCES12                                                      |
|          |        | LIST OF FIGURES                                               |
| Figure   | 1      | Site Location Map                                             |
| Figure : |        | Site Map/Geologic Features Map                                |
| Figure:  |        | Cross Section Location Map                                    |
| Figure 4 |        | Geologic Cross Section A-A'                                   |
| Figure : | 5      | Geologic Cross Section B-B'                                   |
| Figure   | 6      | Geologic Cross Section C-C'                                   |
| Figure ' | 7      | Potentiometric Surface Map                                    |
|          |        | LIST OF APPENDICES                                            |
| Append   | dix A  | Monitoring Well Boring Logs/Construction Diagrams             |
| Annend   | liv R  | Trichloroethane Historic Concentration Graphs                 |

i

#### 1.0 INTRODUCTION

This report presents the results of the Alternate Source Demonstration for Trichloroethene conducted for Hazardous Waste Management Unit 5 (HWMU-5) at the Radford Army Ammunition Plant (Radford AAP) in Radford, Virginia. Trichloroethene (TCE) has been detected repeatedly at concentrations exceeding the USEPA Maximum Contaminant Level (MCL) of 5 µg/l in four groundwater monitoring wells within the monitoring network for HWMU-5. In correspondence to Alliant Ammunition and Powder Company, L.L.C. (Alliant) dated September 27, 2000, the Virginia Department of Environmental Quality (VDEQ) requested that Alliant implement a Corrective Action Program at HWMU-5 to address the TCE concentrations in groundwater which exceeded the USEPA MCL. During a teleconference between the VDEQ, Alliant, and the Army on October 31, 2000, Alliant stated that, based on historical information for HWMU-5, it was believed that the wastes handled at the Unit prior to closure did not contain TCE or other organic compounds. Furthermore, TCE concentrations below the USEPA MCL had been detected in the upgradient monitoring well for the Unit during previous monitoring events. Therefore, it was believed that HWMU-5 was not the source of the TCE detected in the groundwater. In accordance with VDEQ guidance and pursuant to 40 CFR 264.99(i), Alliant has chosen to demonstrate that TCE was derived from a source other than HWMU-5. Accordingly, if it is demonstrated that TCE was derived from an alternate source, then any corrective action for the TCE would fall under the jurisdiction of Radford AAP's USEPA Region III Corrective Action Program instead of the VDEQ, and TCE would be removed from the list of the constituents of concern in the Permit for HWMU-5.

This Alternate Source Demonstration for TCE provides a description of HWMU-5, including the Unit's historic operations and the wastes processed. In addition, the facility buildings and areas in the vicinity of HWMU-5 where TCE is and/or may have been used are identified. The Demonstration describes the hydrogeologic framework of the area of concern, including karst conduits that may facilitate TCE migration in groundwater, as it relates to the potential sources of TCE. Historic detections of TCE concentrations within the monitoring well network for HWMU-5 are evaluated, along with a discussion of the analysis of groundwater samples collected on December 12-14, 2000 in support of the TCE Alternate Source Demonstration.

DAA JN: B00316 1 February 2001

#### 2.0 SITE DESCRIPTION

#### 2.1 FACILITY DESCRIPTION

The Radford AAP is located in the mountains of southwest Virginia within Pulaski and Montgomery Counties. A Site Location Map is presented as **Figure 1**. The facility is situated in one of a series of narrow valleys typical of the Valley and Ridge physiographic province of the Appalachian Highland Region of North America. Oriented in a northeast-southwest direction, the valley is approximately 25 miles long. The valley has a width of approximately eight miles at the southwest end and narrows to approximately two miles at the northeast end. Radford AAP lies along the New River in the relatively narrow northeast corner of the valley. The maximum elevation at Radford AAP is 2,225 feet above mean sea level (amsl) in the southeast corner and the minimum elevation is approximately 1,675 feet amsl along the New River at the northern property boundary. Radford AAP is divided by the New River into two sections. The southern section, which comprises approximately two-thirds of Radford AAP, is called the "Main Plant." The remaining northern one-third section is called the "Horseshoe Area." HWMU-5 is located in the Main Plant area.

#### 2.2 TCE AREA OF CONCERN

#### 2.2.1 Hazardous Waste Management Unit 5

HWMU-5 is a former lined surface impoundment. As shown on the Site Location Map (Figure 1), HWMU-5 is located approximately 3,000 feet southwest of the New River. The Unit is located on a river terrace which slopes gently downward to the north toward the New River. The Unit was put into operation as an unlined surface impoundment in 1970, and was retrofitted with a liner in 1981. The dimensions of the Unit measured approximately 150 feet by 100 feet along the top of the berm, with a total embankment height of 10 feet above the base of the impoundment. The Unit was taken out of operation in 1986, and was closed in 1989 in accordance with the VDEQ-approved Closure Plan dated June 1985.

During operation, the Unit received runoff, spill, and washdown waters from the acid tank farm (nitric and sulfuric acids). Prior to 1983, the Unit also received process wastewater containing low concentrations of nitrocellulose. Based on historical information, the wastes handled at HWMU-5 did not contain TCE or other organic compounds.

#### 2.2.2 Cleaning Solvents Used in Facility Operations

Several solvents are used for equipment cleaning purposes in certain areas of the Radford AAP facility. According to Alliant Procedure No. 4-27-078, Revision No. 5 (dated January 13, 1999), the following cleaning solvents are approved for use at the facility:

 Stoddard Type Solvents (clear, colorless liquids of the kerosenenaptha class; used as an oil and grease remover);

- 1,1,1-Trichloroethane (inhibited);
- DuPont Cleaning Solvent #49 (70% Stoddard Solvent, 25% methylene chloride, 5% perchloroethylene; used in electric motor cleaning);
- Acetone;
- Ethyl Alcohol;
- Inhibisol (colorless liquid of chlorinated solvents; chemical formula CCl<sub>4</sub>);
- Nitroglycerin Remover (mixture of sodium sulfide, alcohol, acetone, and water);
- "Gunk" (degreasing-cleaning solvent; approximately 16% cresole; used in a vat or tank in the Degreasing Shop to clean and paint strip scales for overhaul);
- Butyl Alcohol (used by the Electronic Shop for strain gauge maintenance);
- Intex #8793 Paint Stripper (used in Degreasing Shop for paint removal);
- Intex #827 Safety Solvent (used in Degreasing Shop for paint removal and cleaning purposes);
- Lectra Clean (used in Electric Shop for cleaning and degreasing electrical equipment);
- Voltz (used in Electric Shop motor cleaning vat).

These solvents are used primarily for tasks involving operations and maintenance of motors, valves, and gauges. There is no record or operational indications that any of these solvents could have come into contact with wastewater influent to HWMU-5.

#### 2.2.3 Potential Source Areas for TCE

As part of the TCE Alternate Source Demonstration, Alliant identified facility buildings in the vicinity of HWMU-5 where chlorinated solvents currently are used or have been used in the past. These buildings and their spatial relationships to HWMU-5 are illustrated in **Figure 2**.

Building 1549 is an Area Maintenance Shop located approximately 300 feet southeast of HWMU-5. According to Area Mechanics who worked in facility B-Line Maintenance, the cleaning of equipment in the 1960's and 1970's involved the use of Varsol and WD-40. Disposal of the used solvents consisted of pouring the solvents down the nearest floor drain. This disposal practice was later discontinued; after that time, the spent solvents were collected in a barrel to be transported by the Roads and Grounds department to a collection area for disposal.

Building 1034 formerly housed a facility laboratory. The building currently houses the Electric and Refrigeration Shop. Building 1034 is located approximately 950 feet southeast of HWMU-5. DuPont Cleaning Solvent #49, one of the solvents commonly used in electric motor cleaning, contains perchloroethylene (PCE). TCE is a daughter product of the degradation of PCE.

Building 1041 is the Degreasing Shop. The building is located approximately 980 feet southeast of HWMU-5. The building formerly contained a dip tank, which now is filled with concrete. Currently, a grate-covered pit in the floor drains to an outside underground storage tank. According to a Senior Instrument Mechanic, the Scale Shop used this building in the past for the cleaning of scales. At times, the scales would be taken outside of the building to be washed off; the wash liquids would be allowed to drain onto the ground surface. According to

the Radford AAP Sewers and Drains Atlas, a four-inch terra cotta pipe runs westward from the western end of Building 1041.

Building 2549 is another Area Maintenance Shop. The building is located approximately 450 feet southwest of HWMU-5.

Building 2570 is an Area Cleaning Station. The building is located approximately 620 feet west of HWMU-5.

Building 525 is the Tractor Steaming Station. The building is located approximately 720 feet southwest of HWMU-5.

#### 3.0 HYDROGEOLOGIC FRAMEWORK

#### 3.1 TOPOGRAPHY

The TCE Area of Concern is located approximately 3,000 feet southwest of the New River. The Area is located on a river terrace which slopes gently downward to the north toward the New River. Surface drainage boundaries are illustrated in **Figure 2**. As shown on **Figure 2**, a surface drainage divide separates Buildings 1034 and 1041 from the other potential source buildings in the TCE Area of Concern and HWMU-5. Surface drainage in the vicinity of Buildings 1034 and 1041 flows to the northeast, while the surface drainage in the vicinity of the other potential source buildings in the TCE Area of Concern and HWMU-5 flows to the northnorthwest.

#### 3.2 GEOLOGIC SETTING

The Valley and Ridge physiographic province consists of folded and thrust-faulted Paleozoic sedimentary rocks ranging in age from Cambrian to Mississippian. Post-deformation weathering of these thrust-faulted and overturned Paleozoic rocks has resulted in the formation of resistant sandstone and dolomite ridges separated by valleys underlain by more easily eroded shale and limestone. Well developed karst features such as sinkholes and caves are common in the Valley and Ridge.

The general geology at Radford AAP consists of limestone/dolomite bedrock covered by weathered residual deposits and/or alluvial deposits. The alluvial deposits consist of typical fluvial deposits of interbedded clay, silt, and sand/gravel deposits with cobble lenses. The thickness of the alluvial deposits ranges from a few feet to approximately 50 feet, with an average thickness of 20 feet. The residual deposits consist of clay, silt, and clasts resulting from the physical and chemical weathering of the parent bedrock. The residual deposits typically underlie the alluvium, except in locations where the residuum has been eroded to bedrock and replaced by alluvium. The thickness of the residual deposits ranges from a few feet to approximately 40 feet. Underlying the alluvium and residuum throughout most of Radford AAP is a series of dolomite, limestone and shale strata known as the Cambrian-aged Elbrook Formation. The Elbrook Formation is the major outcropping formation as well as the predominant karstic formation below the facility. Sinkholes, solution channels, pinnacled surfaces, and springs are common to the Elbrook Formation.

The Boring Logs/Well Construction Diagrams for the monitoring network at HWMU-5 are included in Appendix A. A Cross-Section Location Map for HWMU-5 is presented as Figure 3. Geologic cross-sections derived from the boring logs for the Unit's monitoring wells are presented as Figures 4, 5, and 6. The area surrounding HWMU-5 is underlain by unconsolidated alluvial sediments and weathered bedrock residuum, which are in turn underlain by carbonate bedrock of the Elbrook Formation. The bedrock beneath this area is generally encountered at depths ranging from approximately 28 feet to over 56 feet below ground level, although the soil/bedrock interface is gradational. In general, the bedrock in the vicinity of

monitoring wells 5W8B, 5WC11, 5WC12, and S5W8 slopes downward to the north-northeast, while the bedrock in the vicinity of monitoring wells S5W6 and 5W9A slopes downward to the southwest. This appears to indicate the development of a karst solutional feature in the bedrock in the vicinity of monitoring wells 5W5B, 5WCA, and well cluster 5WC21, 5WC22 and 5WC23.

#### 3.3 KARST HYDROLOGY

#### 3.3.1 Fracture Trace Analysis

A total of 66 fracture traces were identified within and around Radford AAP in a photogeologic study conducted by the USEPA's Environmental Photographic Interpretation Center (EPIC) in 1992. Fracture traces are linear features identified in aerial photographs that represent the surface expression of primary joint sets, major fractures, and/or zones of fracturing in the subsurface. These features may be expressed as soil-tonal variations and vegetational and topographical alignments, and are significant in consideration of groundwater flow at Radford AAP. The fractures and joint sets can act as discrete conduits for groundwater flow, increasing flow rates, and in some cases, redirecting flow away from the expected flow direction. In karst terrains, such features are environmentally significant because solutionization and resulting conduits develop along bedding planes as well as fractures and joints (USEPA, 1992).

The primary fracture traces identified by the 1992 USEPA EPIC study in the vicinity of the TCE Area of Concern are illustrated in **Figure 2**. The fracture lineations appear to be oriented radially, with trends ranging from northeast-southwest to northwest-southeast in the TCE Area of Concern.

#### 3.3.2 Sinkhole Delineation

The locations of sinkholes at Radford AAP were also mapped during the 1992 USEPA EPIC study. In the vicinity of Radford AAP, the strike of bedding in the Elbrook Formation is roughly west/southwest to east/northeast, with dips to the south/southeast. Most of the sinkholes in the vicinity of Radford AAP are oval shaped and elongated with respect to the strike of bedding planes. In some instances, the sinkholes appear to align with respect to the fracture traces. The sinkholes most likely represent bedrock units with a greater carbonate content and lower shale content within the underlying Elbrook Formation (USEPA, 1992).

As mapped by the 1992 USEPA EPIC study, the area surrounding the TCE Area of Concern is characterized by the development of sinkholes without any apparent alignment or preferred orientation (Figure 2). Many of these sinkholes were filled during historic site development; at present, several facility structures are now located on these historic sinkholes. It is probable that there are well developed karst conduits which connect these sinkholes and which convey groundwater as well as aerated surface water during precipitation events at relatively rapid velocities through solution-enhanced fractures and joints.

#### 3.4 OCCURRENCE OF GROUNDWATER

The general hydrogeologic setting for Radford AAP is characterized by porous alluvial sediments overlying weathered and unweathered dolomite and limestone. In areas where the porous alluvial sediments are the uppermost water-bearing zone, groundwater flow is generally from topographically high areas to topographically low areas. In some areas of Radford AAP, the uppermost water-bearing zone is within the limestone and dolomite bedrock. The karst features within the bedrock aquifer can provide conduits for rapid transport of groundwater to the New River, which is the discharge area for regional groundwater flow.

Seasonal variations in precipitation can affect the direction of groundwater flow within the bedrock aquifer at Radford AAP. During wet seasons (high flow conditions), groundwater flow may occur in higher elevation conduits that are not normally saturated during dry seasons (low flow conditions). As a result, flow directions may change significantly as different conduits are accessed. Additionally, flow may short-circuit the predominant flow paths and be redirected, discharging in unexpected areas.

In addition to seasonal variations, groundwater levels within the bedrock aquifer may fluctuate dramatically during heavy precipitation events. Groundwater levels in the karst bedrock aquifer generally respond to heavy precipitation within approximately 14 hours, and may rise several feet in a short time (Engineering-Science, 1994). This condition exists throughout Radford AAP, especially in areas where surface water infiltrates through sinkholes. Stormwater that flows into the sinkholes travels downward rapidly through conduits into the bedrock aquifer. Because groundwater may flow very quickly through these conduits, stormwater infiltrating in the uplands of the facility may discharge to the New River in a matter of a few days following a storm event. The turbulent flow created by these conditions aerates the infiltrating water. The increased O<sub>2</sub> content can significantly affect the chemistry of the groundwater, increasing the concentration of many commonly occurring inorganic analytes. It is this direct connection between surface water and groundwater and the rapid movement of groundwater through the aquifer that is vital to interpreting the migration of both naturally occurring and released constituents in the groundwater at Radford AAP.

The monitoring wells at HWMU-5 are screened entirely within either weathered carbonate bedrock residuum or alluvium, or across the weathered residuum/carbonate bedrock interface. Static water levels measured during the Fourth Quarter 2000 monitoring event ranged from 1754.07 feet to 1772.49 feet above mean sea level. As shown on the Potentiometric Surface Map (Figure 7), groundwater movement beneath the site is generally to the northeast. The groundwater contours and the topography in this area suggest that the TCE Area of Concern is located on a river terrace that contains several karst features and drains north toward the New River.

## 3.5 RELATION OF HYDROGEOLOGIC FEATURES TO POTENTIAL SOURCES OF TCE

Area Maintenance Shop Building 1549 is located on a large historic sinkhole measuring approximately 430 feet by 200 feet (**Figure 2**). A smaller historic sinkhole (approximately 150 feet by 130 feet) is located approximately 80 feet north of the large sinkhole. Monitoring wells 5WCA, 5W5B, and nested wells 5WC21, 5WC22, and 5WC23 are located within this smaller sinkhole. It is likely that these two sinkholes are connected by well-developed karst conduits. According to facility personnel, past disposal practices at Building 1549 involved pouring used solvents into floor drains. Liquids released to the subsurface through floor drains or spilled on the ground surface in the vicinity of Building 1549 would percolate to the groundwater through the soil filling the large sinkhole. Karst conduits would convey groundwater from the larger sinkhole to the smaller sinkhole containing monitoring wells 5WCA, 5W5B, and nested wells 5WC21, 5WC22, and 5WC23. As discussed in Section 4.0, these are the wells that consistently exhibit TCE concentrations in exceedance of the USEPA MCL of 5 µg/l.

Electric and Refrigeration Shop Building 1034 and Degreasing Shop Building 1041 are separated from the TCE Area of Concern by a surface drainage divide. However, as shown on Figure 2, Buildings 1034 and 1041 are located near two fracture traces which trend through the large sinkhole upon which Building 1549 is located. As indicated by facility personnel, past practices at Building 1041 included cleaning scales by washing them outside of the building, with the wash liquids allowed to drain to the ground surface. Liquids released to the subsurface through floor drains, the UST system and/or the former dip tank associated with Building 1041, or spilled on the ground surface in the vicinity of Buildings 1034 and 1041 would flow northeastward and percolate through the soil to the groundwater. Any subsurface flow from the vicinity of these buildings possibly would be intercepted by the fracture trace located to the northeast and conveyed to the sinkhole underlying Building 1549, and be conveyed to the sinkhole containing monitoring wells 5WCA, 5W5B, and nested wells 5WC21, 5WC22, and 5WC23. Furthermore, waste solvents could be conveyed by the four-inch terra cotta pipe running westward from the western end of Building 1041, released to the subsurface and intercepted by the fracture trace located to the west of the buildings. This fracture trace also would convey any liquids to the large sinkhole underlying Building 1549.

Buildings 525, 2549, and 2570 are not expected to have contributed to the TCE concentrations detected at the site. The anticipated groundwater flow direction in the vicinity of these three buildings is to the north-northeast, away from HWMU-5. As shown on **Figure 2**, there are no karst conduits interpreted to be in the vicinity that would intercept groundwater flow from the area of these buildings.

#### 4.0 GROUNDWATER ANALYTICAL RESULTS

#### 4.1 HISTORIC TCE CONCENTRATIONS

Graphs of the historic TCE concentrations detected in the monitoring network for HWMU-5 are presented in **Appendix B**. The graphs were compiled using quarterly groundwater monitoring data from First Quarter 1995 through Fourth Quarter 2000. As shown on the graphs, TCE has been detected repeatedly at concentrations exceeding the USEPA MCL of 5 μg/l in downgradient monitoring wells 5W5B, 5WC21, 5WC22, and 5WC23. During First Quarter 1999, TCE was detected at a concentration of 7.4 μg/l in downgradient well 5W10A; however, this detection is considered to be an anomaly, as TCE has never been detected in well 5W10A at any other time. Minor detections of TCE at concentrations less than 1 μg/l have been observed occasionally in upgradient well 5W8B and in downgradient wells 5W7B and 5W9A. TCE has never been detected in monitoring wells S5W5, S5W7, or 5W11A; it should be noted that these three wells are located on the opposite sides of fracture traces from the remaining wells in the monitoring network (**Figure 2**).

#### 4.2 DECEMBER 12-14, 2000 GROUNDWATER SAMPLING EVENT

On December 12-14, 2000, groundwater samples were collected from nine (9) monitoring wells at HWMU-5 in support of the TCE Alternate Source Demonstration. Five of the monitoring wells sampled (upgradient well 5W8B, downgradient well 5W5B, and nested wells 5WC21, 5WC22, and 5WC23) are part of the current monitoring network for the Unit. In addition, four observation wells (upgradient wells 5WC11, 5WC22, and S5W8 and sidegradient well 5WCA) were also sampled. These observation wells were included in this sampling event as part of the effort to determine whether the TCE concentrations detected in wells 5W5B, 5WC21, 5WC22, and 5WC23 were from a source upgradient and/or sidegradient from HWMU-5.

The groundwater samples were submitted to REI Consultants Inc. (REIC) in Beaver, West Virginia for analysis for volatile organic compounds using SW846 Method 8260B. Validation of the laboratory data by Draper Aden Associates revealed that the laboratory failed to meet mandatory instrument tuning and calibration requirements. The laboratory's failure to identify and address these deficiencies resulted in compromised data for the sampling event. As a result, the analytical data had to be rejected. Alliant plans to resample the nine wells in support of the TCE Alternate Source Demonstration in March 2001; the validated data from that event will be forwarded to the VDEQ when it becomes available.

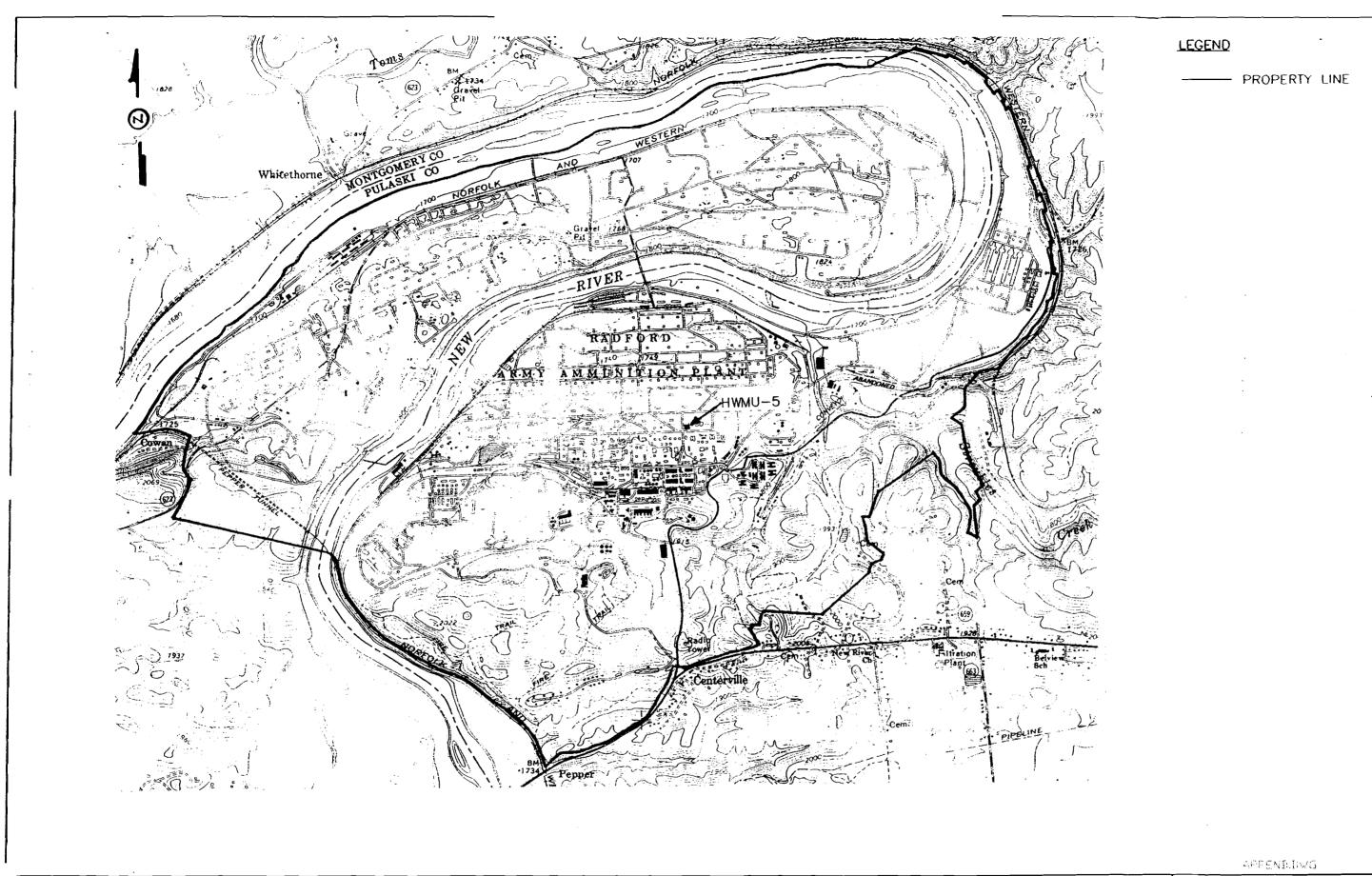
Although the analytical results for the December 12-14, 2000 sampling event were rejected, it was determined that the data could be used to provide a non-quantitative determination of the presence or absence of volatile organic compounds. Of the volatile compounds for which the samples were analyzed, only TCE was detected. TCE was detected in monitoring wells 5WCA, 5W5B, and nested wells 5WC21, 5WC22, and 5WC23, all of which

are located in a historic sinkhole. TCE was not detected in upgradient wells 5W8B, 5WC11, 5WC12, and S5W8.

#### 5.0 CONCLUSIONS

Historic information regarding operations at HWMU-5 prior to closure indicates that the wastes processed through the Unit did not contain TCE. A review of Radford AAP cleaning and maintenance practices in the vicinity of HWMU-5 has identified areas in which chlorinated solvents have been used. An evaluation of historic waste disposal practices in these areas indicates the potential for groundwater impact from these operations. Hydrogeologic features such as fracture traces and sinkholes in this area would be conducive to the transport of impacted groundwater from these potential source areas to certain monitoring wells within the groundwater monitoring network for HWMU-5. Only these certain monitoring wells (5W5B, 5WC21, 5WC22, and 5WC23) consistently exhibit TCE concentrations in exceedance of the USEPA MCL of 5 µg/l.

Based on these factors, it is Alliant's conclusion that the detected TCE concentrations are derived from a source other than HWMU-5. As a result, Alliant respectfully requests that TCE be removed from the list of constituents of concern in the Post-Closure Permit for HWMU-5. Remediation of TCE in groundwater in this area will fall under the jurisdiction of Radford AAP's USEPA Region III Corrective Action Program. With this TCE Alternate Source Demonstration, Alliant hereby provides USEPA Region III with notice of a new Area of Concern at Radford AAP.


#### 6.0 REFERENCES

Engineering-Science, Inc. March 1994. Dye-Tracing Study Report, Radford Army Ammunition Plant. Prepared for the U.S. Army Environmental Center.

Radford North, Virginia 7.5-minute topographic quadrangle map. 1984. USGS. Reston, VA.

U.S. Environmental Protection Agency (USEPA). 1992. Installation Assessment, Radford Army Ammunition Plant, Radford, Virginia. Environmental Photographic Interpretation Center.

**FIGURES** 



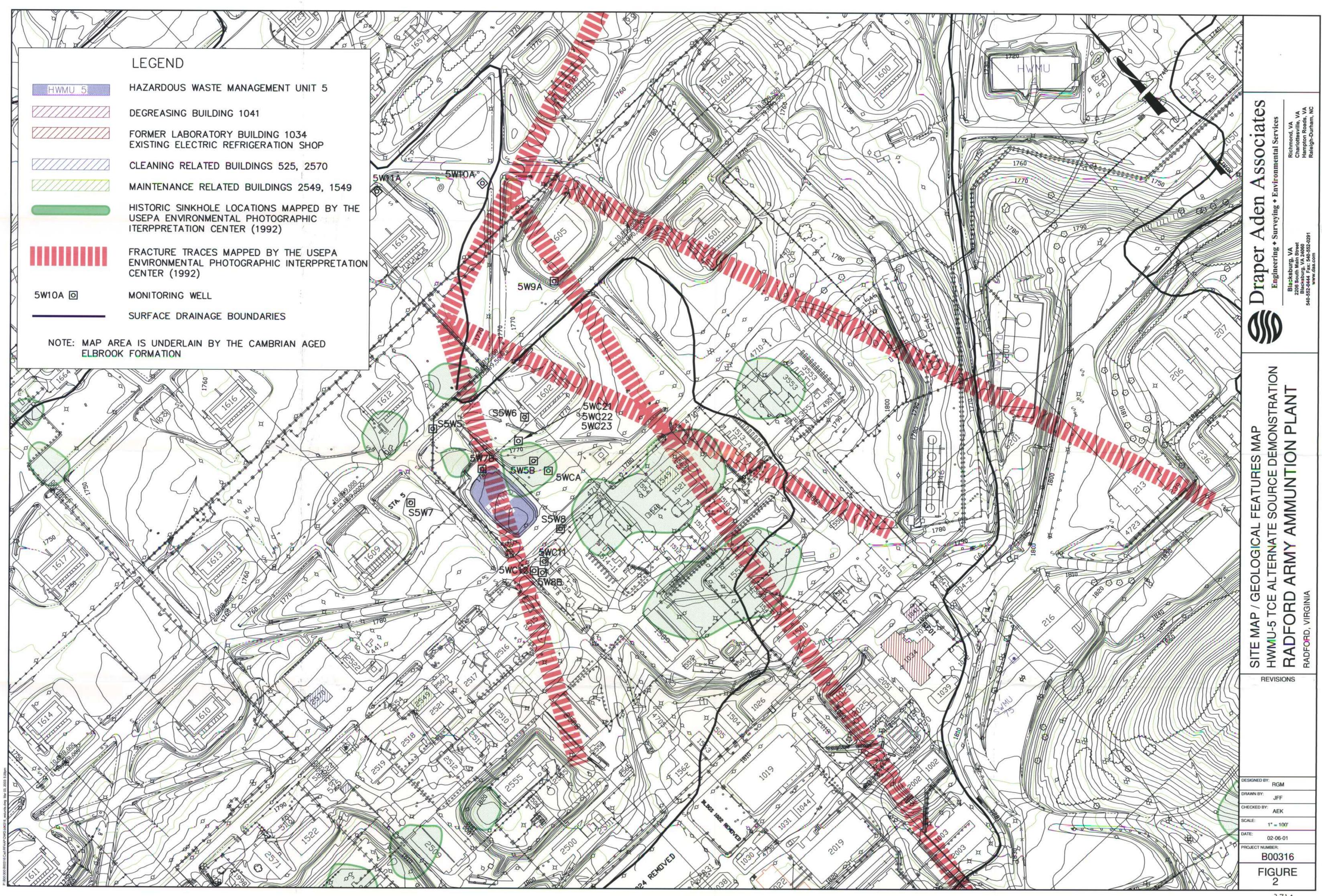
Super Aden Associates

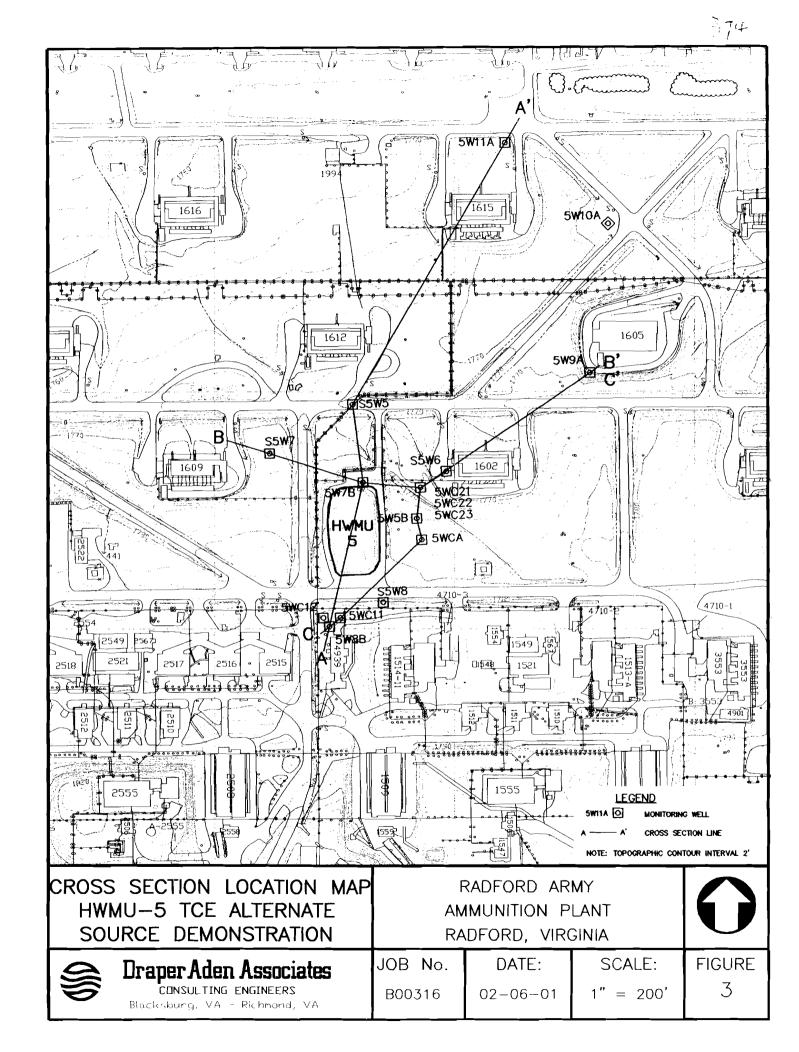
CONSULTING ENGINEERS

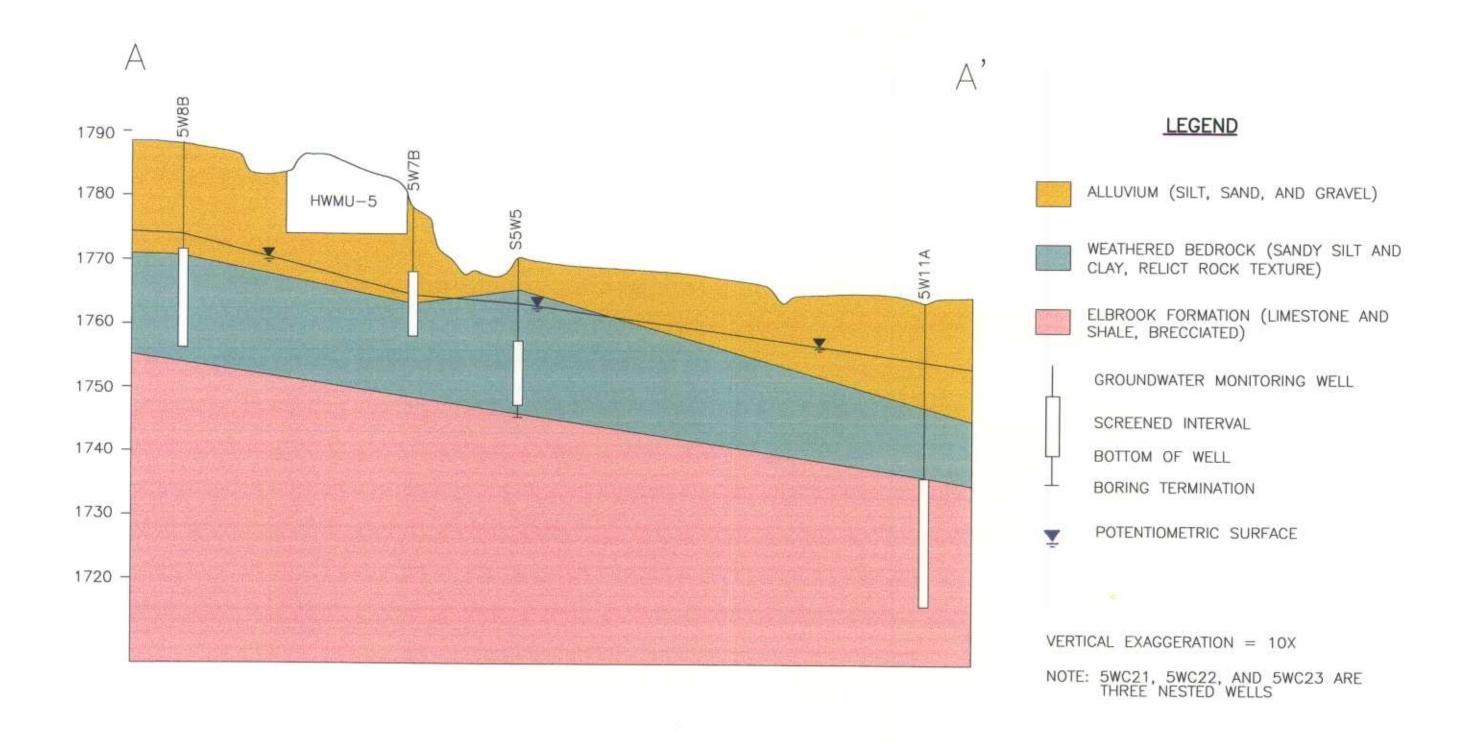
Blacksburg, Vicginia - Richmond, Virginia - Nashville, Tehnessee

DESIGNED RGM DRAWN JFF CHECKED AEK DATE 6-11-97

SITE LOCATION MAP


RADFORD ARMY AMMUNITION PLANT


MONTGOMERY COUNTY, VIRGINIA


SCALE: 1" = 2000' FIGURE

PLAN NO. B00316

1



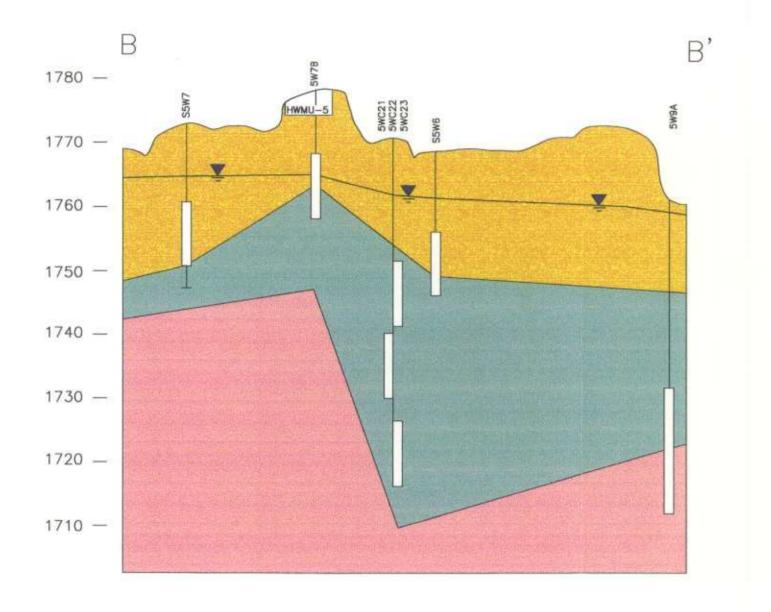






DESIGNED DRAWN RGM BTM CHECKED AEK DATE 02-10-01

GEOLOGIC CROSS-SECTION A-A' - HWMU 5 TCE ALTERNATE SOURCE DEMONSTRATION SCALE: RADFORD ARMY AMMUNITION PLANT RADFORD, VIRGINIA


H:1"=150' V:1"=15'

WWW.HE-CRE-KE.DWG

PLAN NO. B00316

4

**FIGURE** 



#### LEGEND

ALLUVIUM (SILT, SAND, AND GRAVEL)

WEATHERED BEDROCK (SANDY SILT AND CLAY, RELICT ROCK TEXTURE)

ELBROOK FORMATION (LIMESTONE AND SHALE, BRECCIATED)

GROUNDWATER MONITORING WELL

SCREENED INTERVAL

BOTTOM OF WELL

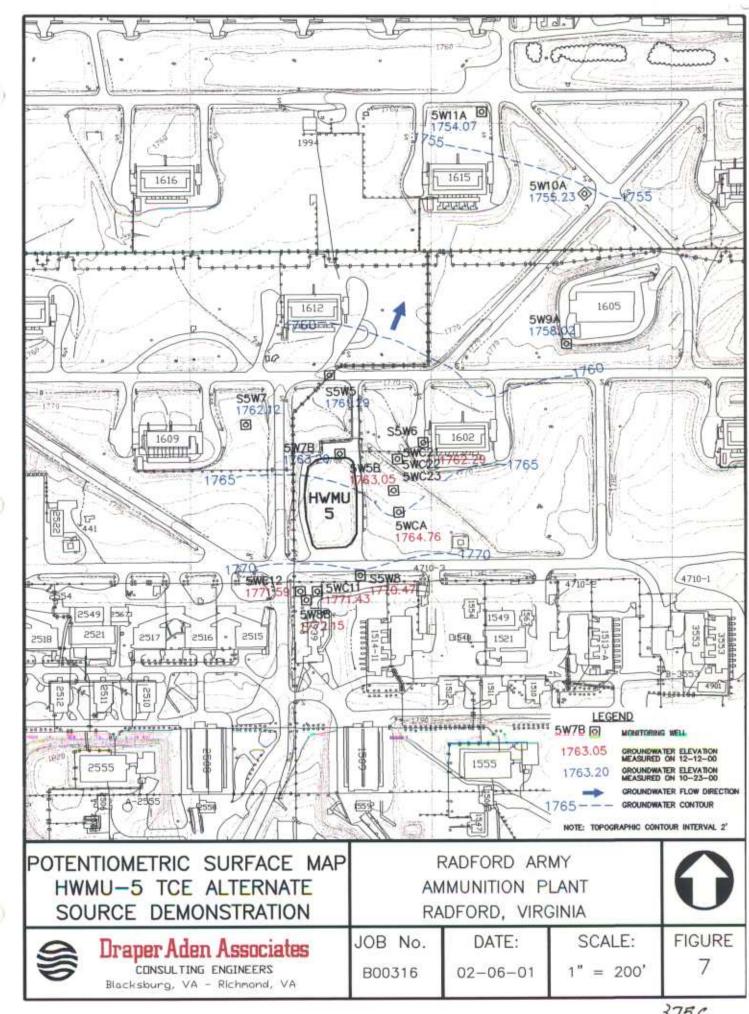
BORING TERMINATION

POTENTIOMETRIC SURFACE

VERTICAL EXAGGERATION = 10X

NOTE: 5WC21, 5WC22, AND 5WC23 ARE THREE NESTED WELLS

GEOLOGIC CROSS-SECTION B-B' -HWMU 5 TCE ALTERNATE SOURCE DEMONSTRATION RADFORD, VIRGINIA


SCALE: H:1"=150' V:1"=15'

V.1 -10

PLAN NO. B00316

5

**FIGURE** 



#### APPENDIX A

MONITORING WELL BORING LOGS/CONSTRUCTION DIAGRAMS

### RAAP

| UNIT 5        |          | 02/07/95 |       |          |        |           |         |         |        |      |        |        |
|---------------|----------|----------|-------|----------|--------|-----------|---------|---------|--------|------|--------|--------|
| WELLS         | TYPE     | STATUS   | TD    | DATE     | BORING | COMPLETIO | DATUM   |         |        |      | SCREEN |        |
|               | <u> </u> |          |       | DRILLED  | LOG    | DIAGRAM   | G.L.    | T.O.C.  | LENGTH | SIZE | SLOT   | TYPE   |
| W8-B          | UP/BG    | ACTIVE   | 31.50 | 02/16/83 | YES    | YES       | 1787.58 | 1789.55 | 15.00  | 2.00 | 0.04   | PVC    |
| 5WC2-1        | POC      | ACTIVE   | 61,50 | 02/10/03 | 125    | 123       | 1772.10 | 1774.43 | 15,00  | 2,00 | 0.01   | FVC    |
| W5-B          | POC      | ACTIVE   |       |          | YES    | YES       | 1773.13 | 1775.08 | 10.00  | 2.00 | 0.01   | PVC    |
| W7-B          | POC      | ACTIVE   | 20.00 |          | YES    | YES       | 1772.78 | 1774.90 | 10.00  | 2.00 |        | PVC    |
| 5WC2-2        | ASMT     | ACTIVE   |       |          |        |           | 1771.99 | 1774.45 | ,,,,,  | 4,0- |        |        |
| 5WC2-3        | ASMT     | ACTIVE   |       |          |        |           | 1771.28 | 1773.84 |        |      |        |        |
| S5W- <b>5</b> | ASMT     | ACTIVE   | 25,00 | 04/05/81 | YES    | YES       | 1769.81 | 1771.74 | 10.00  | 2.00 | PVC40  |        |
| S5W-6         | ASMT     | ACTIVE   |       |          |        |           | 1769.42 | 1771.43 |        |      |        |        |
| S5W-7         | ASMT     | ACTIVE   | 26.00 | 04/05/81 |        | YES       | 1773.08 | 1775.06 | 10.00  | 2.00 | PVC40  |        |
| W10-A         | ASMT     | ACTIVE   |       |          | YES    |           | 1768.42 | 1770.79 | 20.00  |      |        | TEFLON |
| W11-A         | ASMT     | ACTIVE   |       |          | YES    |           | 1764.70 |         |        |      |        |        |
| W9-A          | ASMT     | ACTIVE   |       |          | YES    |           | 1761.07 | 1761.82 |        |      |        |        |
| 5WC1-2        |          | SWL      |       |          |        |           | 1787.43 | 1789.89 |        |      |        |        |
| 5WCA          | POC      | SWL      |       |          |        |           | 1777.37 | 1779.96 |        |      |        |        |
| 5WC1-1        | UP       | SWL      |       |          |        |           | 1787.55 |         |        |      |        |        |
| S5W-8         | UP       | SWL      | 34.00 | 04/05/81 | YES    |           | 1783.51 | 1784.77 | 5.00   | 2.00 | PVC40  |        |
| S5W-8         | UP       | SWL      |       |          |        |           | 1787.02 | 1785.28 |        |      |        |        |

RAAP UNIT 5

| WELLS  |           |       | GROU | T    | ANNULAR | SEALANT | FILTER P | ACK   | hydraulic o | onductivity |
|--------|-----------|-------|------|------|---------|---------|----------|-------|-------------|-------------|
|        | TOP       | BASE  | TOP  | BASE | TOP     | BASE    | TOP      | BASE  | K (ft/sec)  | K (cm/sec)  |
|        |           |       |      |      |         |         |          |       |             |             |
| W8-B   | 16.50     | 31.50 |      |      |         |         |          |       | 3.84E-04    | 1.17E-02    |
| 5WC2-1 | (1749.80) |       |      |      |         |         |          |       | 3.14E-06    | 9.58E-05    |
| W5-B   | 10.00     | 20.00 | 0.00 | 6.00 | 8.00    | 10.00   | 8.00     | 20.00 |             |             |
| W7-B   | 10.00     | 20.00 |      |      |         |         |          |       |             |             |
| 5WC2-2 | (1749.80) |       |      |      |         |         |          |       | 2.52E-05    | 7.69E-04    |
| 5WC2-3 | (1725.39) |       |      |      |         |         |          |       | 2.76E-05    | 8.42E-04    |
| S5W-5  | 13.00     | 23.00 |      |      |         |         |          |       |             |             |
| S5W-6  | (1755.42) |       |      |      |         |         |          |       |             |             |
| S5W-7  | 12.00     | 22.00 |      |      |         |         |          |       |             |             |
| W10-A  | (1745.77) |       |      |      |         |         |          |       |             |             |
| W11-A  | (1735.90) |       |      |      |         |         |          |       |             |             |
| W9-A   | (1729.85) |       |      |      |         |         |          |       |             |             |
| 5WC1-2 | (1721.63) |       |      |      |         |         |          |       | 1.10E-06    | 3.36E-05    |
| 5WCA   | (1747.27) |       |      |      |         |         |          |       | 2.37E-07    | 7.23E-06    |
| 5WC1-1 | (1745.25) |       |      |      |         |         |          |       | 9.60E-06    | 2.93E-04    |
| S5W-8  | 29.00     | 34.00 |      |      | *       |         |          |       |             |             |
| S5W-8  | (1757.52) |       |      |      |         |         |          |       |             |             |

# Betz-Converse-Murdoch-Inc. BOM UNIT 5 Drilling Log W-9B

| Well Humbe                             | er <u>W-</u>                                                            | -8-B                                              | <u>.</u>                                                                                                                                                   |                                                                                    | •                                                                                 |
|----------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Client <u>Co</u><br>Well Locat         | rps of Eng                                                              | <u>ineers/Rad</u><br>dient from                   | ford AAP<br>lagoon No. 5                                                                                                                                   | Project No                                                                         | 00-0008-01                                                                        |
| Surface El<br>Casing Mat<br>Grouting I | evation 17 erial and ype sand Haterial a terial and tatic Wate t Hethod | Size 2" ID cement and Size 2" d Size No.er 17'4"* | lagoon No. 5  am  Hole Diameter nominal 4" Sample Interval 5' spoon asing Top Elevation 1789 PVC threaded couples  ID PVC 0.010" slots 1 sand Date 2/18/83 | 55 Total Wel<br>Cased Interva<br>Grouted Inter<br>Screened Inter<br>Packed Interva | ield on as now                                                                    |
| Comments _                             |                                                                         |                                                   | ETCH MAP                                                                                                                                                   | WELL DETA                                                                          | IL (A) PSP                                                                        |
|                                        | recovery<br>ed from to                                                  |                                                   | (MTE)                                                                                                                                                      | STEEL                                                                              | GRAPE                                                                             |
| casing                                 |                                                                         |                                                   | HWM<br>5<br>LAGOON                                                                                                                                         | 11.5                                                                               | Sch 80 PVC  CASIME  CASIME  Gentalte  Screw Corple  2' ID  a. DI Slot  PVC Screen |
|                                        |                                                                         |                                                   | • W-8B                                                                                                                                                     |                                                                                    | Na 1 5 Aug                                                                        |
| Nepth<br>Scale                         | Sample                                                                  | Spoon<br>Blows                                    | Descriptio                                                                                                                                                 | n of Materials                                                                     |                                                                                   |
| 0 - 1.5                                | spoon                                                                   | 1-5-6                                             | medium brown to orange b                                                                                                                                   | rown silty cla                                                                     | with angular                                                                      |
| 5 - 6.5<br>10 - 11.5                   | spoon<br>spoon                                                          | 1-2-2<br>3-6-14                                   | medium orange brown silt<br>slightly moist mottled o<br>fine sand                                                                                          |                                                                                    |                                                                                   |
| 14'4"<br>15 - 16.5                     | spoon                                                                   | 11-17-45                                          | coarse sand and gravel l<br>poorly sorted mix of sand<br>downward:gravel ends at                                                                           | d silt gravel o                                                                    | clay; coarsening                                                                  |
| 20 - 21.5-<br>25 - 26.5<br>30 - 31.5   | spoon<br>spoon<br>spoon                                                 | 5-5-8<br>1-2-2<br>1-3-2                           | mottled orange/red brown wet soft brown clay with wet medium orange brown                                                                                  | clay, moist silt and fine                                                          |                                                                                   |
| end of hol                             | e at 31.5'                                                              |                                                   |                                                                                                                                                            |                                                                                    |                                                                                   |
| · ·                                    |                                                                         |                                                   |                                                                                                                                                            |                                                                                    |                                                                                   |
| · · · · · · · · · · · · · · · · · · ·  |                                                                         |                                                   |                                                                                                                                                            |                                                                                    |                                                                                   |

# Betz-Converse-Murdoch-Inc.

UNITS W-5B

Drilling Log

| Well Humber _ N                                                                                                                                                                                                        | Well Humber W-5B      |                                                                                                |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Client Corns                                                                                                                                                                                                           | of Engineers          | , RAAP, Radford, VA Project No. 00-0008-01                                                     |  |  |  |  |  |  |
| Well Location                                                                                                                                                                                                          | East of HWM           | Lagoon                                                                                         |  |  |  |  |  |  |
| Driller/Company                                                                                                                                                                                                        | y <u>M. Dean, C</u>   | unningham Core Drilling and Grouting Corp, Salem, VA                                           |  |  |  |  |  |  |
| Urilling Method                                                                                                                                                                                                        | <u>Fishtail</u>       | Hole Diameter 4.5" Date(s) Drilled 8/17-18/83  Sample Interval 5' No. Samples Retained 4       |  |  |  |  |  |  |
| Drilling Method Fishtail Hole Diameter 4.5" Date(s) Drilled 8/17-18/83 Sample Type Split Spoon Sample Interval 5' No. Samples Retained 4 Surface Elevation 1773.13 Casing Top Elevation 1775.08'* Total Well Depth 22' |                       |                                                                                                |  |  |  |  |  |  |
| Casing Material                                                                                                                                                                                                        | l and Size 2"         | ID Sch. 80 PVC Cased Interval(s) 0-10'                                                         |  |  |  |  |  |  |
| Grouting Type                                                                                                                                                                                                          | Portland Ce           | ment with Sand Grouted Interval 0-6'                                                           |  |  |  |  |  |  |
| Screening Mater                                                                                                                                                                                                        | rial and Size         | 2" ID 0.01 Slotted PVC Screened Interval(s) 10-20'                                             |  |  |  |  |  |  |
| Packing materia                                                                                                                                                                                                        | and Size F            | ne to Coarse Silica Sand Packed Interval 8-20' (T.O.C.) Date 8/19/83 Approx Well Yield < 1 gpm |  |  |  |  |  |  |
| Development Met                                                                                                                                                                                                        |                       | (T.O.C.) Date 84-19/83 Approx Well Yield < 1 gpm Development Time 4 hours                      |  |  |  |  |  |  |
| Logged by:D                                                                                                                                                                                                            |                       |                                                                                                |  |  |  |  |  |  |
| Comments                                                                                                                                                                                                               |                       | CKETCH MAD                                                                                     |  |  |  |  |  |  |
| 1) Drilling wa                                                                                                                                                                                                         |                       | SKETCH MAP WELL DETAIL PROTECTIVE                                                              |  |  |  |  |  |  |
| obtained fr                                                                                                                                                                                                            |                       | STEEL!                                                                                         |  |  |  |  |  |  |
| <u>hydrants</u>                                                                                                                                                                                                        |                       |                                                                                                |  |  |  |  |  |  |
| 2) Replaces we                                                                                                                                                                                                         |                       |                                                                                                |  |  |  |  |  |  |
| 3) Bentonite p<br>in the 8-10                                                                                                                                                                                          |                       | HWM BENTON LITE                                                                                |  |  |  |  |  |  |
| interval                                                                                                                                                                                                               |                       |                                                                                                |  |  |  |  |  |  |
| 1) Depth to wa                                                                                                                                                                                                         | ter table             | LAGOON 2"TD CO!                                                                                |  |  |  |  |  |  |
| measured_fr                                                                                                                                                                                                            |                       | SILIENTED                                                                                      |  |  |  |  |  |  |
| of the stee                                                                                                                                                                                                            | l_casing              | CAND - PUC SCREEN                                                                              |  |  |  |  |  |  |
|                                                                                                                                                                                                                        |                       | <del>╂╀╏┧┩╏╏┩╂╇╇╬╃╃╃╃╃┩</del> ╟ <del>╬╬╬╬╬╬╬╬╬╬╬╬╬</del>                                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                        |                       |                                                                                                |  |  |  |  |  |  |
| *Top of steel o                                                                                                                                                                                                        | casing                | I BOITOM CAP                                                                                   |  |  |  |  |  |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                  | t                     |                                                                                                |  |  |  |  |  |  |
| Depth Sam                                                                                                                                                                                                              | Spoor                 |                                                                                                |  |  |  |  |  |  |
| Scale Sam                                                                                                                                                                                                              | iple   Spoot<br>Blows |                                                                                                |  |  |  |  |  |  |
| <del></del>                                                                                                                                                                                                            | <del></del>           |                                                                                                |  |  |  |  |  |  |
| 5-6.5 Spo                                                                                                                                                                                                              | on 2-3-4              | Somewhat mottled buff to orange-brown fine sandy and silty clay                                |  |  |  |  |  |  |
| 10-11.5 Spor                                                                                                                                                                                                           | on 4-7-9              | Tan Clay with fine to coarse sand                                                              |  |  |  |  |  |  |
| 15-16.5 Spor                                                                                                                                                                                                           | on 4-5-7              | Tan clay with scattered sand                                                                   |  |  |  |  |  |  |
| 20-21.5 Spor                                                                                                                                                                                                           | on 2-2-4              | Rrown sandy-clay:                                                                              |  |  |  |  |  |  |
| 22                                                                                                                                                                                                                     |                       | End of hole                                                                                    |  |  |  |  |  |  |
|                                                                                                                                                                                                                        |                       | <del></del>                                                                                    |  |  |  |  |  |  |
|                                                                                                                                                                                                                        |                       |                                                                                                |  |  |  |  |  |  |
|                                                                                                                                                                                                                        |                       | <del>-  </del>                                                                                 |  |  |  |  |  |  |
|                                                                                                                                                                                                                        |                       | <del></del>                                                                                    |  |  |  |  |  |  |
| <del></del>                                                                                                                                                                                                            | <del></del>           |                                                                                                |  |  |  |  |  |  |
| <u> </u>                                                                                                                                                                                                               |                       |                                                                                                |  |  |  |  |  |  |
|                                                                                                                                                                                                                        |                       |                                                                                                |  |  |  |  |  |  |
|                                                                                                                                                                                                                        |                       |                                                                                                |  |  |  |  |  |  |
|                                                                                                                                                                                                                        |                       |                                                                                                |  |  |  |  |  |  |
|                                                                                                                                                                                                                        |                       | <del></del>                                                                                    |  |  |  |  |  |  |
|                                                                                                                                                                                                                        |                       |                                                                                                |  |  |  |  |  |  |

### Betz-Converse-Murdoch-Inc.

UNITS W-7B

Drilling Log

| Well Humbe              | er <u>W-7B</u>    |                      | _                                                                                                                                                      |
|-------------------------|-------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client Co               | rps of Eng        | ineers, RA/          | AP, Radford, VA Project No. 00-0008-01                                                                                                                 |
| Well Local              | tion Nort         | h of HWM5 L          | agoon                                                                                                                                                  |
| Driller/Co              | ompany <u>M.</u>  | Dean, Cunr           | ningham Core Drilling and Grouting Corp, Salem, VA                                                                                                     |
| Drilling N              | Method Fis        | <u>htail/Core</u>    | Hole Diameter 4.5" Date(s) Drilled 8/18/83                                                                                                             |
| Sample Type             | pe <u>Split S</u> | poon                 | Sample Interval 5' No. Samples Retained 4 Casing Top Elevation 1774.90'* Total Well Depth 20'                                                          |
| Surface El              | levation ]        | 772.78               | Casing Top Elevation 1774.90'* Total Well Depth 20'                                                                                                    |
|                         |                   |                      | O Sch. 80 PVC Cased Interval(s) U-10' The with Sand Grouted Interval O-6'                                                                              |
| Second                  | Mata Por          | tland Cemer          | to it for Jana                                                                                                                                         |
| Screening<br>Dacking Ma | racerial and      | d Size r:            |                                                                                                                                                        |
| Denth to                | Static Wate       | ar 12 501            | ne to coarse silica sand Packed Interval 8-20' (T.O.C.)Date 8/19/83 Approx Well Yield < 1 gpm                                                          |
| Developmen              | nt Method         | 13.30 J              | Development Time 4 hours                                                                                                                               |
| Logged by:              |                   |                      | Development   Time 4 Hours                                                                                                                             |
| Comments _              |                   | Sx                   | ETCH MAP WELL DETAIL ANT OTT                                                                                                                           |
| 1) Drillin              | ng water o        | btained              |                                                                                                                                                        |
| from R                  | AAP hydran        | ts +4                | (NTS) W-16 PROT STEEL CAISING                                                                                                                          |
| 2) Replace              | es well W-        | 7                    | <del>▗▊▗▎▃▊▃▊▃▊▃▐▗▕▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗</del> ▗▄▗▄▄▄▄▄▄▄▊▃ <del>▊▄▗▄▄▄▄▄▄▄▊▊</del> ▞ <del>▄▄▐▞▀▀</del> ▃▗▙▄ <del>▞▀</del> ▞▃ <del>▙▀</del> ▐ <del>▀</del> ▀ |
| 3) Benton               | <u>ite pellet</u> | seal in              | 2 TD PVC                                                                                                                                               |
|                         | 3' annular        | inter-               | GROUT + d                                                                                                                                              |
| val                     |                   |                      | GROUT +1 d DELETION                                                                                                                                    |
| 4) Depth_1              |                   |                      | LAGOON BENTON ITE                                                                                                                                      |
|                         | ed from the       |                      |                                                                                                                                                        |
|                         | <u>steel cas</u>  | ing                  | SILICA I I DI D-07                                                                                                                                     |
| 5) Core si              | ize: HW           | — Ш                  |                                                                                                                                                        |
|                         |                   |                      | SAMO SCAFEN                                                                                                                                            |
|                         |                   | <del>         </del> | <del>╶╎┧┧┦┦╏┦┦┦┦┦┦┦</del> ┼┼ <del>┦┦</del> ┩╏┼┼┼┼ <b>┼╗╗╂┼┼</b> ┼┼┼                                                                                    |
|                         | <del></del>       | 🖽                    |                                                                                                                                                        |
| *Iop of st              | eel_casing        | —— <del>П</del>      | Bottand dap                                                                                                                                            |
|                         |                   |                      |                                                                                                                                                        |
| thرے                    | Cample            | Spoon                | Description of Matorials                                                                                                                               |
| Scale                   | Sample            | Blows                | Description of Materials                                                                                                                               |
|                         |                   |                      |                                                                                                                                                        |
| 5-6.5                   | Spoon             | 5-7-4                | Light reddish-brown very silty fine sand with mica,                                                                                                    |
| 10 11 5                 | <u> </u>          | 2-3-4                | black lignite, and some clay Light reddish-brown very silty fine sand with                                                                             |
| 10-11.5                 | Spoon             | 2-3-4                |                                                                                                                                                        |
| 15-16.5                 | Spoon             | 6-9-19               | mica, black lignite, and some clay Orange-red and tan brecciated decomposed shale with a                                                               |
| 13-10-3                 | 30000             | 10-2-13              | clay matrix and some lignite                                                                                                                           |
| 20-21.5                 | Spoon             | 5-2-4                | Orange-red and tan brecciated decomposed shale with a                                                                                                  |
| _ `                     | _                 |                      | clay matrix and some lignite.                                                                                                                          |
| 20                      |                   |                      | End of hole.                                                                                                                                           |
|                         |                   |                      |                                                                                                                                                        |
|                         |                   | ļ                    |                                                                                                                                                        |
|                         | <u> </u>          |                      |                                                                                                                                                        |
| -                       |                   |                      |                                                                                                                                                        |
|                         |                   |                      |                                                                                                                                                        |
|                         |                   |                      |                                                                                                                                                        |
|                         |                   |                      |                                                                                                                                                        |
| <del></del>             |                   |                      |                                                                                                                                                        |
|                         |                   |                      |                                                                                                                                                        |
|                         |                   | +                    |                                                                                                                                                        |

## W-7B

### Betz-Converse-Murdoch-Inc.

#### Drilling Log

Well Number W-7B

|                         |                                                                           |                                                  | AP, Radford, VA Project No. 00-0008-01                             |  |  |  |  |  |
|-------------------------|---------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|--|
|                         |                                                                           | h of HWM5 L                                      |                                                                    |  |  |  |  |  |
|                         |                                                                           |                                                  | ningham Core Drilling and Grouting Corp, Salem, VA                 |  |  |  |  |  |
| Drilling A              | lethod Fis                                                                | htail/Core                                       | Hole Diameter 4.5" Date(s) Drilled 8/18/83                         |  |  |  |  |  |
| Sample Typ              | pe <u>Split S</u>                                                         | poon S                                           | ample Interval 5 No. Samples Retained 4                            |  |  |  |  |  |
|                         |                                                                           |                                                  | asing Top Elevation 1774.90'* Total Well Depth 20'                 |  |  |  |  |  |
|                         |                                                                           |                                                  | Sch. 80 PVC Cased Interval(s) U-10                                 |  |  |  |  |  |
| Grouting                | ype <u>Por</u>                                                            | tland Cemer                                      | t with Sand Grouted Interval 0-6'                                  |  |  |  |  |  |
| Screening               | material a                                                                | and Size 2"                                      | ID 0.01 Slotted PVC Screened Interval(s) 10-20'                    |  |  |  |  |  |
| Packing Ma              | acking Material and Size Fine to coarse silica sand Packed Interval 8-20' |                                                  |                                                                    |  |  |  |  |  |
| Depth to                | Static wate                                                               | er <u>13.58'(</u>                                | T.O.C.)Date 8/19/83 Approx Well Yield < 1 gpm                      |  |  |  |  |  |
| vevelopmer              | nt Method                                                                 | <u>Air</u>                                       | Development Time 4 hours                                           |  |  |  |  |  |
| Logged by:              | :D. J                                                                     | <u>Varner</u>                                    | <del></del>                                                        |  |  |  |  |  |
| Comments                |                                                                           | . Cr                                             | ETCH MAP WELL DETAIL TANTED                                        |  |  |  |  |  |
| Comments _<br>1) Drilli | ng water o                                                                | btained                                          | _                                                                  |  |  |  |  |  |
| from R                  | AAP hydran                                                                | ts 4                                             | WT3) W-76 PROT STEEL                                               |  |  |  |  |  |
|                         | es well W-                                                                | <del>-                                    </del> | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                            |  |  |  |  |  |
|                         | ite pellet                                                                |                                                  | <del>*+++++++                               </del>                 |  |  |  |  |  |
| the 6-8                 | 3' annular                                                                | inter-                                           | DIE PVE                                                            |  |  |  |  |  |
| val                     | J aimaiai                                                                 | <del></del>                                      | GRANTO OF CASING                                                   |  |  |  |  |  |
|                         | to water t                                                                | able H                                           | BENITON 178                                                        |  |  |  |  |  |
|                         | ed from the                                                               |                                                  | LAGOM                                                              |  |  |  |  |  |
|                         | steel cas                                                                 |                                                  | <del>╃┼┼╀<u>┇┇╏╏</u>╟┼┼┼┼┼┼┼</del> ┩┢ <del>┾╅┼┼╏</del> ┋╬┼┼┼┼┼┼┼┼┼ |  |  |  |  |  |
|                         |                                                                           | <del>'''''</del>  - - -                          | SILICA I I ZII TO OIDI                                             |  |  |  |  |  |
| 5) Core s               | ize: nw                                                                   | <b>-</b> — Ш                                     | C. J. T. F. LOT PYC                                                |  |  |  |  |  |
|                         |                                                                           | <del></del>                                      |                                                                    |  |  |  |  |  |
|                         |                                                                           | <del>       </del>                               | <del>┥┩┩┩┩┩┩┩</del>                                                |  |  |  |  |  |
|                         | _                                                                         |                                                  | <del></del>                                                        |  |  |  |  |  |
| *Iop of st              | <u>eel_casing</u>                                                         | П                                                | Bottom (AP)                                                        |  |  |  |  |  |
|                         |                                                                           |                                                  |                                                                    |  |  |  |  |  |
|                         |                                                                           | - C                                              |                                                                    |  |  |  |  |  |
| Depth                   | Sample                                                                    | Spoon                                            | Description of Materials                                           |  |  |  |  |  |
| Scale                   |                                                                           | Blows                                            |                                                                    |  |  |  |  |  |
| 5-6.5                   | Spoon                                                                     | 5-7-4                                            | Light reddish-brown very silty fine sand with mica,                |  |  |  |  |  |
|                         | 1                                                                         |                                                  | black lignite, and some clay                                       |  |  |  |  |  |
| 10-11.5                 | Spoon                                                                     | 2-3-4                                            | Light reddish-brown very silty fine sand with                      |  |  |  |  |  |
|                         |                                                                           | <u> </u>                                         | mica, black lignite, and some clay                                 |  |  |  |  |  |
| 15-16.5                 | Spoon                                                                     | 6-9-19                                           | Orange-red and tan brecciated decomposed shale with a              |  |  |  |  |  |
|                         |                                                                           | + ·                                              | clay matrix and some lignite                                       |  |  |  |  |  |
| 20-21.5                 | Spoon                                                                     | 5-2-4                                            | Orange-red and tan brecciated decomposed shale with a              |  |  |  |  |  |
|                         |                                                                           |                                                  | clay matrix and some liquite.                                      |  |  |  |  |  |
| 20                      | -                                                                         |                                                  | End of hole.                                                       |  |  |  |  |  |
|                         | <del></del>                                                               | ļ                                                |                                                                    |  |  |  |  |  |
|                         |                                                                           |                                                  |                                                                    |  |  |  |  |  |
|                         |                                                                           |                                                  |                                                                    |  |  |  |  |  |
|                         | <u> </u>                                                                  |                                                  |                                                                    |  |  |  |  |  |
| ļ                       |                                                                           | ļ                                                |                                                                    |  |  |  |  |  |
|                         |                                                                           |                                                  |                                                                    |  |  |  |  |  |
|                         |                                                                           |                                                  |                                                                    |  |  |  |  |  |
|                         |                                                                           |                                                  |                                                                    |  |  |  |  |  |
|                         |                                                                           |                                                  |                                                                    |  |  |  |  |  |
|                         |                                                                           | -                                                |                                                                    |  |  |  |  |  |
|                         |                                                                           |                                                  |                                                                    |  |  |  |  |  |
|                         |                                                                           | -                                                |                                                                    |  |  |  |  |  |

# 55W5

### US ARMY ENVIRONMENTAL HYGIENE AGENCY

Army Pollution Abatement Program Study, Installation of MOnitoring Wells, Radford Army Ammunition Plant, Radford, VA, 3-9 April 1981 (USAEHA Control No. 81-26-8251-81)

DRILLING LOG

| PROJECT RAAP            | 81-26-8251-81                                                  | - DATE 5 April 81            |                               |                                                   |  |  |
|-------------------------|----------------------------------------------------------------|------------------------------|-------------------------------|---------------------------------------------------|--|--|
| LUCATION -              | 5, north of lagoon next                                        | DRILLERS Smithson, Hoddinott |                               |                                                   |  |  |
| to building SR 16       | 12                                                             | Craig, Gat                   | es (logger)                   | <u></u>                                           |  |  |
| DRILL RIG Acke          | r II, w/ 4 in continuous                                       | BORE HOLE                    | MW 5                          |                                                   |  |  |
| f1                      | ight auger                                                     |                              | TD= 25f                       |                                                   |  |  |
| SAMPLE<br>TYPE<br>BLOWS | _                                                              | initial 7' 5" 24 hr. 8' 10"  |                               |                                                   |  |  |
| DEPTH PER 6             | N DESCRIPTION                                                  |                              | RE                            | MARKS                                             |  |  |
| 5 ft                    | Perched lense of water  Yellowish brown silty some mica flakes | r clay w/                    | 10 ft of<br>Concrete<br>grout | 13 ft of<br>schedule 40,<br>2 in ID PVC<br>casing |  |  |
| J                       | same material                                                  | ŀ                            | <del></del>                   |                                                   |  |  |
| MB 10-1                 |                                                                |                              | sand pack                     |                                                   |  |  |
|                         |                                                                |                              | _                             | screen                                            |  |  |
| 15 ft                   |                                                                |                              | į                             |                                                   |  |  |

US ARMY ENVIRONMENTAL HYGIENE AGENCY
Army Pollution Abatement Program Study, Installation of Monitoring Wells, Radford Army
Ammunition Plant, Radford, VA, 3-9 April 1981, (USAEHA Control No. 81-26-8251-81)

DRILLING LOG

| PROJECT     | RAAP 81-26-8251-81           | DATE5       | April 81            |  |
|-------------|------------------------------|-------------|---------------------|--|
| LOCATION    | Site 5, north of lagoon next | D           | Smithson, Haddinott |  |
|             | ding S.R.1612                | Craig, Gate | es (logger)         |  |
| DRILL RIG   | Acker II, w/ 4 in continuous | BORE HOLE   | MWi 5               |  |
| DIVICE IVIO | flight auger                 | DOTTE TOLL  |                     |  |

|       | ilight                              | 44861                                                     |      |                                                                                |
|-------|-------------------------------------|-----------------------------------------------------------|------|--------------------------------------------------------------------------------|
| CEPTH | SAMPLE<br>TYPE<br>BLOWS<br>PER 6 IN | DESCRIPTION                                               | REMA | rks                                                                            |
|       | MB<br>10-20                         |                                                           |      | 10 ft of<br>slotted 2 in<br>ID, schedule<br>40, PVC<br>screen<br>(0.008-0.01") |
| 20 ft |                                     | water at 20 ft yellow coarse _med<br>lum sand - saturated |      |                                                                                |
| -     |                                     | change in engine pitch<br>Elbrook FM                      |      | 2 ft of trap                                                                   |
| 25 ft |                                     | TD 25 feet                                                |      | Depth of well 25 ft                                                            |
| 30 ft |                                     |                                                           |      |                                                                                |

# 55W6 MW-6

Army Pollution Abatement Program Study, Installation of Monitoring Wells, Radford Army Ammunition Plant, Radford, VA, 3-9 April 1981, (USAEHA Control No. 81-26-8251-81)

## US ARMY ENVIRONMENTAL HYGIENE AGENCY

## DRILLING LOG

| PROJECT             | RAAP 81     | -26-8251-81              | DATE -     | 5 April 81                  |                         |
|---------------------|-------------|--------------------------|------------|-----------------------------|-------------------------|
|                     | Site        | , northwest of lagoon    | DRILLERS   | Smithson,                   | Hoddinott               |
| LOCATION next to be | ilding      | S.R. 1602                |            | tes (logger)                |                         |
| ~                   |             | r II w/ 4 in continuous  | BORE HOLE  | MW 8 6                      |                         |
| DRILL RIG           | fligh       | t auger                  | סטאב חטבנ  | TD= 25.5 f                  | t                       |
|                     | AMP LE      |                          |            | Water leve<br>initial 9.    |                         |
|                     | YPE<br>LOWS |                          |            | 24 hr. 9'                   |                         |
|                     | ER 6 IN     | DESCRIPTION              |            | REM                         | ARKS                    |
|                     |             | Brown silty clay, da     | mp plastic | 7 ft of con-<br>crete grout |                         |
| 1 -                 |             |                          |            |                             | 10 5 5 5                |
|                     |             |                          |            |                             | 13.5 ft of schedule 40, |
|                     |             |                          |            |                             | 2 in ID PVC casing      |
| 1 7                 |             |                          |            |                             |                         |
| 5 ft                |             | •                        | 1          |                             |                         |
| н                   | B 5-10      |                          |            |                             |                         |
|                     |             | Reddish brown silty cla  | yslightly  |                             |                         |
|                     | 1           | damp, tight drilling     | =          | 4.5 ft of                   | 1                       |
|                     |             |                          |            | Bentonite                   |                         |
|                     | (           |                          | ·          | (may have a void above      |                         |
| 1 -                 | _           |                          |            | sand next to                |                         |
| 10 ft               | <b>T</b>    |                          | ·          | water table)                |                         |
|                     |             |                          |            | •                           | **                      |
| _                   |             |                          |            |                             |                         |
|                     | ţ           | softer drilling, same ma | aterial,   |                             |                         |
| 1 -                 | l           | getter wetter            | 1          | 11.5 ft of                  | 1                       |
| 1 4                 | {           |                          |            | sand pack                   |                         |
|                     | ļ           | saturated                | j          |                             |                         |
| -                   | 1           |                          |            |                             | screen                  |
| 15 ft               |             |                          |            |                             |                         |

HSE-ES Form 78, 1 Jun 80

US ARMY ENVIRONMENTAL HYGIENE AGENCY

Army Pollution Abatement Program Study, Installation of Monitoring Wells, Radford Army
Ammunition Plant, Radford, VA, 3-9 April 1981, (USAEHA Control No. 81-26-8251-81)

DRILLING LOG

| PROJECT -    | RAAP 81-26-8251-81            | DATE       | April 81            |
|--------------|-------------------------------|------------|---------------------|
| LOCATION     | Site 5, northeast : of lagoon |            | Smithson, Hoddinott |
|              | ding S.R. 1602                | Craig, Gat | es (logger)         |
| DRILL RIG    | Acker II, w/ 4 in continuous  | BORE HOLE  | MW 6                |
| -DIVICE IVIO | flight Auger                  | DONG HOLL  |                     |

|       | SAMP LE<br>TYPE   |                                                                               |                                                                            |
|-------|-------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| DEPTH | BLOWS<br>PER 6 IN | DESCRIPTION                                                                   | REMARKS                                                                    |
|       |                   | Reddish brown silty coarse to<br>medium sand, saturated (water is<br>flowing) | lo ft of slotted schedule 40, Sand pack 2 in ID PVC screen ((0.008-0.010") |
| 20 ft |                   | Weathered Elbrook FM (red gray<br>clay residuum over dolomite)                | <i>i</i>                                                                   |
| 25 ft | _                 |                                                                               | 2 ft of sedi-<br>ment trap                                                 |
| _     |                   | 25.5 ft TD                                                                    | Bottom of well 25.5 ft                                                     |
| 30 ft |                   |                                                                               |                                                                            |

40 PVC screen

US ARMY ENVIRONMENTAL HYGIENE AGENCY
Army Pollution Abatement Program Study, Installation of Monitoring Wells, Radford Army
Ammunition Plant, Radford, VA, 3-9 April 1981, (USAEHA Control No. 81-26-8251-81)

DRILLING LOG

| PROJECT —  |          | •                       | 81-26-8251-81                                                      | DATE —                | 5 April 81                              |                                                   |  |
|------------|----------|-------------------------|--------------------------------------------------------------------|-----------------------|-----------------------------------------|---------------------------------------------------|--|
| LUCATION — |          | 1 —                     | e 5, west of lagoon                                                | DRILLERS              | Smithson, E                             |                                                   |  |
| _          | next t   | _                       | ng S.R. 1603                                                       | <del></del>           | Gates (logger)                          | <u> </u>                                          |  |
| D          | RILL RI  | G Aci                   | cer II, w/ 4 in continuous                                         | BORE HOLE             |                                         | <del></del>                                       |  |
|            |          | flig                    | ght Auger                                                          |                       | TD=26 f                                 | t                                                 |  |
|            |          | SAMPLE<br>TYPE<br>BLOWS |                                                                    |                       | water lev<br>initial=14'<br>24 hr =10'1 | 10"                                               |  |
| i          | CEPTH    | PER 6 II                | DESCRIPTION                                                        |                       | 1                                       | ARKS                                              |  |
|            |          |                         | Reddish brown silty c                                              | lav damn-             | Concrete                                |                                                   |  |
|            |          |                         | med plastic                                                        | lay damp.             | Bentonite                               |                                                   |  |
| <br>5£r    |          |                         |                                                                    | THE PLANTS            |                                         | 12 ft of<br>schedule 40,<br>2 in ID PVC<br>casing |  |
|            | <u> </u> | мв 5-10                 | same material getting d<br>more plastic                            | amper and             |                                         |                                                   |  |
|            | 10 ft    |                         |                                                                    |                       |                                         |                                                   |  |
|            |          |                         |                                                                    |                       |                                         |                                                   |  |
|            |          |                         |                                                                    |                       |                                         |                                                   |  |
|            |          |                         |                                                                    |                       |                                         |                                                   |  |
|            | 15 ft    | •                       | saturated silty medium coreturn on Auger- may have lense of gravel | parse sand<br>e hit a | ·                                       | 10 ft of<br>slotted 2 in<br>ID schedule           |  |

US ARMY ENVIRONMENTAL HYGIENE AGENCY
Army Pollution Abatement Program Study, Installation of Monitoring Wells, Radford Army
Ammunition Plant, 3-9 April 1981, (USAEMA Control No. 81-26-8251-81)

DRILLING LOG

| PROJECT     | RAAP 81-26-8251-81           | DATE —                | 5 April 81          |  |
|-------------|------------------------------|-----------------------|---------------------|--|
| LOCATION    | Site 5, west of lagoon next  | DRILLERS              | Smithson, Hoddinott |  |
|             | ing S.R. 1603                | Craig, Gates (logger) |                     |  |
| DRILL RIG   | Acker II, w/ 4 in continuous | BORE HOLE             | MW 7                |  |
| שווכב ווויס | flight Auger                 | DONE HOLL             |                     |  |

|              | SAMP LE<br>TYPE   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | <del></del>                |
|--------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------|
| DEPTH        | BLOWS<br>PER 6 IN | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | REF | WARKS                      |
|              |                   | to the transfer of the first of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o |     |                            |
| <del>-</del> | МВ<br>15-20       | same material saturated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                            |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | screen                     |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                            |
| 20 ft        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                            |
| _            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                            |
| ·            | ĺ                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                            |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 3 ft of sedi-<br>ment trap |
| _            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                            |
| 25 ft        | 1                 | Elbrook FM (weathered gray clay residuum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | depth of well              |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 26 feet                    |
| †            |                   | 26 ft TD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |                            |
| $\dashv$     | 1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                            |
| -            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                            |
| _            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                            |
| 30 €t        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                            |

# MW-8

Army Pollution Abatement Program Study, Installation of Monitoring Wells, Radford Army Ammunition Plant, Radford, VA, 3-9 April 1981, (USAEHA Control No. 81-26-8251-81)

# US ARMY ENVIRONMENTAL HYGIENE AGENCY

# DRILLING LOG

| PF | ROJECT   | RAAP 81                 | -26-8251-81 DATE                                                  |       | 5 April 8                                            | 1                                                 |   |
|----|----------|-------------------------|-------------------------------------------------------------------|-------|------------------------------------------------------|---------------------------------------------------|---|
| LC | CATION   | Site                    | 5, Background well, southDRILL                                    | .ERS  | Smithson                                             | Hoddinott                                         |   |
| _  | f lagoo  | n                       | Craig                                                             | , Gat | es (logger)                                          |                                                   |   |
| D۶ | ILL RI   | G Acker                 | II, w/ 4 in continuous BORE                                       | HOLE  |                                                      |                                                   |   |
|    |          | f1                      | ight Auger                                                        |       | TD= 341                                              | Et                                                |   |
|    |          | SAMPLE<br>TYPE<br>BLOWS |                                                                   |       | water leve<br>initial=24<br>24 hr.=14 <sup>†</sup> ] | ft<br>ll"                                         |   |
| Ļ  | DEPTH    | PER 6 IN                |                                                                   |       |                                                      | IARKS                                             | _ |
|    | -        |                         | gravel fill for road  Reddish brown sandy clay with small gravels | some  | 8 ft of<br>concrete<br>grout                         | 29 ft of<br>schedule 40,<br>2 in ID PVC<br>casing |   |
|    | 5 ft     |                         |                                                                   |       |                                                      |                                                   |   |
|    | 10 ft    |                         | same material, wet, med plastic                                   |       | oft of Ben-                                          |                                                   |   |
|    | <u> </u> |                         |                                                                   |       |                                                      |                                                   |   |
| ]  | .5 ft    |                         | same material, getting wetter<br>& sticky                         | 1-    | and pack                                             | -                                                 |   |

HSE-ES Form 78, 1 Jun 80

Army Pollution Abatement Program Study, Installation of Monitoring Wells, Radford Army Ammunition Plant, Radford, VA, 3-9 April 1981, (USAEHA Control No. 81-26-8251-81)

# US ARMY ENVIRONMENTAL HYGIENE AGENCY

# DRILLING LOG

| P                                 | ROJECT  | RAAP 81-                            | 26-8251-81              | DATE -    | 5 April 81           |            |
|-----------------------------------|---------|-------------------------------------|-------------------------|-----------|----------------------|------------|
| LOCATION Site 5, background south |         |                                     | DRILLERS                |           | Hoddinott            |            |
| _                                 | of lag  | oon                                 |                         | Cráig     | , Gates (log         | ger)       |
| D                                 | RILL RI |                                     | er II, w/ 4 in continuo | BORE HOLI | E                    |            |
|                                   | DEPTH   | SAMPLE<br>TYPE<br>BLOWS<br>PER 6 IN | DESCRIPTION             |           | REM                  | IARKS      |
|                                   |         | MB 15-<br>20                        | same material           |           | 21 ft of<br>sandpack |            |
|                                   | 20 f    | =                                   | •                       |           |                      | PVC casing |
|                                   | -       |                                     | •<br>·                  |           |                      |            |
|                                   | -       | ▼                                   | same material           |           |                      | ·          |
|                                   | 25 ft   |                                     | -<br>;                  |           |                      |            |
|                                   |         |                                     |                         |           |                      |            |
| l                                 | 30 ft   |                                     |                         | 1         |                      |            |

HSE-ES Form 78, 1 Jun 80

Army Pollution Abatement Program Study, Installation of MOnitoring Wells, Radford Army Ammunition Plant, Radford, VA, 3-9 April 1981, (USAEHA Control No. 81-26-8251-81)

# US ARMY ENVIRONMENTAL HYGIENE AGENCY

# DRILLING LOG

| Site 5. background |              | RAAP 81-26-8251-81           |                                                        | DATE       |               |                                                            |  |
|--------------------|--------------|------------------------------|--------------------------------------------------------|------------|---------------|------------------------------------------------------------|--|
|                    |              | DRILLERS Smithson, Hoddinott |                                                        |            |               |                                                            |  |
| ٠.                 | south of     |                              |                                                        |            | ates (logger) |                                                            |  |
| D                  | RILL RI      | G Acker                      | II. w/ 4 in continuous                                 | BORE HOL   | E MW 8        |                                                            |  |
|                    |              | f1                           | ight Auger                                             |            |               |                                                            |  |
|                    |              | SAMPLE<br>TYPE<br>BLOWS      |                                                        |            |               |                                                            |  |
|                    | DEPTH        | PER 6 IN                     | DESCRIPTION                                            |            | REM           | ARKS                                                       |  |
|                    | _            |                              | same material                                          |            |               | 5 ft of slot-<br>ted schedule<br>40, 2 in ID<br>PVC screen |  |
|                    |              |                              |                                                        |            |               |                                                            |  |
|                    | ,            |                              | Refusal Elbrook FM                                     |            | bottom of     | well 34 ft.                                                |  |
|                    | <u>35 ft</u> |                              | Note: ran short of screen was fore, 5 ft of screen was | en, there- |               | }                                                          |  |
|                    |              |                              | in the saturated zone :                                | instead of |               |                                                            |  |
|                    |              |                              |                                                        |            |               |                                                            |  |
|                    |              |                              |                                                        |            |               |                                                            |  |
|                    | ⊣            |                              |                                                        |            |               |                                                            |  |
|                    | _40_f        |                              |                                                        | •          |               |                                                            |  |
| 1                  | -            |                              |                                                        |            |               |                                                            |  |
|                    | 4            | }                            |                                                        | -          |               |                                                            |  |
|                    | -            |                              |                                                        |            |               |                                                            |  |
|                    | _            |                              | ·                                                      | _          |               |                                                            |  |

HSE-ES Form 78, 1 Jun 80

# W9A Hwmu-5

Form No 500

# 30RING LOG



FROEHLING & ROBERTSON, INC.

|               |           |                    |                  |            |                             | <b>8</b>        |          | DATE November, 198                        | 15           |
|---------------|-----------|--------------------|------------------|------------|-----------------------------|-----------------|----------|-------------------------------------------|--------------|
|               | ROM-6208  |                    |                  |            |                             |                 |          |                                           |              |
|               | ercules.  |                    |                  | 01-04      | Pa(                         | lford.          | Virgin   |                                           |              |
| Project 1     | tonitorin | ·                  | Army Ammunition  |            |                             | Locati          |          | ee plan                                   |              |
| Boring No     | W-9-A     | Total Depth: 49.01 | Elevation:       |            | 1-1-ad: 1                   | 17-6-85         |          | ritter. W. Simmons, Sr.                   |              |
| Type of Borin | Hollo     | ow stem auger      | Started: 11-6-8  | Comp       | ieted.                      | Sample          | % Core   |                                           |              |
| Elevation     | Depth     |                    | ION OF MATERIALS |            | Sample<br>Blows             | Depth<br>(Feet) | Recovery | REMARKS                                   |              |
| ,             | 0.0       | Asphalt and crushe | d stone          |            |                             |                 |          | GROUNDWATER                               | DATA         |
|               | 1.5       |                    |                  |            |                             |                 |          |                                           |              |
|               | ``´ ゴ     | Loose to medium de | nse brown fine   | sandy SILT |                             |                 |          |                                           |              |
| 1             |           | little clay        |                  |            |                             |                 |          |                                           | ı            |
|               |           | ALLEW THM          |                  |            | 5                           | 4.5             | )        |                                           |              |
|               | =         | -ALLUVIUM-         |                  |            | <sup>5</sup> 7 <sub>9</sub> | 6.0             | ÌÌ       |                                           |              |
| 1             | 7         |                    |                  |            | İ                           |                 | ] ]      |                                           |              |
| 1             | - 귀       |                    |                  |            | l                           |                 |          |                                           |              |
| ,             | 3         |                    |                  |            | <sup>3</sup> 8 <sub>1</sub> | 8.5             |          | ·                                         |              |
| }             | dinin     |                    |                  |            | <u>*</u> 1                  | 10.0            | <b>`</b> |                                           |              |
|               | 1 3       |                    |                  |            |                             |                 | <u> </u> |                                           |              |
| l             |           |                    |                  |            | }                           | }               |          |                                           |              |
| Í             | 13.0      |                    |                  |            | }                           | 13.5            |          |                                           |              |
|               | =         | Soft orange-brown  | silty CLAY to c  | layey SILT | 211                         |                 |          |                                           |              |
| 1             | 4         | (CL/ML) Relict st  | ructure          |            |                             | 15.0            | } _      |                                           |              |
| 1             | 1 =       | 0551011111111      |                  |            | ļ                           | {               | -        | Z Water level @ 16                        | .0-          |
|               | 1 7       | -RESIDUUM-         |                  |            |                             | [               |          |                                           |              |
| 1             | 1 7       | ·                  |                  |            |                             | }               |          |                                           |              |
| •             | 1 3       |                    |                  |            |                             | <b>,</b>        | [        | Development Data:                         |              |
| 1             | 1 -       |                    |                  |            |                             | }               |          | Sloshed for 2 hrs.<br>Bailed down to 21'. |              |
|               | 1111      |                    |                  |            |                             | }               |          | Water level re-esta                       |              |
|               |           | •                  |                  |            |                             |                 | }        | 16.0' after 1.5 hrs                       |              |
| 1             |           |                    |                  |            |                             | ł               |          |                                           |              |
| ſ             | 1 =       |                    |                  |            | l                           | l               |          |                                           |              |
|               |           |                    |                  |            | i                           | 1               | [        |                                           |              |
| 1             |           |                    |                  |            | ļ                           | -               | [        |                                           |              |
| •             | ] =       |                    |                  |            | ļ                           | ļ               | [        |                                           |              |
|               | E         |                    |                  |            | [                           | ļ               | (        |                                           |              |
| 1             | l I       |                    |                  |            | ]                           | ļ               |          |                                           |              |
|               | =         |                    |                  |            |                             | Į .             |          |                                           |              |
| 1             | =         |                    |                  |            |                             | [               | [        |                                           |              |
| I             | 7         |                    |                  |            |                             | Į               | [        |                                           |              |
|               | 7         |                    |                  |            | Į                           | 1               | ( )      |                                           |              |
| }             | l I       |                    |                  |            |                             | Į               | [        |                                           |              |
| •             | $\exists$ |                    |                  |            | }                           |                 | [        |                                           |              |
| 1             | E         |                    |                  |            | }                           | ]               |          |                                           |              |
|               | 3         |                    |                  |            |                             | ]               | }        | Auger refusal @ 39.0                      | )'           |
|               | 39.0      |                    |                  |            | 1 _                         | 39.0            |          | Auger relusar e 37.0                      | <del>-</del> |

<sup>1</sup>NG of blows regid for a 140 ib hammer diupping 30 in To drive 2 in O.D. 1 375 in T.D. sampler a total of 18 inches in three 6 in increments. The sum of the last two increments of penetration is termed the standard penetration resistance. N

Scale 1715 unless otherwise noted

## **30RING LOG**



FROEHLING & ROBERTSON, INC.
114. EASTE ETAHLONAL MIES ERMINEERING CHEMICAL
ONE HUNDRED YEARS OF SERVICE"

| eport No RO    | M-620        | 85                                              |           |                |       | 1.0             | 81                 |                    | DATE    | November,   | 1985     |
|----------------|--------------|-------------------------------------------------|-----------|----------------|-------|-----------------|--------------------|--------------------|---------|-------------|----------|
|                |              | . Inc.                                          |           |                |       |                 |                    |                    |         |             |          |
|                | _            |                                                 |           | ny Ammunition  | Plant | Ra              |                    | Virgin             |         |             |          |
|                |              | ont. Total Depth:                               |           | Elevation:     |       |                 | Locat              |                    | ee pla  |             |          |
| ype of Boring. | Hollo        | ow stem auger                                   |           | erred: 11-6-85 | Com   | pleted:         | 11-6-8<br>  Sample | 5                  | riller: | W. Simmons, | Sr.      |
| Elevation 40   | Depth<br>• 0 | . 1                                             |           | OF MATERIALS   |       | Sample<br>Blows | Oepth<br>(Feet)    | % Core<br>Recovery | RQD %   |             | KS       |
|                |              | Brown fine to<br>changing to b<br>LIMESTONE and | lue-gray  | fractured sa   |       |                 |                    | 201                | 01      | GROUNDWAT   | ER DATA  |
|                | ulur         |                                                 |           |                |       |                 | 44.0               | 30%                | 0%      |             |          |
| 49.            |              |                                                 |           |                |       | <u> </u><br>    | 49.0               | 302                |         | <u>:</u>    | <u>.</u> |
|                |              | Coring termin                                   | ated 0 49 | .0'            |       |                 |                    |                    |         |             |          |
|                |              | -                                               |           | w Scre         | EN    |                 |                    |                    |         |             |          |
|                | ulu          | 10' ADA                                         | T [?      |                |       |                 |                    |                    |         |             |          |
|                | 1            | . 25'                                           | ) N C . r | 10(3'          | UTOF  | <b>=)</b>       |                    |                    |         |             |          |
|                | 1            |                                                 |           | ·              |       |                 |                    |                    |         |             |          |
|                | Little       |                                                 | -         |                |       |                 |                    |                    |         |             |          |
|                | unti         |                                                 |           |                |       |                 |                    |                    |         |             |          |
|                | 1111         |                                                 |           |                |       |                 |                    |                    | •       |             |          |
|                | 1            |                                                 |           |                |       |                 |                    |                    |         |             |          |
|                |              |                                                 |           |                |       |                 |                    |                    |         |             |          |

No of blows regid for a 140 to hammer dropping 30 in to drive 2 in O.D. 1.375 in 1.D. sampler a total of 18 inches in three 6 in increments. The sum of the last two increments of penetration is termed the standard penetration resistance. N

AOIW HWMU-5

### **JORING LOG-**



FROEHLING & ROBERTSON, INC.

FOR A GRANT COME NATIONAL STREET SHE MICHAEL SHE HINGS CHEMICAL ONE HUNDRED YEARS OF SERVICE.

| Report No ROM-62    | 2085                                                                                                                      | 1881                      |          | DATE November, 1985                                                                             |
|---------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------|----------|-------------------------------------------------------------------------------------------------|
| Chent: Hercule      | es, Inc.                                                                                                                  |                           |          |                                                                                                 |
| Project Monitor     | ing Wells Radford Army Ammunition Plant                                                                                   | Radfor                    | d, Virg  | inia                                                                                            |
| Baring No.: W-10-   | A Total Depth: 45.0' Elevation:                                                                                           |                           | tation:  | See plan                                                                                        |
| yee of Boring Holl  | low stem auger Started: 11-6-85                                                                                           | Completed: 11-6           |          | Druter: W. Simmons, Sr.                                                                         |
| Elevation Depth 0.0 |                                                                                                                           | Sample Dept<br>Blows (Fee | n Berrye |                                                                                                 |
| 1.0                 | Brown fine sandy SILT; roots, organics  Loose to medium-dense red brown fine sand SILT with occasional cobble layers (ML) |                           |          | GROUNDWATER DATA  Water level @ 14.8'                                                           |
| 17.0                | Medium-stiff gray-brown silty CLAY to cla<br>SILT, shale fragments, relict structure<br>-RESIDUUM-                        | _                         |          | Development Data:<br>Sloshed for 2 hrs.<br>Bailed down for 1/2 hr.<br>No change in water level. |
| 30.0                | Gray green brecciated LIMESTONE and DOLOMITE, numerous calcite-healed fracture                                            | 28.5<br>30, ** 30.0       | 28.5     | * 50/0.5°                                                                                       |

No of blows regid for a (40 to nammer dropping 30 in to drive 2 in O.D. 1.375 in 1.D. sampler a total of 18 inches in three 6 increments. The sum of the fast two increments of penetration is termed the standard penetration resistance. N

## TORING LOG



FROEHLING & ROBERTSON, INC.

|                |              |                |             |                 |       |                 | /                         |                    |        |             | _        |
|----------------|--------------|----------------|-------------|-----------------|-------|-----------------|---------------------------|--------------------|--------|-------------|----------|
| Report No.     | OM-6208      | 35             |             |                 |       | 18              | 81                        |                    | DAT    | E November, | 1985     |
|                | rcules,      | Inc.           | <del></del> |                 |       |                 |                           |                    |        |             |          |
|                |              | ng Wells       | Radford Ar  | my Ammunition   | Plant | Ra              | dford,                    | Ytrgtr             | ifa    |             |          |
| 3oring No.     | W-10-A       | Cont Total Dep | th: 45.0°   | Elevation:      |       |                 | Local                     | ion:               | ee pl  |             |          |
| Type of Boring | : Hollo      | w stem auge    | rs          | arted: 11-6-8   | S Com | pleted: ]       |                           | <u> </u>           | riller | W. Simmons, | Sr.      |
| Elevation 4    | Depth<br>0-0 |                |             | OF MATERIALS    |       | Semple<br>Biows | Sample<br>Depth<br>(Feet) | & Core<br>Recovery |        | REMA        | RKS      |
|                | 45.          | Boring ter     | TEF         | (1.80<br>(1.80) |       |                 | 45.0                      | 42%                | 162    | GROUNDWA    | TER DATA |

'No of blows regid for a 140 to hammer dropping 30 in to drive 2 n.O.D. 1-375 in 1-D sampler a total of 13 inches in three 6 in increments. The sum of the last two increments of penetration is termed the standard penetration resistance. N

WIIA HWMU-5

Form No 500

### **30RING LOG-**

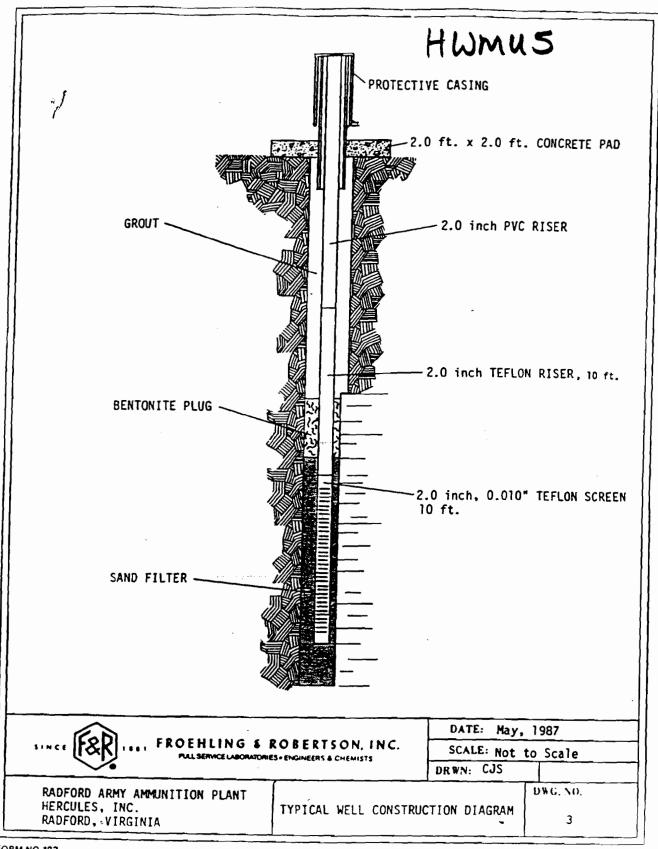


## FROEHLING & ROBERTSON, INC.

FIG. 1 FOR ECONOMISM TO ENGINEE HERE'S CHEMICAL ONE HUNDRED YEARS OF SERVICE"

| Hent: H     | lercules, | Inc.           |           |            |               |               |            |        |            |              |          |           |           |
|-------------|-----------|----------------|-----------|------------|---------------|---------------|------------|--------|------------|--------------|----------|-----------|-----------|
| roject. M   | onitori   | g Wells R      | adford .  | Army /     | Ammunition    | Plant         | Ra         | dford  | . Virg     | inia         |          |           |           |
| oring No.:  | H-11-A    | Total Depth:   | 48.0'     |            | Elevation:    |               |            | Loca   | tion:      | See p        | lan      |           |           |
| pe of Borin | g Hollo   | w stem auger   |           | Started    | 11-6-85       | Co            | npleted:   | 11-6-8 | <br>85     | Onlier:      | W. Sim   | mons, Sr. |           |
| Elevation   | 2         |                | DESCRIPTI | ON OF N    | ATERIALS      |               | Sample     | Semple |            | •            |          | REMARKS   |           |
| Energia     | 0.0       |                |           | assincelic |               |               | Blows      | (Foot) | Recove     | ~ RQD        | <u> </u> |           |           |
| 1           | 1.0       | Brown fine     | sandy S   | ILT; t     | oots, orga    | nics          | _i         |        | Ì          |              | GROL     | NOWATER D | ATA       |
| ·           | '." d     | Medium-dens    | e to dei  | nse br     | num fine s    | andy SIL      | -          | 1      | ł          | -            |          |           |           |
| ì           |           | to silty fi    |           |            |               |               | ` <b>}</b> | ł      | {          | - (          |          |           |           |
| }           |           | _              |           | •          | ·             |               | 1          |        |            | l            |          |           |           |
| ł           | $\exists$ | -ALLUVIUM-     |           |            |               |               | 0          | 4.5    | Ì          | 1            |          |           |           |
|             | 7         |                |           |            |               |               | 911        | 6.0    | [          | -            |          |           |           |
| -           | 7         |                |           |            |               |               | J          | 7      |            | 1            |          |           |           |
|             | ㅋ         |                |           |            |               |               | 1          | 1      | İ          | }            |          |           |           |
| - 1         | hulmlun   |                |           |            |               |               | <u> </u>   | 8.5    | }          | }            |          |           |           |
| Ì           | 7         |                |           |            |               |               | 4922       | 10.0   |            | 1            | -        |           |           |
|             | コ         |                |           |            |               |               | - 22       | 10.0   | Ì          |              |          |           |           |
| - 1         | コ         |                |           |            |               |               |            | }      | 1          | }            |          |           |           |
| j           | ュ         |                |           |            |               |               | ļ          | ļ      |            |              |          |           |           |
| }           | E         |                |           |            |               |               | Ì          | 13.5   | }          |              |          |           |           |
|             |           |                |           |            |               |               | 12711      | 1      | ,          |              | +am lawa | 1 @ 14.8' |           |
| 1           |           |                |           |            |               |               | 1 11       | 15.0   | - <u>-</u> | <b>4 "</b> ° | ter leve | 1 6 14.0  |           |
| }           | $\exists$ |                |           |            |               |               | 1          | }      | ļ          | Deve         | lopment  | Data:     |           |
| 1           | 17.0      |                |           |            |               |               | 4          | )      | j          | l .          | hed 2 ho |           |           |
|             | $\exists$ | Very soft ye   |           |            |               |               |            | 18.5   |            |              |          | to 19.0'. |           |
| ĺ           | 7         | CLAY, some s   | ilt (CL   | ) rel      | ict structu   | re            | 111        | '0,    | 1          | Reco         | vered to | 14.8' af  | ter 1.5 ! |
|             | ㅋ         | -RESIDUUM-     |           |            |               |               | 1          | 20.0   | 1          |              |          |           |           |
| j           | Lutun     | -KE31D00W-     |           |            |               |               |            | }      | ŀ          |              |          |           |           |
| 1           | 7         |                |           |            |               |               | )          |        | ĺ          | 1            |          |           |           |
|             | 7         |                |           |            |               |               | 1 1        |        | ł          |              |          |           |           |
| L           | コ         |                |           |            | •             |               | 1 1        |        |            | }            |          |           |           |
| ĺ           | コ         |                |           |            |               |               | i i        |        |            | Ţ            | -        |           |           |
| 1           | #         |                |           |            |               |               | ] ]        |        |            |              |          |           |           |
| ļ           | = =       |                |           |            |               |               | 1 1        |        |            |              |          |           |           |
|             | 28.0      |                |           |            |               | <del></del> - | {          | 28.0   |            | ļ            |          |           |           |
| 1           |           | Gray-brown vu  | agy I TMI | CCTONE     |               |               | 1 1        | 1      | \          |              |          |           |           |
| 1           | ュ         | fractures inte | erbedded  | d with     | ., calcite :  | realed        | 1 1        | - 1    | \<br>      |              |          |           |           |
|             |           | -FAULT BRECCIA |           |            | g. = y g. cc. | •             | } {        | }      | 72%        | 30%          |          |           |           |
| ]           | ⇉         | 0              | •         |            |               |               | 1 1        | [      | \          |              |          |           |           |
| }           | コ         |                |           |            |               |               |            | 33.0   | \          |              |          |           |           |
| [           | コ         |                |           |            |               |               |            |        | \          |              |          |           |           |
| 1           | ゴ         |                |           |            |               |               |            | {      | /          | 1            |          |           |           |
| }           | <u> </u>  |                |           |            |               |               |            |        | 33%        | 7%           |          |           |           |
|             | $\pm$     |                |           |            |               |               |            |        |            |              |          |           |           |
|             | -         |                |           |            |               |               | ! }        |        | \          |              |          |           |           |
| }           | 3         |                |           |            |               |               | j          | 38.0   | <u> </u>   |              |          |           |           |
|             | 40.07     |                |           |            |               |               | )          | }      | \          |              |          |           |           |

No of blows regid for a 140 to hammer proposing 30 in to drive 2 in 0.0 1, 375 in 1.0 sampler a total of 18 inches in Intee6 in increments. The sum of line last two increments of penetration is termed the standard penetration resistance. N


Scale 1 :5 unless otherwise noted

Form No. 500

## **30RING LOG**



|               | Hercules,          |                  | adford   | Army A     | Ammunition P | lant | Rad    | dford,          | Virgin             | nia      |     |                  |   |
|---------------|--------------------|------------------|----------|------------|--------------|------|--------|-----------------|--------------------|----------|-----|------------------|---|
| $\overline{}$ | Monitorin          | CORT Total Depth |          | <u>```</u> | Elevation:   |      |        | Locati          |                    | see p    | lan |                  |   |
| g No (        |                    | w stem auger     | 40.0     | Started    |              | Con  | pleted | 11-6-8          | 5 0                | )riller: | W.  | Simmons, Sr.     |   |
| - or Born     | 1                  | W Stem dager     | DESCRIPT |            | ATERIALS     |      | Sample | Sample<br>Depth | % Core<br>Recovery | RQD      | 1   | REMARKS          |   |
|               | 0.0                |                  |          |            |              |      | Blows  | (Feet)          | 23%                | 0%       | _   | GROUNDWATER DATA |   |
|               | 1 =                |                  |          |            |              |      | 1      |                 | \                  | }        |     |                  | - |
|               | -[                 | Dark gray        | sacchard | ifdal l    | LIMESTONE    |      | 1      | 43.0            |                    | 1        |     |                  |   |
|               | 3                  |                  |          |            |              |      |        | }               | 1                  |          |     |                  |   |
|               | =                  |                  |          |            |              |      |        | ]               |                    |          |     |                  |   |
|               | l E                |                  |          |            |              |      |        |                 | 53%                | 0%       |     |                  |   |
|               | =                  |                  |          |            |              |      |        | 48.0            |                    |          | _   |                  |   |
|               | 48.0               |                  |          |            | •            |      | 7      | 40.0            |                    |          |     |                  |   |
|               | =                  | Coring term      | inated ( | 9 48.0     |              |      |        |                 | [                  | }        |     |                  |   |
|               | E                  |                  |          |            |              |      |        | ,               | 1                  | {        |     |                  |   |
|               | ヨ                  | 2.5              | 1 2      | ) t        | SIRH         | EN.  |        |                 | }                  | }        |     |                  |   |
|               | 1 3                | • 20             | , r      | V C        | Scree        | _    | 1      | Ì               |                    | 1        |     |                  |   |
|               | ] ]                | ر کی             | 4        | V C        | KISE         | r_   |        | [               | 1                  | {        |     |                  |   |
|               | 1 7                |                  |          |            |              |      | 1      | }               | }                  | }        |     |                  |   |
|               | 1 3                |                  |          |            |              |      | Í      | 1               | ]                  | }        |     |                  |   |
|               | =                  |                  |          |            |              |      | ĺ      |                 | ļ                  | ļ        |     |                  |   |
|               | E                  |                  |          |            |              |      | 1      |                 | }                  |          |     |                  |   |
|               | hardan hardan hara |                  |          |            |              |      |        | }               | }                  | ſ        |     |                  |   |
|               | l I                |                  |          |            |              |      |        | }               | }                  |          |     |                  |   |
|               |                    |                  |          |            | -            |      | į      | ĺ               | ]                  | l        |     |                  |   |
|               | E                  |                  |          |            |              |      | -      | 1               | ļ                  |          |     |                  |   |
|               | =                  |                  |          |            |              |      |        | ł               |                    |          |     |                  |   |
|               | 3                  |                  |          |            |              |      |        | }               |                    |          |     |                  |   |
|               | #                  |                  |          |            |              |      |        | 1               |                    |          |     |                  |   |
|               | L                  |                  |          |            |              |      |        |                 | }                  |          |     |                  |   |
|               |                    |                  |          |            |              |      |        | }               | [                  |          |     |                  |   |
|               | ]                  |                  |          |            |              |      |        |                 | }                  |          |     |                  |   |
|               | ‡                  |                  |          |            |              |      |        |                 | {                  | }        |     |                  |   |
|               |                    |                  |          |            |              |      |        | {               | ł                  | }        |     |                  |   |
|               | =                  |                  |          |            |              |      | }      |                 | 1                  |          |     |                  |   |
|               | =                  |                  |          |            |              |      | 1      |                 | )                  |          |     |                  |   |
|               | =                  |                  |          |            |              |      |        |                 | }                  | }        |     |                  |   |
|               | 1 1                |                  |          |            |              |      | 1      | [               | ļ                  | ļ        |     |                  |   |



# HWMU5/5-WC1-1



| ent: HK   | ércules                                 | Inc                 |                  |                         |        |                 |                    | <del></del>        |  |
|-----------|-----------------------------------------|---------------------|------------------|-------------------------|--------|-----------------|--------------------|--------------------|--|
| nect: Ra  | adford /                                | Army Ammunition     | Plant            | Radfo                   | ord, V | irginia         |                    | <del> </del>       |  |
|           | 5-WC1-1                                 | Total Depth: 53.5   | ft. Elevation:   |                         |        |                 |                    | Location Plan      |  |
|           | e Hollo                                 | w Stem Auger        | Started: 5/5/87  | Comp                    | leted: | 5/5/87          |                    | riller: W. Simmons |  |
|           | Deptn                                   | DESCRIPT            | TOH OF MATERIALS |                         | Sample | Semple<br>Depth | % Core<br>Recovery | REMARKS            |  |
| Elevetion | 40.0                                    | (C                  | ileas ricetion)  |                         | Blows  | (Feet)          |                    |                    |  |
|           | = =                                     |                     |                  |                         |        |                 | 45.0               | GROUNDWATER DATA   |  |
| 1         | ᅼ                                       |                     | •                |                         |        |                 | /                  | 202 - 23           |  |
| - 1       | ーコ                                      |                     |                  |                         |        | 43.5            | V I                | RQD = 23           |  |
| ļ         | =                                       | 5-WC1-1 continued   |                  |                         |        | 43.3            | 7                  |                    |  |
| 1         | $\exists$                               |                     |                  |                         |        |                 |                    |                    |  |
|           | 7                                       |                     |                  |                         |        | }               | 36.7               | RQD = 7            |  |
| į         | 7                                       |                     |                  |                         |        |                 | /                  |                    |  |
| {         | コ                                       |                     |                  |                         |        |                 | /                  |                    |  |
| ĺ         | ⇉                                       |                     |                  |                         |        | 48.5            | <del>/ /</del>     |                    |  |
| }         | ⇉                                       |                     |                  |                         |        |                 |                    |                    |  |
| }         | ᆿ                                       |                     |                  |                         |        | ļ i             | 61.7               | RQD = 0            |  |
| 1         | Ⅎ                                       |                     |                  |                         |        | }               | 81.7               | NQU - U            |  |
| - 1       | ᆸ                                       |                     |                  | i                       |        |                 | /                  |                    |  |
| į         | 53.5                                    |                     |                  |                         |        | 53.5            |                    |                    |  |
|           | $\exists$                               | Boring terminated a | t 53.5 ft.       |                         |        |                 |                    | 4 42               |  |
| - (       | $\dashv$                                |                     |                  | 2.}: <b>:</b> #4-azi— - |        |                 |                    |                    |  |
| ĺ         | $\neg$                                  |                     |                  |                         |        |                 |                    |                    |  |
| ſ         | 7                                       |                     |                  |                         |        |                 |                    |                    |  |
| 1         | コ                                       |                     |                  |                         |        |                 |                    |                    |  |
| }         | TTTT                                    |                     |                  |                         | ı      |                 |                    |                    |  |
|           |                                         |                     |                  |                         |        |                 |                    |                    |  |
| 1         | =                                       | •                   |                  |                         |        |                 | 1                  |                    |  |
| - 1       | コ                                       |                     |                  |                         |        |                 |                    |                    |  |
| į         | コ                                       |                     |                  |                         |        |                 | }                  |                    |  |
| ł         | ======================================= |                     |                  |                         |        |                 | 1                  |                    |  |
| ļ         |                                         |                     |                  |                         |        |                 |                    |                    |  |
| į         | E                                       |                     |                  |                         |        |                 |                    |                    |  |
|           | 1                                       |                     |                  |                         |        |                 | 1                  |                    |  |
| į         | ヨ                                       |                     |                  |                         |        |                 |                    |                    |  |
|           | $\exists$                               |                     |                  |                         |        |                 | 1                  |                    |  |
| ]         | 3                                       |                     |                  |                         |        |                 |                    |                    |  |
| i         | ョ                                       |                     |                  |                         |        |                 | 1                  |                    |  |
|           | 7                                       |                     |                  |                         |        |                 |                    |                    |  |
| į         | ㅋ                                       |                     |                  |                         |        |                 |                    |                    |  |
|           | ======================================= |                     |                  |                         |        | }               | 1                  |                    |  |
|           | コ                                       |                     |                  |                         |        |                 |                    |                    |  |
| }         |                                         |                     |                  |                         |        |                 |                    |                    |  |
| 1         | La ta                                   |                     |                  |                         |        |                 |                    |                    |  |
| 1         | 上                                       |                     |                  |                         |        |                 |                    | •                  |  |
| 1         |                                         | <b>*</b>            |                  |                         |        | 1               | ı 1                |                    |  |

"No of blows red ditorial 140 lb. hammer dropping 30 in to drive 2 in O.D., 1,375 in 1.D. sampler a total of 18 inches in three 6 in increments. The sum of the last two increments of penetration is termed the standard penetration resistance. N

Scale 1"=5" uniess other= se roled



| Report No.    | 7-6208                                  | 4                                         |                     |        | 14              | * 1                |                    | DATE    | May 1987    | 7        |
|---------------|-----------------------------------------|-------------------------------------------|---------------------|--------|-----------------|--------------------|--------------------|---------|-------------|----------|
|               | ercules                                 |                                           |                     |        |                 |                    |                    | ·       | <del></del> |          |
|               |                                         | Army Ammunition                           | Plant               | Radf   | ord, V          | irginia            |                    |         |             |          |
| Baring Na.:   | 5-WC1-                                  |                                           | ft. Elevation:      |        |                 | Locati             |                    |         | ion Plan    |          |
| Type of Borin | Hollo                                   | w Stem Auger                              | Started: 5/5/87     | Come   | Heted:          | 5/5/87<br>  Semple |                    | riller: | W. Simmor   | 15       |
| Everalion     | Depth<br>0.0                            |                                           | ION OF MATERIALS    |        | Sample<br>Blows | Depth<br>(Feet)    | % Core<br>Recovery |         | AEMA        | AKS      |
|               | =                                       |                                           |                     |        |                 | }                  |                    |         | GROUNDWA    | TER DATA |
|               | ∄                                       | No sampling conducte subsurface condition |                     |        |                 |                    |                    |         |             | ·        |
|               | . =                                     | Janaar race condition                     | •                   |        | }               |                    | 1                  |         |             |          |
| -             | · - 크                                   |                                           |                     |        | }               | }                  | }                  |         |             |          |
|               | =                                       |                                           |                     |        |                 | }                  |                    |         |             |          |
|               | 크                                       |                                           |                     |        |                 | 1                  | }                  |         |             |          |
|               | ⇉                                       |                                           |                     |        | }               | }                  |                    |         |             |          |
| <b>[</b>      | ╡                                       |                                           |                     |        |                 |                    |                    |         |             |          |
| }             | 7                                       |                                           |                     |        |                 |                    |                    |         |             |          |
| j             | ======================================= |                                           |                     | 1      |                 |                    |                    |         |             |          |
| }             | コ                                       |                                           |                     |        |                 |                    |                    |         |             |          |
| j             | ⇉                                       |                                           |                     |        |                 |                    |                    |         |             |          |
| l             | $\exists$                               |                                           | ": 3es              |        |                 |                    |                    | -,=     |             |          |
|               | $\exists$                               | Cobbles encountered                       | at 13.0 ft. and 17. | o ft.  |                 |                    |                    |         |             |          |
|               | ーゴ                                      |                                           |                     |        |                 |                    |                    |         |             | •        |
| }             | 7                                       |                                           |                     |        |                 |                    |                    | ,       |             |          |
| }             | Е                                       |                                           |                     |        |                 |                    |                    |         |             |          |
| l             | コ                                       |                                           |                     |        |                 |                    |                    |         |             |          |
|               | 7                                       |                                           |                     |        |                 |                    |                    | <br>    |             |          |
| }             | 3                                       |                                           |                     |        |                 | ]                  | }                  |         |             |          |
| Ì             | ᆿ                                       |                                           |                     |        |                 |                    |                    |         |             |          |
| ł             | ᆿ                                       |                                           |                     |        |                 | . [                |                    |         |             |          |
| 1             | 3                                       |                                           |                     |        |                 |                    | ·                  |         |             |          |
| }             | ゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙     |                                           |                     |        | ]               | ]                  |                    |         |             |          |
| 1             | 3                                       |                                           |                     |        | 1               |                    | · }                |         |             |          |
| ]             | ヨ                                       |                                           | •                   |        |                 |                    | ı                  |         |             |          |
| ļ             | ヸ                                       |                                           |                     |        | {               | 1                  | 1                  |         |             |          |
| }             | ヸ                                       |                                           |                     |        | }               | <b> </b>           | , }                |         |             |          |
| ł             | 33.5                                    |                                           |                     |        | Ì               | 33.5               | <del></del> }      |         |             |          |
| {             | 3                                       | Auger refusal at 33.                      | ft.                 |        |                 | 1                  | ' /I               |         |             |          |
| . }           | #                                       | Hard light gray dolor                     | ilte. fractured and | vuggy  | }               | 1                  | 21 7               | RQD     | - 0         |          |
|               | 3                                       | abundant calcareous i                     | nfill, occasional   | shale  | }               |                    | /                  |         |             |          |
| Ì             |                                         | infill: dolomite clas                     |                     | itrix: |                 | 38.5               | <u>/</u> _         | •       |             |          |
| 1             | $\dashv$                                | Probable slump struct                     | ure ·               | 1      | ĺ               | 1                  | - /}               |         |             |          |

| Project: Radford Army Ammunition Plant                                                              | Driller: Simmons                                                                                                                     | WELL No.                           |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Location: Radford, Virginia                                                                         | Inspector: Smith                                                                                                                     | l l                                |
| Client: Hercules Inc.                                                                               | Date Installed: 5/5/87                                                                                                               | 5-WC1-1                            |
| Screen Description: 0,010" slot, 2.0" I.D. Teflon Screen (101)                                      | Sand Size: D(10                                                                                                                      | )= 0.45-0.55 mm                    |
| Riser Description: 2.0" I.D. Teflon Riser and PVC Riser                                             | Bore/ Core Size:                                                                                                                     |                                    |
| Subsurface Conditions Summary  See 5-WCI-2 for Conditions Cobbles encountered at; 13.0 ft, 16.0 ft. | Casing Stickup (ft.)=  Elev. =  Riser Stickup (ft.) =  Elev. =  Ground Elev.=  Depth to Bentonite  Elev.  Depth to Sand Filte  Elev. | = 3.0 ft.<br>= 3.0 ft.<br>= (ft.)= |
| [1] [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2                                                  | Elev.                                                                                                                                | =                                  |
|                                                                                                     | Depth of Hole (ft.)                                                                                                                  | = 53.5 ft.                         |
|                                                                                                     | Elev.                                                                                                                                |                                    |

# HWMUS/5-WC1-2



FROEHLING & ROBERTSON, INC.
FULL SERVICE LABORATORIES - ENGINEERING-CHEMICA
-ONE HUNDRED YEARS OF SERVICE

| Report No.   | ercules   |                                                                                           |          |                 |              | DATE May 1987                |
|--------------|-----------|-------------------------------------------------------------------------------------------|----------|-----------------|--------------|------------------------------|
|              |           |                                                                                           | ford, V  | irgini          |              |                              |
|              | 5-WC1     |                                                                                           |          |                 |              | e Location Plan              |
| loring No.:  |           |                                                                                           | pleted:  | 5/1/87          |              | Driller: W. Simmons          |
| ype of Borin | e Holic   | W Stelli Auger                                                                            | 1        | Sample          |              |                              |
| Elevelion    | Depth     | DESCRIPTION OF MATERIALS (Cleaningation)                                                  | Semple   | Depth<br>(Feet) | % Core       | REMARKS                      |
|              | 0.0       |                                                                                           |          | 1,000           | <del> </del> |                              |
| 1            | - 7       |                                                                                           | 1        | (               | ,            | GROUNDWATER DATA             |
|              | 7         | Very loose yellow brown silty medium to fine                                              | ł        | {               | İ            | 1                            |
| }            | $\exists$ | SAND (SM)                                                                                 | 1        | {               | }            |                              |
| }            |           | 346 (34)                                                                                  | ł        | 4.5             | l            | Ì                            |
|              |           | -to-                                                                                      | 111      | 1 ""            | }            | }                            |
|              |           |                                                                                           | <u> </u> | 6.0             | i            | 1                            |
| [            |           | Loose tan to red brown clayey medium to fine                                              | 1        |                 |              | 1                            |
| {            | ーコ        | SAND, trace rounded coarse sand (SC)                                                      | 1        |                 | ł            |                              |
| }            | 16.53     |                                                                                           | 227      | 8.5             |              |                              |
| }            |           |                                                                                           | L-7      | 10.0            |              |                              |
| }            | $\exists$ | -ALLUVIUM-                                                                                | 1        |                 |              | 1                            |
| ſ            | 7         |                                                                                           | }        | {               |              | {                            |
| ì            | $\neg$    |                                                                                           | i        |                 |              | 1                            |
| ĺ            | =         |                                                                                           | 111.0    | 13.5            |              | }                            |
| l            | =         |                                                                                           | 111316   | 15.0            |              |                              |
| į            | コ         |                                                                                           |          | 15.0            |              |                              |
| - {          | 16.5      |                                                                                           | 1        |                 |              |                              |
| 1            | ニ         |                                                                                           | 1 1      |                 |              |                              |
|              | $\pm$     |                                                                                           |          | 18.5            |              |                              |
| 1            | $\exists$ | Loose orange brown medium to fine sandy SILT, trace angular coarse sand (rock fragments). | 673      | 1               |              |                              |
| 1            | $\exists$ | manganese stains (ML)                                                                     |          | 20.0            |              |                              |
| }            | 3         | manyanese sourns (ne)                                                                     | 1 1      | 1               |              |                              |
| i            | $\exists$ | -to-                                                                                      |          | 1               | .            |                              |
| - 1          | $\exists$ |                                                                                           |          | 23.5            |              |                              |
| į            | ⊣         | Medium stiff orange brown clayey SILT, little                                             | 213      |                 |              |                              |
| I            | コ         | medium to fine sand (rock fragments) (ML/MH)                                              |          | 25.0            | - 1          |                              |
|              | ⇉         |                                                                                           | 1 1      | • •             | .            |                              |
| - 1          | ⇒         |                                                                                           | ] {      | <b> </b>        |              |                              |
| į            | コ         |                                                                                           | 1        | 28.5            |              |                              |
| 1            | =         | -RESIDUUM-                                                                                | 154      | - 1             |              |                              |
| ļ            | ュ         |                                                                                           |          | 30.0            | 1            |                              |
| 1            | ⅎ         | •                                                                                         | }        | - }             | - 1          |                              |
| - 1          | ⅎ         |                                                                                           | ll       | í               | - 1          |                              |
| l            | $\exists$ |                                                                                           | } {      | 33.5            | }            |                              |
|              | սկուսիուս |                                                                                           | 112      | "               |              |                              |
| 1            | $\exists$ |                                                                                           | ~        | 35.0            |              | Subsurface water at 34.5 ft. |
|              | 3         |                                                                                           | }        |                 | - 1          | depth at 11:30 a.m. on May   |
| }            | Э         |                                                                                           | } }      | į               |              | 1, 1987                      |
|              | $\exists$ | :                                                                                         | } }      | }               |              | -                            |
| }            | 7         |                                                                                           |          | 20.0            | }            |                              |
| } ;          | 39.3 🔟    | Auger refusal at 39.3 ft.                                                                 | t        | 39.3            | <del>/</del> |                              |

Auger refusal at 39.3 ft.

No of blows regid for a 140 lb. hammer dropping 30 in. to drive 2 in O.D., 1.375 in. I.D. sampler a total of 18 inches in three 6 in increments. The sum of the last two increments of penetration is termed the standard penetration resistance, N.

Scale 1"=5" unless otherwise noted



|          | rcules                     | Army Ammunition     | Plant           |             | Radfo   | ord, V   | irginiz | ı            |                  |
|----------|----------------------------|---------------------|-----------------|-------------|---------|----------|---------|--------------|------------------|
|          | 5-WC1-2                    |                     | ft. E           | evation:    |         | • -      |         |              | Location Plan    |
|          |                            | w Stem Auger        | Started:        | 5/1/87      | Comp    | leted: ( | 5/1/87  | 0            | W. Simmons       |
|          |                            |                     | TION OF MAT     | ERIALS      |         | Sample   | Sample  | ◆ Core       | REMARKS          |
| rval con | Depth<br>40 0              |                     | Classification) |             |         | Blows    | (Feet)  | Recovery     |                  |
|          | -                          |                     |                 |             |         |          | Į .     | 35.8         | GROUNDWATER DATA |
| 1        | 7                          | Hard light gray dol | omite vi        | inny, fraci | tured.  |          |         | 1            | RQD = 0          |
|          | コ                          | with calcareous inf |                 |             |         | ,        |         | /            | ·                |
| - 1      | コ                          | developed crystals. | occasion        | al shale    | infill: |          | }       | / [          |                  |
|          |                            | occasional dolomite | clasts          | in a calca  | reous   |          | 44.3    | <del></del>  |                  |
| ļ        |                            | matrix: probable f  |                 |             |         |          | )       | //           |                  |
|          | 7                          | •                   |                 |             |         |          | }       | 46.7         | RQD = 7          |
| ĺ        | $\dashv$                   |                     |                 |             |         |          | 1       | ,0.7         | RQD - 7          |
| )        | コ                          |                     |                 |             |         |          |         | /            |                  |
| ľ        | milminim                   |                     |                 |             |         |          | 49.3    | <u>/</u>     |                  |
| ſ        | 一旦                         |                     |                 |             |         |          | 43.3    | //           |                  |
| }        | $\exists$                  |                     |                 |             |         |          | ł i     | / /          |                  |
| -        | コ                          |                     |                 |             |         |          |         | 34.9         | RQD <b>≠</b> 0   |
| (        | ーコ                         |                     |                 |             |         |          | )       | 11           |                  |
| ļ        | コ                          |                     |                 |             |         |          |         | / /          |                  |
| l        | Ⅎ                          |                     |                 |             |         |          | 54.8    |              |                  |
|          | $\exists$                  |                     |                 |             |         |          |         | /            |                  |
| •        | $\neg$                     |                     |                 |             |         |          |         | /            |                  |
|          | 7                          |                     |                 |             |         |          |         |              |                  |
| 1        | コ                          |                     |                 |             |         |          |         | 33.3         | RQD = 0          |
| - 1      |                            |                     |                 |             |         |          |         | / (          |                  |
|          |                            |                     |                 |             | }       |          | 59.8    | <del>/</del> |                  |
|          | յումուսիումը.<br>Մահանական |                     |                 |             | ì       |          |         | /            |                  |
|          | = =                        |                     |                 |             |         |          | Ì       | ( )          |                  |
|          | ーコ                         |                     |                 |             | 1       |          |         | 25.8         | RQD - O          |
| - 1      | コ                          |                     |                 |             | 1       |          |         | /            |                  |
|          |                            |                     |                 |             |         |          | 64.8    | /            |                  |
|          |                            |                     |                 |             | Į.      |          |         |              |                  |
|          | $\neg$                     |                     |                 |             |         |          | •       |              |                  |
|          |                            |                     |                 |             |         |          |         | 19.2         | RQD = 0          |
|          | ョ                          |                     |                 |             |         |          |         |              |                  |
|          | ⊣                          |                     |                 |             |         |          |         | /            |                  |
|          |                            |                     |                 |             |         |          | 69.8    | <del></del>  |                  |
|          | ∃                          |                     |                 |             | ſ       |          | i i     | /            |                  |
|          | $\exists$                  |                     |                 |             |         |          | · '     | 88.3         | RQD = 10         |
|          |                            |                     |                 |             | Į.      |          |         | 38.3         | NU - 10          |
| 1        |                            |                     |                 |             |         |          |         |              |                  |
| 1        | ⊐                          |                     |                 |             | į       |          | 74.8    | $\angle$     |                  |
| ſ        |                            |                     |                 |             |         |          | , ,,,,  | 33.3         | RQD = 0          |
| -        | ,, ,=                      |                     |                 |             |         |          | 76.8    |              |                  |
| -        | 76.8                       |                     |                 |             |         |          | /0.8    |              |                  |
| ļ        | コ                          | Boring terminated   | at 76.8 1       | t.          | l       |          |         | ]            | •                |
| ſ        | コ                          | •                   |                 | -           | }       |          | 1       | i i          |                  |

| Project: Radford Army Ammunition Plant Location: Radford, Virginia  Client: Hercules Inc. Screen Description: 0.010" slot, 2.0" 1.D. Teflon Screen  Riser Description: 2.0" 1.D. Teflon Riser and PVC Riser | Driller: Simmons                                       | WBLL No.       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------|
| Client: Hercules Inc. Screen Description: 0.010" slot, 2.0" 1.D. Teflon Screen                                                                                                                              | Inspector: Smith                                       |                |
| Screen Description: 0.010" slot, 2.0" I.D. Teflon Screen                                                                                                                                                    | Date Installed: 5/1/87                                 | 5-WC1-2        |
|                                                                                                                                                                                                             | Sand Size: D(10)                                       | = 0.45-0.55 mm |
| Riser Description: 2.0" I.D. Teffon Riser and PVC Riser                                                                                                                                                     |                                                        |                |
|                                                                                                                                                                                                             | Bore/ Core Size:                                       | 6 Inch/ INA    |
| Subsurface Conditions Summary  Cobbles encountered at; 15.0 ft., 18.0 ft.  Subsurface water at 34.5 ft.  Yellow Brown silty medium to fine SAND (SM)  to  Orange Brown medium to fine sandy SILT (ML)       | Riser Stickup (ft.) =                                  | 3.0 ft.        |
| Orange Brown medium to fine sandy SILT (ML) 다 다                                                                                                                                                             | Depth to Sand Filter                                   | (ft.)=         |
|                                                                                                                                                                                                             | Depth to Well Botto  Flev.  Depth of Hole (ft.)  Elev. | =              |

# HWMUS/5-WC2-1



FROEHLING & ROBERTSON, INC.
FULL SERVICE LABOHATORIES - ENGINEERING/CHEMIC
-ONE HUNDRED YEARS OF SERVICE

|             | <b>0-6208</b> |                                                     |                                       |                     |                  |                  |          | DATE May 1987                                          |
|-------------|---------------|-----------------------------------------------------|---------------------------------------|---------------------|------------------|------------------|----------|--------------------------------------------------------|
|             | ercules       |                                                     |                                       |                     |                  |                  |          |                                                        |
| rotect R    |               | Army Ammunition I                                   |                                       | Radi                | ord, V           |                  |          | I casias Plan                                          |
| oring No.:  | 5-WC2-        |                                                     | ft. Elevation:                        |                     |                  |                  |          | Location Plan                                          |
| ype of Boni | ns: Hollo     | w Stem Auger                                        | Stened: 5/5/87                        | Comi                | Heted:           | 5/5/87<br>Semple | * Core   |                                                        |
| Eleverion   | 8:8"          |                                                     | ON OF MATERIALS                       |                     | Sample<br>Blows  | Depth<br>(Fast)  | Recovery | REMARKS                                                |
|             | 11111         | Medium dense red bro<br>trace mica (SM)             | wn silty fine SAN                     | 10.                 | <sup>36</sup> 10 | 1.5              |          | GROUNDWATER DATA                                       |
|             |               | •                                                   |                                       |                     | 459              | 4.5              |          |                                                        |
|             |               | -to-                                                |                                       |                     |                  | 6.0              | _        |                                                        |
|             |               | Very loose to medium<br>medium to fine SAND         |                                       | wn silty            | 222              | 8.5<br>10.0      |          |                                                        |
|             |               | -ALLUY                                              | TUM-                                  |                     |                  | 10.0             |          |                                                        |
|             | 1111          | -1000                                               |                                       |                     | 2146             | 13.5             | 1        |                                                        |
|             | 16.5          |                                                     | · · · · · · · · · · · · · · · · · · · |                     |                  |                  |          |                                                        |
|             | ļmi           | Medium dense to very<br>coarse to fine SAND<br>(SM) | loose yellow bro<br>(angular rock Fra | wn silty<br>gments) | 9148             | 18.5             |          | Subsurface water at: 22 ft                             |
|             | 1111          |                                                     |                                       |                     |                  | 20.0             |          | May 5, 1987 at 4:00 p.m.<br>29 ft, May 5, 1987 4:10 p. |
|             |               | -RESID                                              | UUM-                                  |                     | **1              | 23.5             |          | *Weight of hammer                                      |
| ,           | Luni          |                                                     |                                       |                     |                  |                  |          |                                                        |
|             | 11111         |                                                     |                                       |                     | 123              | 28.5<br>30.0     |          |                                                        |
|             | 31.8          | Boring terminated at                                | 31.8 ft.                              |                     |                  |                  |          |                                                        |
| 1           | 1111          |                                                     |                                       |                     |                  |                  |          |                                                        |
|             |               |                                                     |                                       |                     |                  |                  |          |                                                        |
|             | =             |                                                     |                                       |                     | {                | }                | {        |                                                        |

| Project: Radford Army Ammunition Plant                                                                                                                                                    | Driller: Simmons                                                                                         | WELL No.            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------|
| Location: Radford, Virginia                                                                                                                                                               | Inspector: Smith                                                                                         | 5-WC2-1             |
| Client: Hercules Inc.                                                                                                                                                                     | Date Installed: 5/6/87                                                                                   | 0/40\ 0.45.0.55     |
| Screen Description: 0.010" slot, 2.0" I.D. Teflon Screen                                                                                                                                  |                                                                                                          | D(10)= 0.45-0.55 mm |
| Riser Description: 2.0" I.D. Teflon Riser and PVC Riser                                                                                                                                   | Bore/ Core S                                                                                             | Size: 6 inch/ NX    |
| Subsurface Conditions Summary  Yellow to Red Brown silty medium to fine SAND (SM)  Cobbles encountered at 8.0 ft.  Subsurface water at; 22.0 ft. at 4:00p 5/5/87 29.0 ft. at 4:10p 5/5/87 | Depth to Bento Election  Depth to Sand I  Election  Depth to Sand I  Election  Depth to Sand I  Election | Filter(ft.)=        |
|                                                                                                                                                                                           | Fle                                                                                                      | <del></del>         |
|                                                                                                                                                                                           | Depth of Hole                                                                                            |                     |

# HWMU5/5-WC2-2



FROEHLING & ROBERTSON, INC.

FULL SERVICE LABORATORIES • ENGINEERING CHEMICA

ONE HUNDRED YEARS OF SERVICE

| Report No.   | rt-6208      | 4                                                             |                 |                   |                    | DATE May 1987      |
|--------------|--------------|---------------------------------------------------------------|-----------------|-------------------|--------------------|--------------------|
|              | ercules      | Inc                                                           |                 |                   |                    |                    |
| Project: R   | adford       | Army Ammunition Plant Rac                                     | dford, V        |                   |                    |                    |
| Boring No.:  | 5-WC2-2      |                                                               |                 |                   |                    | Location Plan      |
| Type of Born | ne Hollo     | ow Stem Auger Sterled: 5/6/87 Co                              | mpleted: 5      | /6/87<br>  Semore |                    | riller: W. Simmons |
| Elevation    | Depth<br>0.0 | DESCRIPTION OF MATERIALS (Classification)                     | Sample<br>Blows | Depth<br>(Feet)   | & Core<br>Recovery | REMARKS            |
|              | 0.0          |                                                               |                 |                   |                    | GROUNDWATER DATA   |
|              | =            | No see 31 - and other and E MCS 1 fam                         | 1               | {                 |                    |                    |
|              | 1 4          | No sampling conducted, see 5-WC2-1 for subsurface condictions | 1               | }                 |                    |                    |
|              | 1 7          | - Subject Contractions                                        | }               | }                 |                    |                    |
|              | 3            |                                                               |                 | ļ                 |                    |                    |
|              | 1 3          |                                                               | }               | } .               |                    |                    |
|              |              |                                                               | }               | Ì                 | 1                  |                    |
|              |              |                                                               | }               | [                 | 1 1                |                    |
|              | =            |                                                               | 1               | [                 |                    |                    |
|              | =            | Cobbles encountered at 15 ft.                                 | - {             |                   |                    |                    |
|              |              | Copyres encountered at 13 14.                                 | - }             | }                 |                    |                    |
|              | =            |                                                               | . }             | ł                 |                    |                    |
|              |              | Difficult augering at 35 ft 40 ft.                            | 1               |                   |                    |                    |
|              | ] =          | ·                                                             |                 | }                 |                    |                    |
|              | ) =          |                                                               | 1               | {                 |                    |                    |
|              |              |                                                               | 1               | 1                 |                    | ·                  |
|              |              |                                                               | }               | Į                 |                    |                    |
|              | 1 =          |                                                               | j               | Į                 |                    |                    |
|              |              |                                                               | İ               | ł                 | }                  |                    |
|              | ]            | •                                                             | }               | ł                 | 1                  |                    |
|              | ] =          |                                                               | 1               | }                 |                    |                    |
| -            |              |                                                               | 1               | Ì                 | 1                  |                    |
| '            |              |                                                               | į.              | 1                 |                    |                    |
|              |              |                                                               | j               | ł                 |                    |                    |
|              | =            | <u>.</u>                                                      | 1               |                   |                    |                    |
|              |              |                                                               | ł               | ł                 |                    |                    |
|              | =            |                                                               | ł               | 1                 |                    |                    |
|              | =            |                                                               | ł               | {                 | 1                  |                    |
|              | =            |                                                               | ]               |                   |                    |                    |
|              | ] 3          |                                                               | 1               | Ì                 |                    |                    |
|              |              |                                                               | ŀ               | ł                 | [                  |                    |
| ,            |              |                                                               |                 | 1                 |                    |                    |
|              | E            |                                                               | 1               | [                 |                    |                    |
|              | ∃            |                                                               | 1               | {                 |                    |                    |
|              |              |                                                               | }               | {                 | 1                  |                    |
|              | =            | 2                                                             | }               | }                 |                    | -                  |
|              | 7            | Boring terminated at 43.5 ft.                                 | j               | ]                 |                    |                    |

|                                                                                                       |                                                                                                                                                                                                      | <u> </u>                |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Project: Radford Army Ammunition Plant                                                                | Driller: Simmons                                                                                                                                                                                     | WBLL No.                |
| Location: Radford, Virginia                                                                           | Inspector: Smith                                                                                                                                                                                     |                         |
| Client: Hercules Inc.                                                                                 | Date Installed: 5/6/87                                                                                                                                                                               | 5-WC2-2                 |
| Screen Description: 0,010" slot, 2.0" I.D. Teflon Screen                                              | Sand Size: D(10)=                                                                                                                                                                                    | 0.45-0.55 mm            |
| Riser Description: 2.0" I.D. Teflon Riser and PVC Riser                                               | Bore/ Core Size: 6                                                                                                                                                                                   | inch/ NX                |
| Subsurface Conditions Summary  See 5-WC2-I for Conditions  Cobbles encountered at; 15.0 ft., 40.0 ft. | Casing Stickup (ft.) =  Elev. =  Riser Stickup (ft.) =  Elev. =  Ground Elev.=  Depth to Bentonite (ft Elev.  Depth to Sand Filter(ft Elev.  Depth to Well Bottom  Elev.  Depth of Hole (ft.)  Elev. | 3,0 ft.<br>3,0 ft.<br>= |

.

•

# HWMU5\5-WC2-3 FROEHLING & ROBERTSON, INC...

FROEHLING & ROBERTSON, INC...
FULL SERVICE LABORATORIES - ENGINEERING/CHEMICA
TONE HUNDRED YEARS OF SERVICE

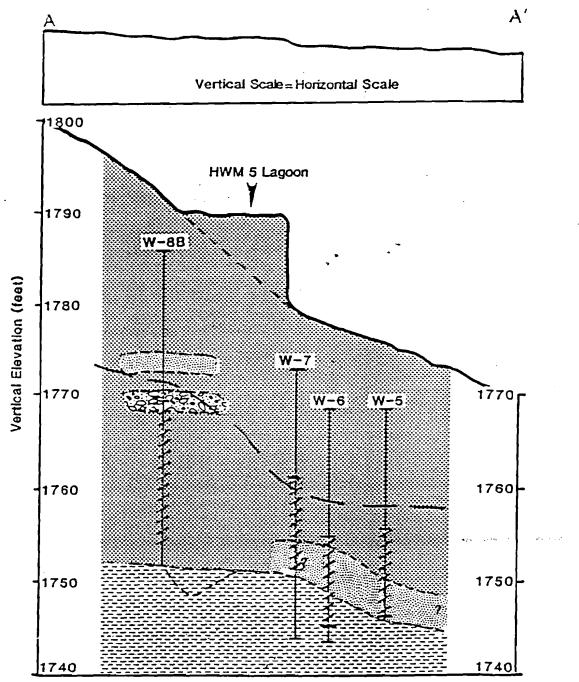
| Aspart No. 0-620   | 184                                                                                                      |                      | 1881                     | DAT             | E May 1987       |  |
|--------------------|----------------------------------------------------------------------------------------------------------|----------------------|--------------------------|-----------------|------------------|--|
| Client: Hercule    |                                                                                                          |                      |                          | •               |                  |  |
| Project Radfor     | d Army Ammunition Plant                                                                                  | Radford              | d, Virgin                | nia             |                  |  |
| Boring No.: 5-WC2  | -3 Total Depth:55,3 ft.                                                                                  | Elevation:           |                          | ation: See Loca | ation Plan       |  |
| Type of Boring: HO |                                                                                                          | 5/6/87 Complete      | nd: 5/6/8                | 7 Oriller:      | W. Simmons       |  |
| Elevation Oppos    | DESCRIPTION OF N<br>(Classification                                                                      | , j 54               | mple Depti<br>pura (Feet | Core            | REWARKS          |  |
|                    | No sampling conducted, see subsurface conditions  Cobbles encountered at 15.  Difficult augering at 53.0 | 0 ft.<br>ft 55.0 ft. |                          |                 | GROUNDWATER DATA |  |

| Project: Radford Army Ammunition Plant                                                     |   | Driller: Simmons                                          | WELL No.                |
|--------------------------------------------------------------------------------------------|---|-----------------------------------------------------------|-------------------------|
| Location: Radford, Virginia                                                                |   | Inspector: Smith                                          | 1                       |
| Client: Hercules Inc.                                                                      |   | Date Installed: 5/6/87                                    | 5-WC2-3                 |
| Screen Description: 0.010" slot, 2.0" I.D. Teflon Screen                                   | · | Sand Size: D(10)=                                         | 0,45-0,55 mm            |
| Riser Description: 2.0" I.D. Teflon Riser and PVC Riser                                    | · | Bore/ Core Size: 6                                        | inch/ NX                |
| Subsurface Conditions Summary  See 5-WC2-3 for Conditions  Cobbles encountered at 15.0 ft. |   | Casing Stickup (ft.)=<br>Elev. =<br>Riser Stickup (ft.) = | 3.0 ft.  3.0 ft.  (t.)= |

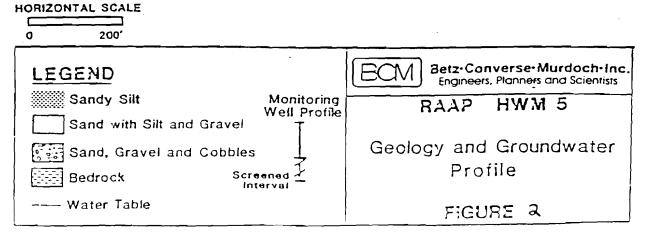
Form No 500 **BORING LOG** 

# 1.WMU515-WCA




FROEHLING & ROBERTSON, INC.
FULL SERVICE LABORATORIES - ENGINEERING, CHEMICATORIE HUNDRED YEARS OF SERVICE

| Benod No. 4 | a cana     | A                                                                                     | 14                   | • 1                       |                    | DATE May 1987     |
|-------------|------------|---------------------------------------------------------------------------------------|----------------------|---------------------------|--------------------|-------------------|
| Client: H   | ercules    |                                                                                       |                      |                           |                    |                   |
|             |            | Army Ammunition Plant Ra                                                              | dford, V             | irginia                   | a                  |                   |
| Boring No.: | 5-WCA      | Total Depth: 40 ft, Elevation:                                                        |                      | Locat                     |                    | ocation Plan      |
|             | e Hollo    | ow Stem Auger Staned: 5/7/87 C                                                        | ompleted.            | 5/11/8                    | 7 Oria             | er: W. Simmons    |
| Elevation   | 0.0        | DESCRIPTION OF MATERIALS (Classification)                                             | Sample<br>Blows      | Semple<br>Depth<br>(Feet) | N Core<br>Recovery | REMARKS           |
|             |            | Very loose gray brown medium to fine sandy<br>SILT, trace coarse subrounded sand (ML) | 322                  | 1.5                       |                    | GROUNDWATER DATA  |
| •           | 111111     | Very loose gray braown fine sandy SILT (ML)                                           | 221                  | 6.0                       |                    |                   |
|             | =          | -ALLUVIUM-                                                                            | 224                  | 8.5                       |                    |                   |
|             | 11111      | Medium stiff gray to tan clayey SILT.                                                 | 234                  | 13.5                      | 1 1                |                   |
|             |            |                                                                                       | 223                  | 18.5                      | 1 1                |                   |
|             | 1111111    | Medium stiff to stiff mottled to gray silty fine SAND (SM) manganese stains           | 236                  | 23.5                      | } {                |                   |
|             | Tuttutt    | -grading to- Stiff mottled to gray silty CLAY/clayey SIL (CL/ML) -RESIDUUM-           | т<br>3 <sub>57</sub> | 28.5                      | 1                  |                   |
|             | lanalanaln | -16.53.5001-                                                                          | 359                  | 33.5                      | 1                  |                   |
| ·           | 40.0       | -<br>Boring terminated at 40.0 ft.                                                    | •••                  | 38.5                      |                    | *Weight of Hammer |

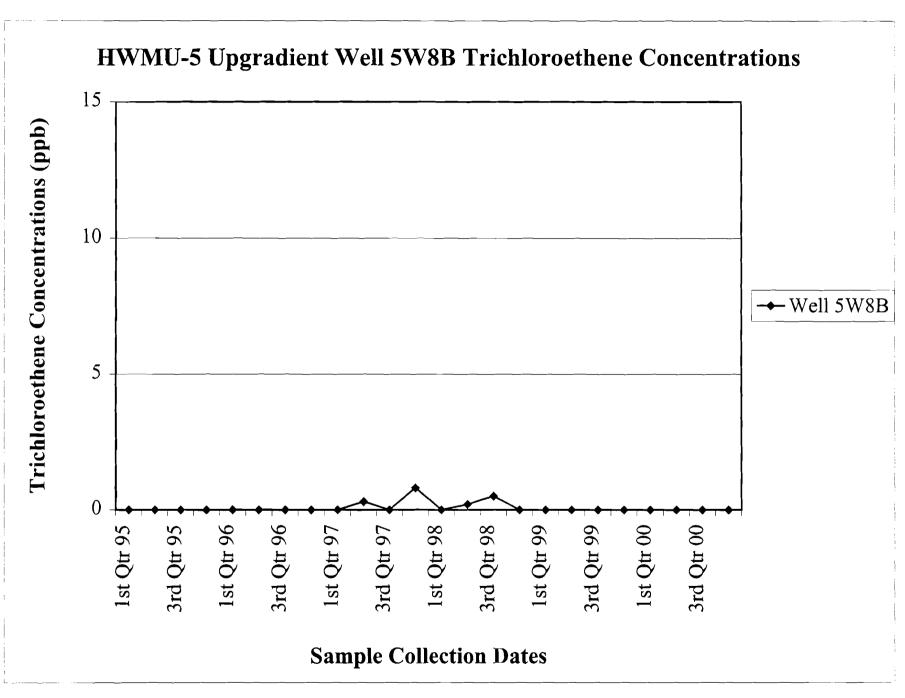

"No of blows rediction and the sast two increments of penetration is termed the standard penetration resistance. N

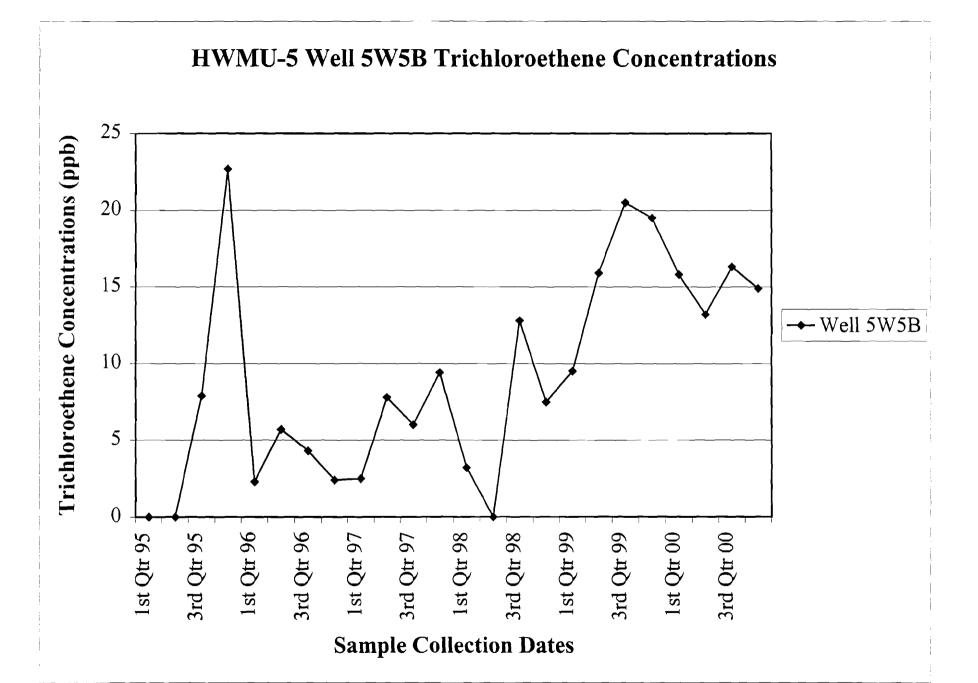
Scale 1"=5" unless otherwise noted

|                                                                                                        | <br>,                                                                         |             |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------|
| Project: Radford Army Ammunition Plant                                                                 | <br>Driller: Simmons                                                          | WELL No.    |
| Location: Radford, Virginia                                                                            | <br>Inspector: Smith                                                          | 5-WCA       |
| Client: Hercules Inc.                                                                                  | <br>Date Installed: 5/11/87                                                   | 1 2 2 5 5 5 |
| Screen Description: 0,010" slot, 2,0" I.D. Teflon Screen                                               | <br>Sand Size: D(10)                                                          |             |
| Riser Description: 2.0" I.D. Teflon Riser and PVC Riser                                                | <br>Bore/ Core Size:                                                          | 6 inch/ NX  |
| Subsurface Conditions Summary  Gray Brown medium to fine sandy SILT/ silty medium to fine SAND (ML/SM) | Casing Stickup (ft.)=  Elev. =  Riser Stickup (ft.) =  Elev. =  Cround Elev.= |             |
|                                                                                                        | Depth to Bentonite  Elev.  Depth to Sand Filter  Elev.                        | =           |
|                                                                                                        | <br>Depth to Well Botto  Elev.  Depth of Hole (ft.)  Elev.                    | 2           |

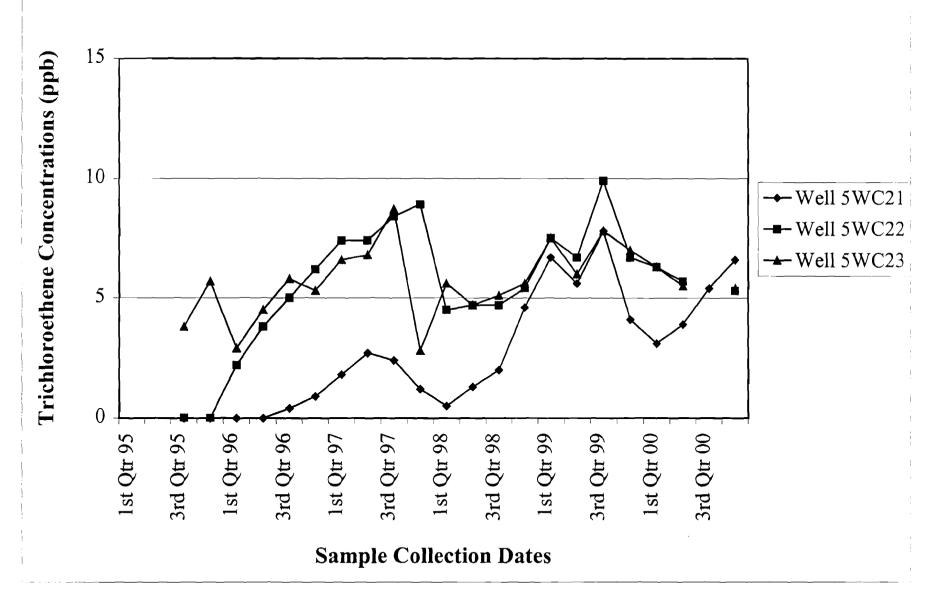


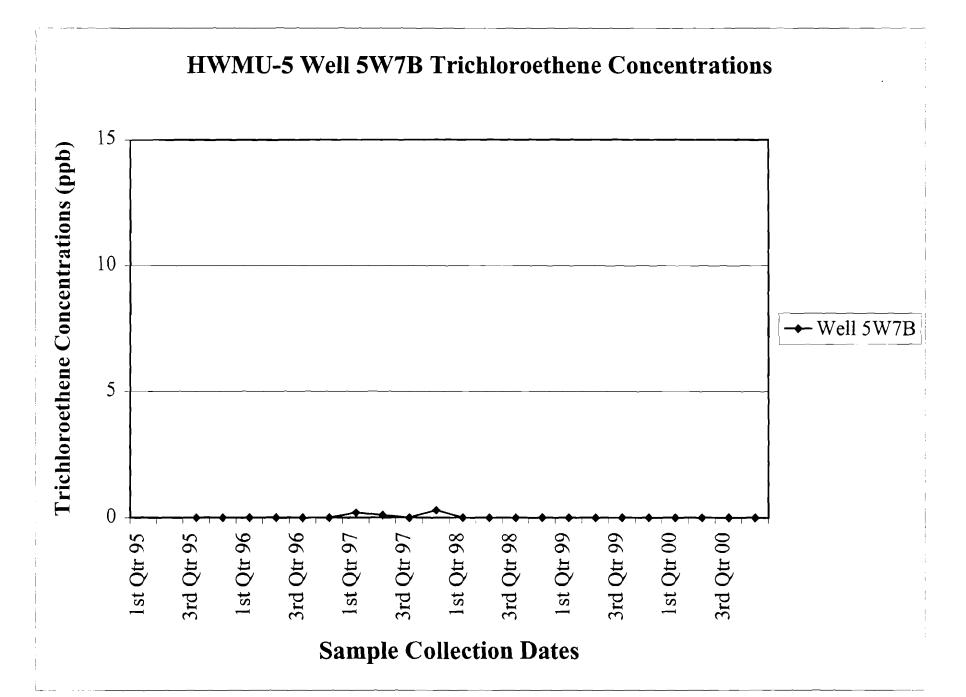
Water Table Measured Nov., 1982 Well 88 Measured Feb., 1983

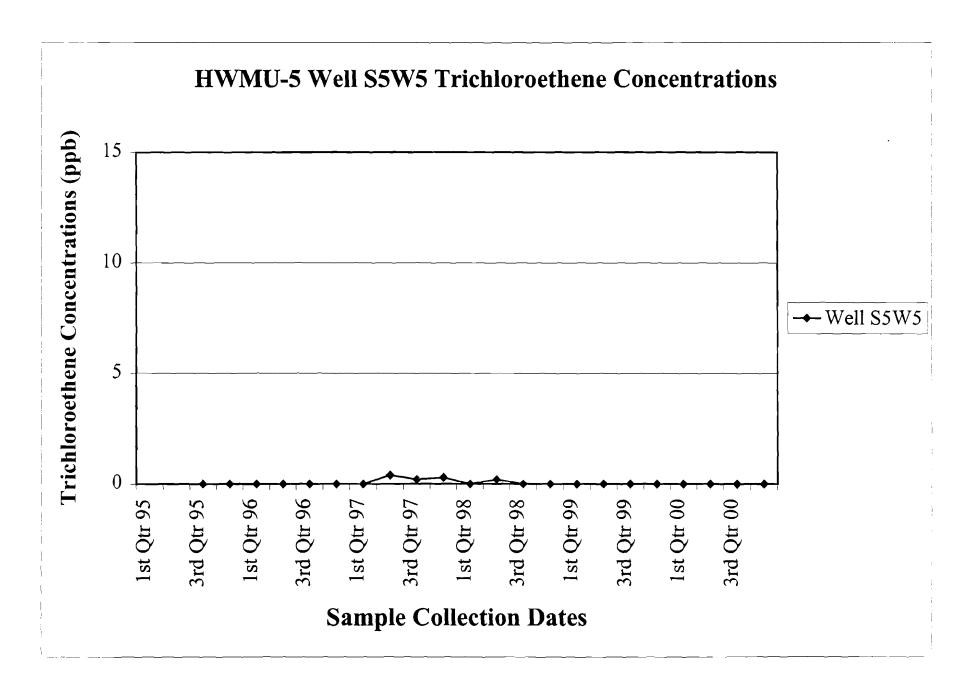


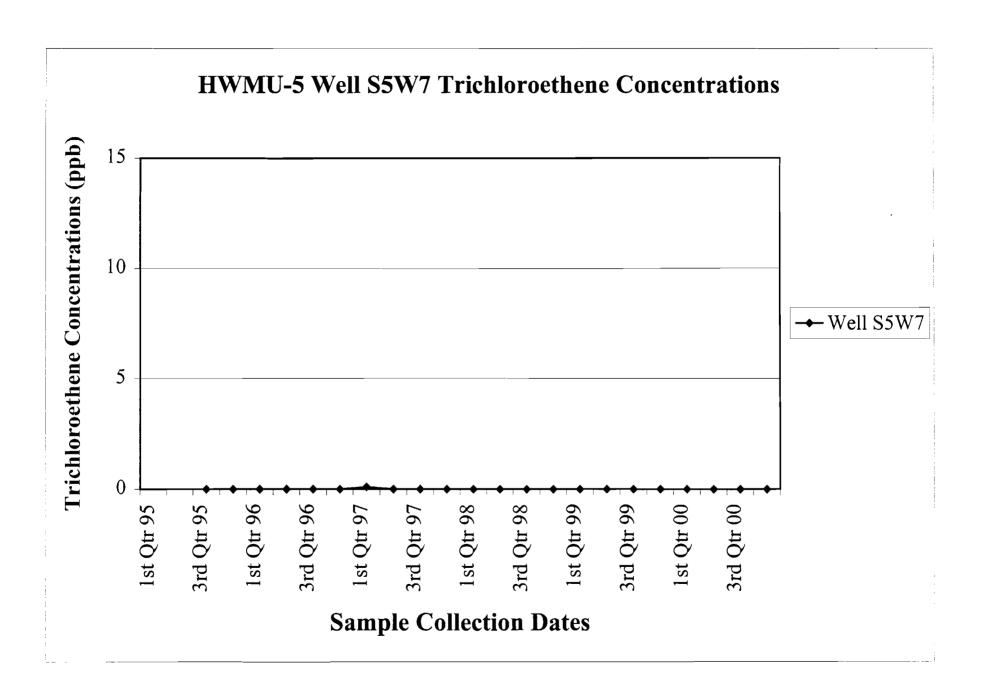


# ENGINEERING DEPARTMENT FILE

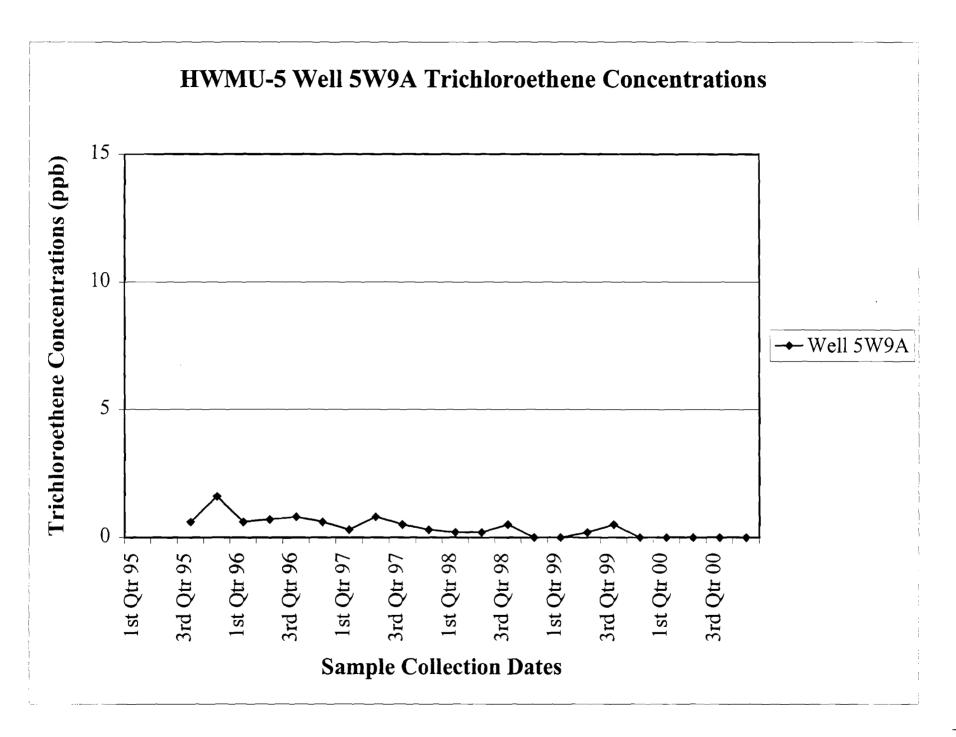
| PLANT _  | RAAK   | PROJE          | ECT No    | DATE 6/3/EZ               | UTHOR 12.C        | . Wedie!        |
|----------|--------|----------------|-----------|---------------------------|-------------------|-----------------|
|          |        |                |           |                           |                   | ,               |
|          |        |                | formation |                           | ndworker ,        | Meniforia       |
|          | Well5  | 1 at 1         | YWM 5.    | 1 .                       | •                 | <u>i</u>        |
|          | 0/ /   |                | Monitori  | - 1.00//                  |                   |                 |
|          | Plant  | 6-             | Flourtin  | - T                       | Ground            | Date G.         |
| No.      | Coordi | west           | Conc. Pad | Top of                    | Water<br>Ekvation | Water E.        |
|          | 100774 | you,           | CONC. 726 | 605125                    | 72720             | 70,0030.        |
| 111-0    | 10000  | 591 7          | (22262    | , , , , , , , , , , , , , | 17/6/             | 0 /2            |
| (5WC 2-3 | 1044,8 | 592.7<br>641.7 | ]         | ·                         | 1768.6            | 4/24            |
| 5WC2-2   | 1      | 652.7          | 1         | 1773.88                   |                   |                 |
| 5WCZ-1   | F .    | 663.9          | 1772.10   | 1778.85                   |                   |                 |
|          | 951.5  | 654.6          | 1772,88   | 1774.80                   | 10000             | 0 /20 10        |
| 5WCA     | 1      | 650.0          | 1777.37   | 1779.96                   | 1766.0            | 4/20,00         |
| W-€      | f .    | 726.7          | 1787.02   | 1788.28                   | 1796.0            | 4/200           |
| ルーフ      | 1032.5 | 917.1          | 1776.59   | 1778.59                   | 1765.0            | \$/ C \\ \$/2\\ |
| n-78     |        | 7/7.9          | 1772.59   | 1778.86                   | 1765.0            |                 |
| n-5      | l '    | 776.0          | 1773.32   | 1775,25                   | ,,,,,,            |                 |
| 5WC1-2   | 671.7. | 773.2          | 1787.43   | 1789.89                   |                   |                 |
| 5WC1-1   | 685,1  | 782.6          | 1787.55   | 1789.99                   |                   |                 |
| WEB      | 671.7  | 783.7          | 1787.58   | 1789.55                   | 1734.35           | 9/20/0          |
| WAA      | 1190   | 23/            | 1701.07   | 1761.82                   | 1760.3            | 4-12-           |
| WIOA     | 1518   | 223            | 1768,82   | 1770.75                   | 1758.9            | 4/20/2          |
| WIA      | 1678   | F 35           | 1768.70   | 1765.90                   | 1756.7            | 9/20/2          |
|          |        |                |           |                           |                   | -<br>-          |
|          | . }    | ·              |           |                           |                   |                 |
|          |        |                |           | }                         |                   |                 |
|          |        |                |           | <b>\</b>                  | }                 |                 |

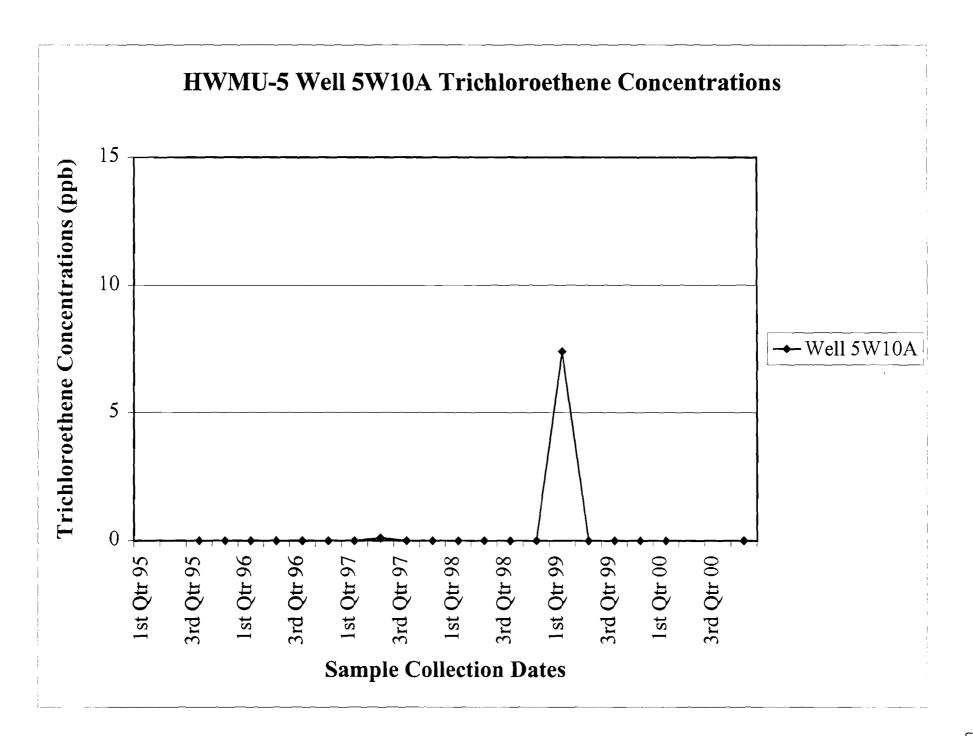

## APPENDIX B

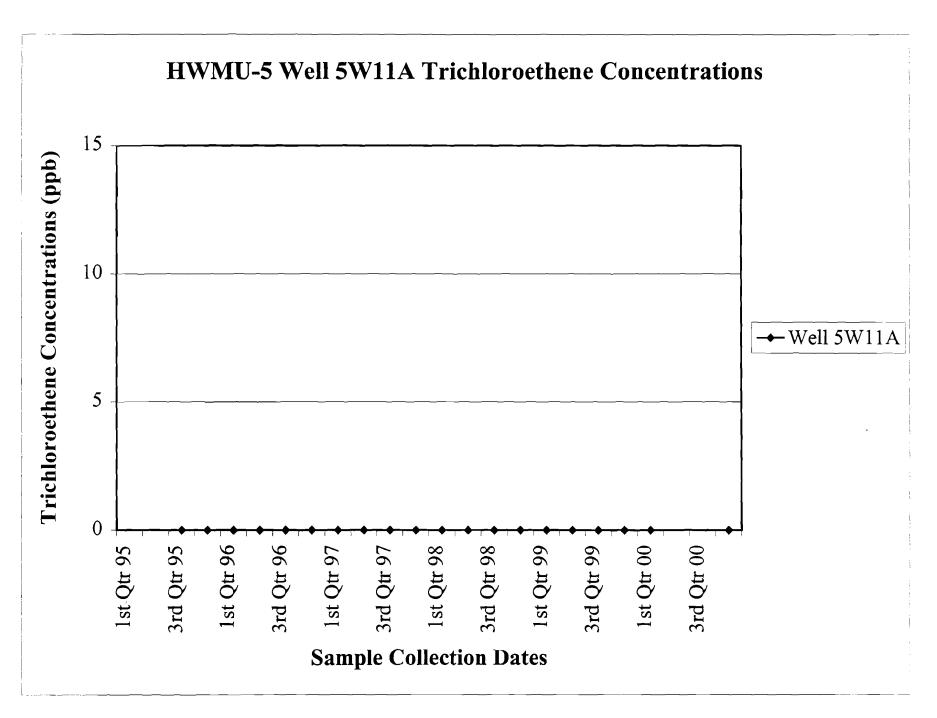

TRICHLOROETHENE HISTORIC CONCENTRATION GRAPHS





# HWMU-5 Nested Wells 5WC21, 5WC22, and 5WC23 Trichloroethene Concentrations














# RADFORD AAP HAZARDOUS WASTE MANAGEMENT UNITS 5 AND 7 RESPONSE TO VDEQ COMMENTS – JUNE 25, 2003

The VDEQ comments and DAA's responses are detailed below.

1) "...in order to demonstrate clean closure of these units, the soil and liner material immediately beneath the wastes must be sampled as well to determine if they meet clean closure standards."

A sample of the base sand beneath the residual material and above the bottom liner was collected at HWMU-5 [sample 5GP-6 (10-11')]. Samples were not collected from beneath the liner because it would have been impossible to patch the bottom liner without excavating to a depth of approximately 12 feet below ground surface (through approximately 5'-8'of residual material) in order to install the type of liner patch specified by the VDEQ. If samples are to be collected from the soils beneath the Unit, the VDEQ must approve the use of bentonite for patching the bottom liner. If the VDEQ approves the use of bentonite as a patching method, then DAA recommends the collection of two (2) soil samples from beneath the bottom liner at HWMU-5.

A sample of the base clay liner beneath the residual material was collected at HWMU-7 [sample 7GP-2 (13.5-14.5')]. A sample of the native soil beneath the residual material also was collected [sample 7GP-3 (10-11')]. Therefore, DAA does not recommend the collection of additional samples from beneath HWMU-7.

2) "Refer to Section 3.13 of the *Draft Guidance* for the requirements of all acceptable clean closure standards (i.e., analytical non-detection, background, and risk-based)."

The VDEQ comment letter did not include the referenced *Draft Guidance Manual for Closure Plans and Post-Closure Plans*. Based on previous discussions between Radford AAP and VDEQ, it is assumed that the VDEQ clean closure standards will be based on REAMS, and that VDEQ will not approve the use of USEPA Region III RBCs.

3) "...every sample of waste must not exceed the land disposal restrictions (LDRs) treatment standards specified in 40 CFR 286 [should be 268], Subpart D."

### 40 CFR 268 Subpart D - Treatment Standards

§268.40(e) For characteristic wastes (D001-D043) that are subject to treatment standards in the following table "Treatment Standards for Hazardous Wastes," and are not managed in a wastewater treatment system that is regulated under the Clean Water Act (CWA), that is CWA-equivalent, or that is injected into a Class I nonhazardous deep injection well, all underlying hazardous constituents (as defined in §268.2(i)) must meet Universal Treatment Standards, found in §268.48, Table Universal Treatment Standards, prior to land disposal as defined in §268.2(c) of this part.

**§268.2(i)** Underlying hazardous constituent means any constituent listed in §268.48, Table UTS – Universal Treatment Standards, **except fluoride**, **selenium**, **sulfides**, **vanadium**, **and zinc**, which can reasonably be expected to be present at the point of generation of the hazardous waste at a concentration above the constituent-specific UTS treatment standards.

§268.2(c) Land disposal means placement in or on the land, except in a corrective action management unit, and includes, but is not limited to, placement in a landfill, surface impoundment, waste pile, injection well, land treatment facility, salt dome formation, salt bed formation, underground mine or cave, or placement in a concrete vault, or bunker intended for disposal purposes.

### Treatment Standards for Hazardous Wastes (§268.40)

D002-Corrosive Characteristic Wastes (Nonwastewaters): DEACT and meet §268.48 standards.

### Comparison of Waste Material Samples to Universal Treatment Standards (§268.48)

See Table 1 (HWMU-5 TAL/TCL Detections), Table 2 (HWMU-7 TAL/TCL Detections), and Table 3 (TCLP Results – HWMUs 5 and 7).

Please note: Waste Characterization samples from HWMUs 5 and 7 were analyzed for standard TCLP constituents. These samples were not analyzed for TCLP antimony, beryllium, nickel, and thallium, which are listed in §268.48 – Table Universal Treatment Standards. However, the individual residual material samples were analyzed for antimony, beryllium, nickel, and thallium in total concentrations. In each case, the detected concentrations of these constituents were less than the respective TCLP threshold values; therefore, the residual material should meet the LDR criteria.

TABLE 1

# HAZARDOUS WASTE MANAGEMENT UNIT 5 SUMMARY OF TAL INORGANIC CONSTITUENTS AND TCL ORGANIC CONSTITUENTS DETECTED IN RESIDUAL MATERIAL RADFORD ARMY AMMUNITION PLANT, RADFORD, VIRGINIA

|                                                   |          |          |         |        |           |         |          | (      | Concer | trations | in mg/ | kg        |           |             |           |          |      |         |
|---------------------------------------------------|----------|----------|---------|--------|-----------|---------|----------|--------|--------|----------|--------|-----------|-----------|-------------|-----------|----------|------|---------|
|                                                   | ralyte   | Aluminum | Arsenic | Barium | Beryllium | Calcium | Chromium | Cobalt | Copper | Iron     | Lead   | Magnesium | Manganese | Nickel      | Potassium | Vanadium | Zinc | 4,4-DDD |
| Sample Location                                   | Date     |          |         |        |           |         |          |        |        | ;        |        |           |           | <del></del> |           |          |      |         |
| 5GP-1 (9-10')<br>(residual material)              | 10/31/02 | 12100    | 3.9     | 47.3   | 1.1       | ~       | 31.7     | 17.6   | 19.8   | 26700    | 9.8    | 1730      | 360       | 19          | 851       | 32       | 20.7 | 0.019   |
| 5GP-3 (9-10')<br>(residual material)              | 10/31/02 | 14800    | 2.6     | 37.2   | ~         | 866     | 22.8     | ~      | 9.5    | 24400    | 9.7    | ~         | 90.8      | 5.3         | ~         | 54.3     | 18.6 | ~       |
| 5GP-8 (7-8')<br>(residual material)               | 10/31/02 | 14200    | 4.1     | 46.1   | 1.3       | ~       | 21.6     | 116    | 16.8   | 28400    | 9.6    | 1410      | 242       | 10.7        | 1090      | 26.7     | 23.9 | 0.051   |
| 5GP-8 (11-12')<br>(residual material)             | 10/31/02 | 19600    | 3.4     | 61.4   | 0.81      | ~       | 26.9     | 10     | 14.8   | 29000    | 9.6    | 1560      | 372       | 11          | 1420      | 55.2     | 33.8 | ~       |
| 40 CFR 264.48<br>Universal Treatment<br>Standards |          | na       | па      | na     | na        | na      | na       | na     | na     | na       | na     | na        | na        | na          | na        | na       | na   | 0.087   |

### NOTES:

~: Not detected above the Limit of Quantitation (LOQ).

na: Not applicable. Universal Treatment Standards for Inorganic constituents in soil are TCLP standards.

TABLE 2

### HAZARDOUS WASTE MANAGEMENT UNIT 7 SUMMARY OF TAL INORGANIC CONSTITUENTS AND TCL ORGANIC CONSTITUENTS DETECTED IN RESIDUAL MATERIAL RADFORD ARMY AMMUNITION PLANT, RADFORD, VIRGINIA Concentrations in mg/kg N-Nitrosodiphenylamır Analyte 1,4-DDE Cobalt Nickel ead Sample Location Date 7GP-2 (8-12') 11/01/02 8790 2.7 40.9 1.2 22 12.5 22 23300 2.8 3140 274 21.6 1070 21.1 15 (residual material) 7GP-5 (6-11') 11/01/02 20000 3.5 55.6 22.8 10 23600 11 787 187 732 (residual material) 7GP-8 (5-8') 11/01/02 22400 2.4 55 1570 20.1 12.7 23200 10.3 1090 280 8.5 1040 61.8 28.1 (residual material) 40 CFR 264.48 0.087 0.087 590 13 na na na na па na กล na na na na na na na na na na

### NOTES:

Universal Treatment Standards

<sup>~:</sup> Not detected above the Limit of Quantitation (LOQ), na: Not applicable. Universal Treatment Standards for Inorganic constituents in soil are TCLP standards.

# SUMMARY OF WASTE CHARACTERIZATION ANALYTICAL RESULTS - INORGANICS HAZARDOUS WASTE MANAGEMENT UNITS 5 AND 7 RADFORD ARMY AMMUNITION PLANT, RADFORD, VIRGINIA

|           | Sam         | ple ID      | Regulatory | 40 CFR 268.48 |       |
|-----------|-------------|-------------|------------|---------------|-------|
| Analyte   | Unit-5-TCLP | Unit-7-TCLP | Thresholds | UTS           | Units |
| Arsenic   | U           | U           | 5          | 5             | mg/l  |
| Barium    | 0.714       | 0.521       | 100        | 21            | mg/l  |
| Cadmium   | U           | U           | 1          | 0.11          | mg/l  |
| Chromium  | U           | υ           | 5          | 0.6           | mg/l  |
| Lead      | U           | U           | 5          | 0.75          | mg/l  |
| Mercury   | U           | U           | 0.2        | 0.2           | mg/l  |
| Selenium* | U           | υ           | 1          | 5.7           | mg/l  |
| Silver_   | \U_         | Ü           | 5          | 0.14          | mg/l  |

### NOTES:

- \*: Selenium is not an "underlying hazardous constituent" in characateristic wastes, according to the definition at 40 CFR 268.2(i).
- U: Not detected above the Limit of Quantitation (LOQ).

| TASK [                                | DESCRIPTION           |                     |                         |                 |                      |             |                    |                     | COSTS              | 7        |            |  |
|---------------------------------------|-----------------------|---------------------|-------------------------|-----------------|----------------------|-------------|--------------------|---------------------|--------------------|----------|------------|--|
|                                       | Revise Closure Plan   | s for HWMU-5 ar     | nd HWMU-7 (             | Cost for Two P  | lans inclu           | iding mtgs. | )                  |                     | 9,660              | 1        |            |  |
| 2                                     | nvironmental Subs     | surface Investiga   | tion (HWMU-             | 5 Additional Sa | mples - li           | ncludes Dat | a Validatio        | n)                  | 7,250              |          |            |  |
|                                       |                       |                     |                         |                 | TOTAL F              | PROJECT E   | STIMATE            |                     | \$ 16,910          | 1        |            |  |
|                                       |                       |                     |                         |                 |                      |             |                    |                     |                    | <u>-</u> |            |  |
| ASK BREAKDOWN                         |                       |                     |                         |                 |                      | ,           |                    |                     |                    |          |            |  |
|                                       |                       | 11.9                | D (0)                   | Task            |                      | Tas         |                    |                     | <del></del>        |          |            |  |
| Classification Program Manager I      |                       | <u>Units</u><br>Hr  | <u>Rate (\$)</u><br>110 | No. Units<br>12 | <u>Cost</u><br>1,320 | No. Units   | <u>Cost</u><br>880 |                     |                    |          |            |  |
| rogram Manager i<br>Senior Eng./Geol. |                       | Hr                  | 90                      | 12              | 1,320                | 8           | 0                  |                     |                    |          |            |  |
| Project Eng./Geologis                 | •                     | Hr                  | 70                      | 24              | 1,680                | 12          | 840                |                     |                    |          |            |  |
| invironmental Scienti                 |                       | Hr                  | 70                      | 0               | 0                    | 12          | 840                |                     |                    |          |            |  |
| Prafting                              | <del></del>           | Hr                  | 55                      | 6               | 330                  | 0           | 0                  |                     |                    | 1        |            |  |
| invironmental Techni                  | cian                  | Hr                  | 45                      | 0               | 0                    | 10          | 450                |                     |                    | 1        |            |  |
| Clerical                              |                       | Hr                  | 40                      | 8               | 320                  | 6           | 240                |                     |                    | ;        |            |  |
| Reimbusables                          |                       | LS                  |                         |                 | 100                  |             | 4,000              |                     |                    |          |            |  |
| ask Totals                            |                       |                     |                         | per plan        | 4,830                |             | 7,250              |                     |                    |          |            |  |
| E                                     | Breakdown of Reimburs | able Costs Task II: |                         |                 |                      |             |                    |                     |                    |          |            |  |
| <u>ltem</u>                           | <u>Unit</u>           | No. Units           | <u>Cost</u>             | Total Cost      |                      |             |                    |                     |                    |          |            |  |
| Geoprobe                              | day                   | 1                   | 2000                    | 2,000           |                      |             |                    |                     |                    |          |            |  |
| Laboratory                            | see estimate          | 1                   | 2,000                   | 2,000           |                      |             | Laboratory         |                     | Cost               | No Unite | Total Cost |  |
|                                       |                       |                     |                         |                 |                      |             | <u>Test</u><br>TAL | <u>Type</u><br>Soil | <u>Cost</u><br>500 | 2        | 1,000      |  |
|                                       |                       |                     |                         |                 |                      |             | TCL                | Soil                | 500                | 2        | 1,000      |  |
|                                       |                       | TOTAL REIMBUR       | RSABLES                 | 4,000           |                      |             |                    |                     |                    |          | ,          |  |
|                                       |                       |                     |                         |                 |                      |             |                    |                     |                    | TOTAL    | 2,000      |  |