Appendix A-1 Boring Logs

PROJECT: Radford AAP SWMU 54

CLIENT/OWNER:

HOLE LOCATION: SWMU 54

DRILLER: Parrat-Wolfe DRILL RIG: Air Rotary **PROJECT NO.:** 136880

DATE: 6/8/11

TOC ELEV.: 1696.2 **GS ELEV.:** 1693.14

LOGGED BY: J. Hillebrand

DEPTH 1	O WAT	TER: 19.0	НО	LE DIAMETER: 2" HOLE NO	.: 54MW	/11	
ELEVATION /	WELL	SOIL SYMBOLS, SAMPLER SYMBOLS	USCS	DESCRIPTION	Sample Number	Recovery	Water Content
DEPTH	DETAILS	AND FIELD TEST DATA			Number		Content
1695				(
1690 5			SM	Brown, moist, Silty SAND			
1685 — 10							
1680 — - _— 15 			SM	Brown, wet Silty SAND	5		
1675 — - 20		<u>*</u> • • • • • • • • • • • • • • • • • • •	GP ROCK	Gray, wet, Poorly-graded Gravel (rock fragments) Auger Refusal @ 20.1 ft bgs. Air Rotary Drilling to 30.1 ft bgs. Gray, Limestone			
1670 —							
1665 — - - - - 30				31.			
1660 —							
35							

FIGURE NO.

PROJECT: Radford AAP SWMU 54

CLIENT/OWNER:

HOLE LOCATION: SWMU 54

DRILLER: Parrat-Wolfe **DRILL RIG:** Air Rotary **DEPTH TO WATER: 20**

HOLE DIAMETER: 2"

PROJECT NO.: 136880

DATE: 6/9/11

TOC ELEV.: 1702.4 **GS ELEV.:** 1699.08

LOGGED BY: J. Hillebrand

HOLE NO.: 54MW12

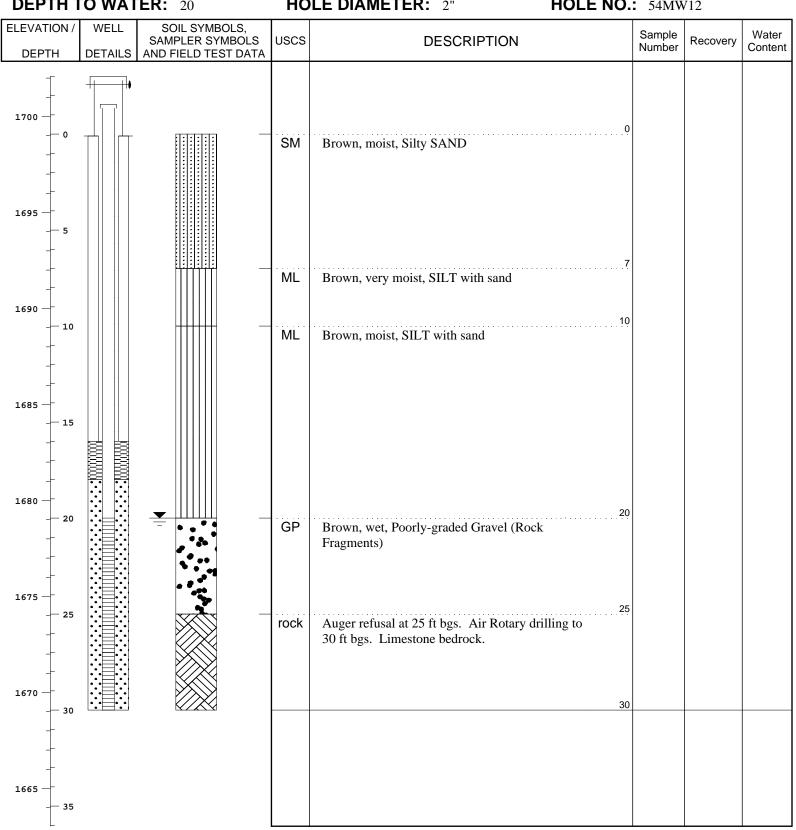


FIGURE NO.

PROJECT: Radford AAP SWMU 54

CLIENT/OWNER:

HOLE LOCATION: SWMU 54

DRILLER: Parrat-Wolfe
DRILL RIG: Air Rotary
DEPTH TO WATER: 16.5

HOLE DIAMETER: 2"

PROJECT NO.: 136880

DATE: 6/6/11

TOC ELEV.: 1698.9 **GS ELEV.:** 1699.08

LOGGED BY: J. Hillebrand

HOLE NO.: 54MW13

DEPTH 1	IO WAI	TER: 16.5	но	LE DIAMETER: 2" HOLE NO.	: 54MW	/13	
ELEVATION /	WELL	SOIL SYMBOLS, SAMPLER SYMBOLS	USCS	DESCRIPTION	Sample Number	Recovery	Water Content
DEPTH	DETAILS	AND FIELD TEST DATA			Number		Content
1700 0			FILL	0 Black, dry, FILL (Road Gravel) 1			
1695 5			SM SP	Light brown, very moist, Silty SAND Light brown, miost, Poorly-graded SAND with			
1690 — 10				silt seams; fining downwart to Silty SAND			
1685 — 15		<u> </u>	SC	Gray/brown, wet Clayey SAND 17			
1680 20			GP	Brown, wet, Poorly-graded Gravel (Rock Fragments)			
1675 — — 25				Auger Refusal @ 22.0 ft bgs			
1670 30							
1665 — 35							

FIGURE NO.

PROJECT: Radford AAP SWMU 54

CLIENT/OWNER:

HOLE LOCATION: SWMU 54

DRILLER: Parrat-Wolfe **DRILL RIG:** Air Rotary

HOLE DIAMETER: 2" DEPTH TO WATER: 24.0

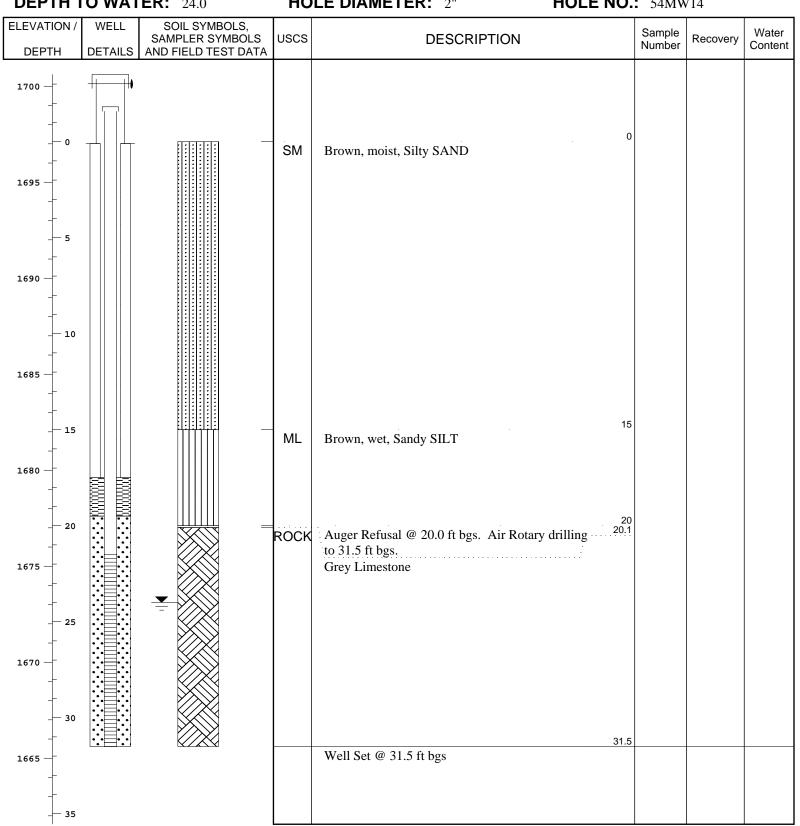
PROJECT NO.: 136880

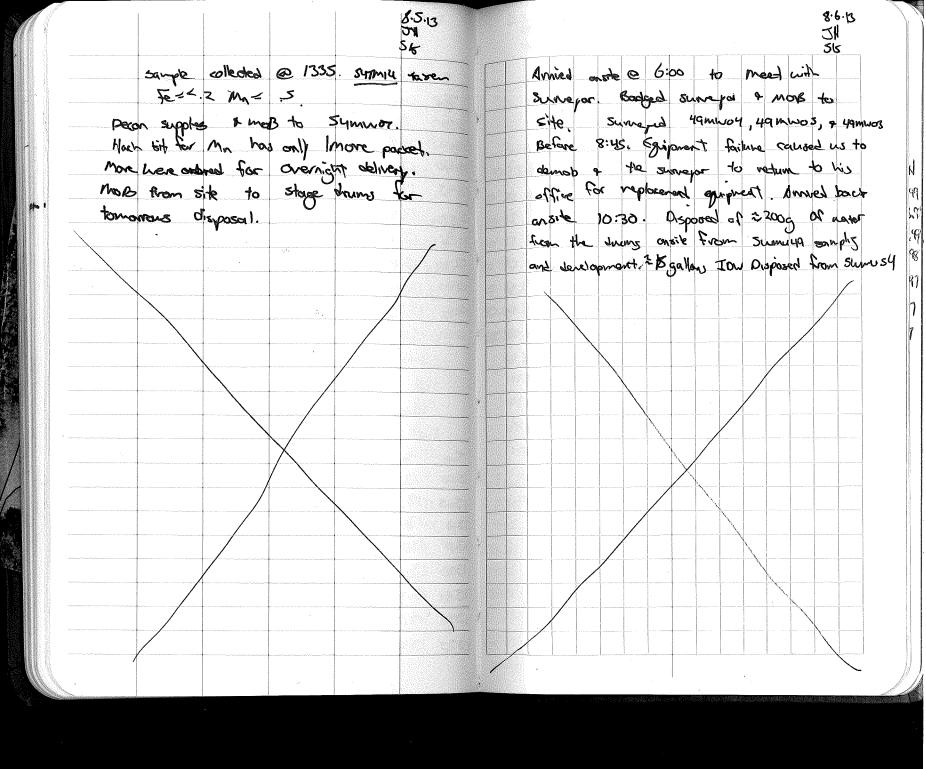
DATE: 6/8/11

TOC ELEV.: 1700.6 **GS ELEV.:** 1697.11

LOGGED BY: J. Hillebrand

HOLE NO.: 54MW14




FIGURE NO.

Appendix A-2 Field Sampling Forms

5.16.13

			THE RESERVE THE PROPERTY OF TH		ARREST ARREST TO THE PARTY OF T	A)			8. S TH 8. S	.13			
Ting	Te	~	Co-	,d D	٠	ρН	ф	4	ap	¥			Am
વ:∞	13.	રાં	.350	5 65	6	6.58	144	O.	ر ب	19.64	7	i he	
9:05	3 .	89	.350	6.5	7 6	.53	145	0.2)	20.9	11:30	2	13
9:10	13.8	ia ,	351	6.5	7 6.	57	146	0.80	ı	70.19	11:35		12
	n	ell stabi	lise d	<u> </u>	9:10	Sample	collec	6	29:1	D	11:4	0	13.
	હ	San	ele	and	m	Jang	<u>ه</u> د	بالويلي			11:4	5	13.
		િ		۷.2	M	۱۱ 5ا. = ۸		Docc	المرسو	Auma.	lı:s	5	13.1
\$1000 1 \$1000 min \$1000 min \$100 min \$1	MON	To	ς	54mwo6) to	recher	مر سو	rter	ker	el.	11:5		13.
111111111111111111111111111111111111111				unel sti							-		13.
	WO.	b to	54	ımw (.	Set.	nell @	45	. Rev	\ e	1	12.4	5	13,2
Processor and Pr				Jm. he					1		12:11	D _	13,2
4.00	4	2/00	حمما	P6	N	Green 	ب (day.		¥	12:1	S	1322
1000	.14.1	5 .	398	5.85	7.38	115	G. :	2	I	6.71			لعاا
80101	14.4	7 .3	99	4.01	7.35	118	Q.	1.	K				େ ।
10:10	14.4	1 .3	98	4.26	7.38	118	2.1		B.	71	1		Deca
10:15	14.31	, .40	00	4.10	7.37	119	2.0	>	16	.72			حاا
10:20	14.46	.30	۱٦	4.17	7.38	120	2.	1	16:	12.	Tku		Te
10:25	14.41	.39	૧	4.03	7.38	121	2.0	ပ	16.7	٧ .		80	
10:30	1,4,5	ر ر	۹٦	4,11	7.38	121	1.0			ነኚ	130	5	1 1
				4,13			1.0			12	. 131	1480000000	13.
				4.17					16.7		131	2	13.1
		1		9 6	į.		1		- 4.5		132	Ø	13,2
	الكاذله	I SM	F =	<.Q	Mai	- GX				100	13	ঠ	13.2
Amily 47% - 1 - 1 - 1 - 1 - 1 - 1				ppliku s				04		14	1 3	0	13.
				collectry		-JO					[33	5	13.2
	,												

													8.3-12 74	
				5	54 MU	voy						,	St	
	Amèc	0 5	4m	N64		Set	سو	ج إل	39	20	omy	4	Start	d11:52
The	ter		cand	i)		-	0		ž.	urb		7
11:30	13.6	•	965	3 6	5.82			4 4	6			20		5.66
1:35	12.99		97	1	O.5	9	6.	93	2	4	-	1.2		5.69
1:40	13.66		964	!	3.50)		73	Š	3		13.c		5.71
1:45	13.2	8.	95	. !	5.Y	1	6.c		3	•		10.1	j:	5.73
11:50	13.14		949		5,4 ^L	1	6.9	2	-6	•	0	.0	12	57.3
ر اا:خد	13.2		941	C	24.5	- 6	5.95	5	- 9		0	.0	12	5.73
12:00	13.20		940	(>.43	> (5.99	}	12	•	0,	<u>ک</u>	12	i.73
	13,21		938	C	.41	Ć	5.96	}	~ 17		0.0	0	IJ	74
	13,22	.9	137	0	.41	4	5,96	, ·	18		0.0	þ	13	74
12:15	1322		37	٥	.39	Ć	5.9	6 -	-18		٥.	ે	IS.	74
	لعااج	tab	اعمر	6		12:1	s.		5a~	eles	col	lede	ı	
	@ 12					1		1 2	5	rela	5	WV =	.05	
	Decon								w14					
v	حال هو	1	2:	S '	Ruc	· .	stai	ted	Q	12:	5≤.	200	me/p	
Tine	Teng	~	Con	1		0_	ρ	1		m-	4	24s		¥
13:00	1352		.58:	i	·82			90		5		()		26.21
1305	13.78	- i	588	1	.4	8	6.	88	3	7))		20.24
1310	13.30		281		.47		6.8		37	<u> </u>	•	1.4		20. 9 6
1315	13.16		578	3	.30	, ,	6.8	9	33		2	5.0		027
1320	13,27		<i>5</i> 5	6	51	6	. 8	6	50	2	(0.0	2	0.27
1345	13.20	,	554	1	. 52	(5.8	1	۶Į		Ć	0	7	רצי. ט
1330	13,21		551	4	.51		8.8	1	50	1	04	g -	20	28
	13.21		554	•	5 2	6	.84		50		0	७.	Zo	28

		met o/	The	at #	e .	whel	æ.	6:30	> 4e	j	
	+	aika 🛊									
		tandard									
		eaiting	1								
		nde 196									
	ોખ	6 8:	45. F	ในค	in force	<u>σ</u> Σ	م ر	ે સ	3 ′. 6	un	
		ed on									
					mw						
Ting	Te	np	con					Conpo	. T	udo s	7
9:05	14.3			2.21	6	7.26		-154	121	16.	
1:10	13.7	0 .46	8 8	2.15	-	7.16		137	11)	16,4	
925	13.2	5 .44							47.0	16.9	8
9:20	13.3	1 .4	47 :	2.32	1 -	7.09			38.	· / [] [] [] [] [] [] [] [] [] [98
9:25	13.2	6 .43	6 6	2,38	•	7.10	-	53	13.8	16.9	1
9:30	13.2	5 .46	29 ;	1.39	7	.12	_	36	6.8	16,9	9
9:35	13.2	6 .4:	13 8	1,38	-	7.IZ	_	12	5.3	16.9	٩
9:40	13.2	5 .42	w 2.	38	7	n	-	16	5.1	17,5	١
9:45		5, -41	જ ર	.37	7.	12	-	14	5.3	17.61	
	13.2	۹۱۲. ۲	2.	36	7	.12	~	13	6.1	17.07	
		Noks	1		0	4:50) .				
			s =								
	6						541	nW1			
						-					
						.,					
***************************************		,									

		<u></u>	et u	v	Or.	54	MW	11	@	10:2	20			
	u	થી	sel.	@	25′	•	Pav		Terr	ed c	⋋ €	9 10	:35	
			۸۷/											
Tivie			1		00		ьN		oule)	T	W P		V
:25	13	43	.6		4.7	8	7.0	3	5		1	.3		16.6
365	13.	57	.63	32	5 .0	>l	7,0	3	61			0.0		16.66
35	13.2	54	.6		4.70		7.0	3	65		0	,0		16.56
40	13.5	5	.63	8	4.6	B	7.0		66		0.	0		5.64
43	13,4	8	<i>.</i> 63	8	4.64	1	7.0		68		0.0)	i	6.66
.50	13,6	46	.6	37	4,1	66	7.0	9	68		0.	0	H	5.67
53	13.	46	,6	37	4.	65	7.0	4	68		0.0	>	В.	69
500			stab	n liže	م ر	ا رھ):5	2	So	anple	25	حصاا	ectec	od od
):s			1	ĺ			i						
		-	PUN	~	9	moi	3 1	'		54n	11/20	8		
	1		, ,	•	1		108		. 1	:20				
		1	se+		-		Pu		[,vre	d c	~	e ı	1:25
	1 '	•) ~(0	ļ ,					
1		rem	,	20	box	O.	N/DC	0	v P		ti	wb		7
130		3.5°	1	.56			7 1.4	1	3		0,0			[2,0]
:35		44		. 56	8	6.9	6 .7	1 5	8		0.0			2.04
:40	13.	42		567	6.	76	68	4	16		2.0	1	1	204
45	13.	43	,	564	6.9	6	.19	3	8	G	U			.03
so	13.4	14	.5			1	67	2	7	0	O		ΙQ	20,
55	13,	Y 3	.5	58	6.9	S	.68	4	1		Ø. 0		1	2.06
100	13.4	10	, 55	૪	6.9	5	.68	4	2		0.0		ţ	206
					1	1 1	1	1 1		1	F.		<u></u>	1

The contract of the contract o

हर्मे भू

,77 88 87

7

SYMWIZ 89 vell stoline? @ 8:05. Samples collected of 2.89 6.4 MAP Temp 15.58 Tims ablacond 1205. Fe \$2 Mn= 3.0s. 1345 ,547 54 20.71 15.87 20.74 Deconplies , moby to symmo. .503 2.81 6.37 88 1350 6.35 90 3.1 20.15 15.72 hell set @ Bas 1240. Rup turned on .482 2.84 1355 6.35 91 20.76 .487 @ 12:45. 50 @ 22'. 300ml/m 2.86 15.72 1400 2.9 20.77 Time Feno cand Do pt one turb 1405 15.72 6.35 91 .489 2.84 2.4 20.77 245 14.42 .494 .84 6.46 48 6.36 92 . 492 2.84 1410 15.71 0,0 14.33 20.74 4 2.85 6.35 90 15.71 .490 1250 14.44 .495 .79 7.9 6.47 0.0 1915 14,34 1420 15.70 .491 2.85 6.36 91 7.0 20.78 14.33 1255 1450 ·495 .80 6.47 41 0.0 Sample collected @ 1420. December 1300 14.49 ,496 ,84 6.47 39 0.0 14.37 supplies. Mos to beliver sample cooler. 1305 14.51 .495 .86 6.48 37 0.0 14.34 . 87 6,48 36 B10 14.51,496 oes FE C.Z Mn = 05 14.33 1315 14.51 4.96 .86 6.48 35 00 1433 hell stabilized @ 1315. Samples collected. Fe < ~ mw < .05 Galagories called pure to source collection to let us boat in the gark. At Bacarned guipment.
Did rings blank while wardy for grand. 54RB080713 @ 1335 NOB to 54mw 12 well set @ 26' 300m/n Started @ 1345.

87.13

	Apparatu				8	(18:13
					5	A C
		Anned an	inte Q 6	:45, HU	l south me	edif
	9	103A.	betardila	hosta.	sed up at	
			hell you			
	***	Ringo to	no beun	@ 7:15	5. 30dm	yn.
		,	54m			
Time	Ten	ې دمرز	Do	pN	orp tw	vb I
עבד	12.	90 .693	1.18	6.9)	73' 212	13,63
7:25	13.0	4 ,587	2.39	6.80	31 17.4	13.65
7:30	13.0	3 .480	2.41	6.78	33 16.1	13.66
7:35	13.05	3 . 478	2.42	6.75 8	4 16.8	13.46
7:40	13,0	4 .497	2.43	6.72 8	4 160	13.67
7:45	13.0	5 .417	2.41	5.71 85		13.67
7:50	13.05	5 ,478	2.40 (5.71 86	7.2	13.69
		Samples	ः ७॥७८५	ed e	7:50.	
		S=<.2	M=	4 o S		
			brub a			wos.
			54m			
WALES		•			4	
		1	d on e	1	3,5,5,7	
Tine	τ		Ca 1	0 -3'	400	47 2
8:30	, j4.	Juy .3	77 6.4	Z LUD	121	therb \$\forall 18.1\\ 18.1\\ 18.8\\ 5.8\\ 15.8\\
8:35	14.	47 .35	6.2	7 6.33	125	5.8 15.87
		51 .34	2 6.20	6 6.31		1.7 15.87
845		Y .335	6.26	6,30	129 0	2 (3.88
हर ्			6,30		170	0 15.88

	T	ne		ten,	p	Con	'ح_	L	8	P	N_	Ø	CP.		fur b	¥
8;	হ		14	.43		.37	32	6	.28	6	,29	1	29	O	.0	15.8
9	00		14.	49		33	Z	6:	29	6.	30	1	29	٥	.O	15.89
9	ین		15,4	9		.33	3	6.2	28	6.7	Ò	١	29	0	.0	15.89
			<~	ا ۱	ري	4	ના હ	, q.	0.5			•	< 2		M	n .05
			Ω	٣			P	0	A. 1		4.	5	546	ms ~	10	ζ.
			1					1		l .			1		i	j.
			Kun	P			a			ar whi	0	om (3	20	OM	Ym.
							wo				<u> </u> 					
な	ve		Ten	p	<	ON.		Po		PH		do		tus	p	A
7:	50	JL	1.41		-84	15	1.	33		6.78	}	09		O.	O 2	1.10
) }*;3	55	14	73		-6	43	1:	26	6	.79		103		0.	0 a	1,43
0:	٥٥	12	70.		162	8	1.4	6	6	.79		95		0.0)	
10	05	12	,০১		.62	1	1.6	Ч	6	.79	C	74		0.0		make a
ın	· & o	15.	0 %		61	8	1.6	Î	6	76	(75		0,0		
10	:15	15	a R		617	,	1.6	ç	6	.76	c	ıs	_			
							1.69									
<u> 1</u> 0	عريدا	2.15.		i i						ŀ	ļ					and the second s
						1	upl		1		1	1		i .		ም ን ፍ
		a	0	lev.	N21	vati	<u>م</u> ،	96	201	-pli	5 (me	لحمط	w.	\$1	
				Fe	بخ	2	1	1 =	<. (5 5				ļ		
				1		}	9	1		1	i	54n	w	92		
							10									
			1				ed ()			1	1			
			1 -70	1	3		<i></i> (٠٠٠		Ī						
		<u></u>	ļ	-	-			-		-				ļ	ļ	
									-			-				

	- Applications and the second					8										ひ.村.川 川·2・ビ	lebrand
	er en		symmo	2	:	ठ।										M.B	क्ट । मेद
The	temp	cond.	. 0		onp	thek	'2'		:40 (mved	6	Kodi	r1 6	7:00 fe	x bode	sing. He	·U
1:05	15.31	.575	3.93		119	10.000	ું હશા! _ ગ	12:	15	باجاء	Med		1	ogste) u		/ ()	i i
m:19	15.14	.595	1.03	6.93	105	7.1	4	12:	50 B	૦વલંગ.	Mo		Swr			را لحق	
11:15	15.24	,595	0,84	6.92	92	1.2		211 12	ر کی	Youth All	erts	for A	hom h	Safety w			
11:20	15.23	.593	.78	6,92	89	0.0		21.4		callbo				accordi	 	pecs.	
	15.20	,594	,79	6,92		2.0		411				-		medure)	-	
11.50	15,25	. 593	.80 .80	6.91 6.91		3,0 5,0		21/1	3 .	Culled	· •			, up		•	
11:35	15.25	sg2 lamples		for 6 11				1.1			40		nw lo				**************************************
	also	-				1		1		¥		7.05		uall sed		B 8:	~~
		fe:	m=				- 11 T			300	me/m	1					
	crast		rua	s torre	~ to ~	لما		150	٠.	teny	1	مرط	DO	P.N.	orp	tus	b &
	tream	or line	knd.	Rend &	dis no			9:0		13.96		-	0.00	701	9 14	101	•
Noted of and a comment of the commen	1,1,1		-	,	Λ.				02	14.76	165		2.43		1 1 -	63.7	
					į.			9:10	ا ه	5.10	.62	3	2.4			59	17.16
					Q.			9:1:	s	15,22	-61	8	2.45	6.91	16	0.6	17.17
		COLUMN TO THE STANDARD STANDARD AND AND AND AND AND AND AND AND AND AN			- A			9:20	ر ا د	5.26	.613	3	2.46	6.42	1 3017	0.0	17.17
				7			117	9:25	s I	5.24	.614	,	2.45	6.89		0	17.18
								9:30	, 1	5.25	.615		2.45	6.89	19	0	17.18
					THE RESIDENCE OF THE PARTY OF T			72:3	2000 C	15.23	.615		2.45	6.85	18	0	17.8
										phde	9:3	5	Te	<. ح	Mn	۷.05	•
*					***					•		777		box Rive			11513
									E	Decon G:5		nos	То	54MV			
											, ,	NOB	- O	JAMA	7 3.		
					1:												Accessed to the second
								-					200	ALL			
								- -	i		variation of the same of the s	1					

ď

						1			Tenp	Tine	دن-	. 4))	alb	turb	
	5-	ze Lin	e 54	hour 13.	well set	از ری	3'	12:40	14.07	-	.639	4	2:	71	5 3	ø	
				10:45.	200ml/m		હરા./	12:15	14.08		634	1	2:	וק	54	98	/
Time	temp	CON		o pt	1		nd 4	19:20	1408		. 634		2.	70	53	Ø Ø	11
	15.72	,645	1.3	•		1 .	1:12 21:19	la:<	514.09		.635	·	2.7	rU	51	Ø	λ
)O:55	15.94	, ४५५		,4 7.3	6 43	34	2 21.16	ع ا	Sample	2 00	leded	6		:00	. Rec	on Ship	plies
A CHIEF BUILDING THE THEORY OF THE PARTY OF	15.97	.644	1.3	3 7.3		12.	1 21.16	M	os to	541	mwa	L .	fe.	<.02	M	۸ ۷.۵	S
11:03	15.96	-648	1.3	1 7.2		0.3	3 21.6									4 6	
11:40	15.96	.647	1.3		1 26	0.4	1 21.H				nry	@	2	8'.	s e -	7 25	65.
11:15	15.96	.643	1.31		25	.૦લ	21.17	5	tarted	purp	@	13.	5.				
11:20	15.96	.643	1.32	2 729	25	0.4	21.17			, ,	54	mw	12				
hell	Stabilis	ed Q	459 11	:20. 5	angles	colle	eded 1	Time	Fer	p C	md	Po		Orp	turb		4
@	1:25			Mn= .05				1340	14,58	3 .s	58	1.31		89	448	2	15.9
Dea		form, gr		54mw (13:45	14.84	.4	74 ,	1.21	10	O	214	20	6.01
								13:50	14.91	.4	70 1	.19		2	13.0	26	5.64
Se+	014400 6	ירג פ	. v	21.81°. F	ours tur	ned c	m T	13:55	14.98	ુ પ	70 _I .	19	11)	7.4	26	.05
	502·							14:00	14.96	.47	0 1.	18	le	25	3.7	26.	۶ه,
		1	1mw 2	(11	14:05	14.96	,48	9 1	.17	k	26	3.1	26	.05
Tive	tewap	cord		ρH	Onp	tub	₩	14:10	14.96	.4 60	j 1.	רו.	10	07	2.0	26	.66
	14.03	.634	2.89	1 16				14:12	496	. 469		17	10	8	4.6	26	.06
	14.04	. 634	2.84	7.45			21.87		Stabli	ied (آ	415.		Fe <	.2	nn .	25
12:15	14.05	.635	2.81	7,45	86 0)	A .V.		Collecte						nshiso		
	14.05	634	2.76	7.45	_		۱۱ ار		endo		_ '	i	i i		4	real	lna
	14.06		2.74	7.45	84 0	ა 🗀	· \			Le() s	1	\sim	l l	1	Sompl	i 1	
-,	14.06		2.74	7.45	59	o 2	21.88						T	7	Scrape	၁.	
	. 1 -		2.73	<u> </u>		0 1	, N			 			+	+			

5.28.14	,
J.H. Nelson	-alled Dupatch to gain entry to
Theodor D.	to limited Owen.
Armind crost @ 7:00 For bonding.	Mors to 54 muo).
Mel w Jakely officer for vide of needing	7 20.63
a north parried Calibrated PDI of YST	Pib-05 Stated@ 10:35
Country to Spe.	540 39
MOB to Symulo	The top come DO pH orp Tub &
The state of the s	10:40 17.34 ,473 6.56 7.98 124.3 3.6 20.01
Riosp	10:45 16.84 ,4.70 3.21 7.92 140.7 3.8 20.72
vell 88 @ 20'	10:50 16.63 .468 1.70 7.79 162.2 3.2 2017
300 ml/m	1055 16 61 .467 1.68 7.77 171.8 3.0 20.72
	1100 16.63 .467 1.69 7.77 189.5 3.8 20.72
	11:05 16.62 .469 1.67 7.77 191.9 3.2 20.73
9:05 12,91 ,595 1,20 6.93 16,8 1.9 16,73	11:10 16.61 .469 1.65 7.77 208.0 3.1 20.71
9:10 12.80 5.90 1.31 6.89 17.5 3.0 16.75	11.17 10.01
9:20 12.75 .579 1,57 6.91 122.5 3.7 16.73	11:25 16.61 .469 1.65 7.79 222.3 3.0 20.11
9:25 12.79 .580 1.56 6.92 124.4 3.7 16.73	upl stable 1.25 Stavo 1 collected.
9:38 2.80 .582 1.56 6.93 18.1 3.9 16.75	
9:35 12.81 .582 1.57 6.93 127.0 3.7 16.70	Deconned 2 well purps a mob to
9:40 1281 -587 1.56 6,93 127.4 3.8 16.75	
Stable Q 40, well soupled	la:25
Sarple ID: Symulo,	
Te 6,2 MY=0,10	

	S/28/14)	T 23.21
MgB 10 59 mn/2		hell set @ 24.78 31
7 24.5		pupo 200m/in
SHQ 27.5		PID=96
P10=9		Sparked @ 1410
well shifted e		time temp and DO onp turb & PN
Ja:35		
PH Time temp and Do corp Turb	T.	1920 17.47 - 326 117 -31.0 24.9 22.33 68
7.32 1240 16.63 .669 d.3) [16.6] 196.6	27.51	
7.3112195 15,39.6,77 2.36 218.6 171.2		10201/50 483 1.16 49.4 16.5 122.34 0.8
7.312:50 14.78 .502 2.30 257.4 94.1	27.54	143 5 16,59 ,473 115 67.6 11.1 22.346.97
7.3112:55 14.63 .462 2.27 27019 41.7	27.54	1945 16.57 471 1.15 69.7 8 23.34 6.97
73/3:00 1967 458 2.26 272.6 28.6	27.52	1450 4,57 .971 1,19 71.0 14 2233 6.97
"72913:05 14.65 .453 Q.26 272.7 14.5	27.52	1453 1657.470 1.14 71.3 9 2237 6.97
743:10 14.61 .454 2.25 272.6 /2.1	27,53	uall stable @ 1455 Sanded
	27.52	S4mw13: Fe= 2 M=105
Shoule @ 13 5		bends from site disposed
€ .2		of 20 gal purge to harment
mn .10		plant.
Collected 54mmi 2 259TM120	21315	
more tormwi3		

Appendix B-1
Chain of
Custody
Forms

COC No. A 36785

158 Starlite Drive

Marietta, OH 45750

CHAIN-OF-CUSTODY RECORD Microbac

Phone: 740-373-4071

Fax: 740-373-4835

Hold Hold Signature) Date Time	Program	CWA	000		# (LAB U							- 42								Time Received by: (Signature)	Remarks:
On: Time Received by: Time Received by: Cat Phone #: And Phone #: An		-																		Date	a:
On: Time Time Time Time Time Time Time Time The Property by: A Property of A A Prope				4.	chlore on she	MA MA	· · · · · · · · · · · · · · · · · · ·		- 1000 CA	pager pager		~								Relinquished by: Signature)	Date
three #: Time Time Time				Acres	E OF C	PIOH		· ·	*	- V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \										atory by:
1 Phone #: Time Time			0		X	Matrix*	330	l li li) \(\sigma\)	3	S	2 3								Received by: (Signature)	Received for Labora
		act Phone #:	1		ature:								T							Time	
	Company Name:	Project Contact:	Č /	Project ID: Swimu Su	Sampler (print):		というと		25	20 127									/	Relinquished by: (Signature)	Relinquished by: (Signature)

٩

Page_

138 Starlite Drive COC No. A 36786

158 Starlite Drive

CHAIN-OF-CUSTODY RECORD

Fax: 740-373-4835 Phone: 740-373-4071

Program Jowa Jecha Jecee Jother ADDITIONAL REQUIREMENTS			
		- pá.	
TAL # (LAB USE)		Received by: (Signature)	
		Time	
		Date	Remarks:
			· ·
			Time
2 minh	NUMUN	Relinquished by: (Signature)	
Brahlorgte		Relinquishe (Signature)	Date
acop (dosi			
BEE OF CONTAINERS			atory by:
	Matrix* Matrix*	ed by: ture)	Received for Laboratory by: (Signature)
		Received by: (Signature)	Receiv (Signa
A 7 7 A 7 A 7 A 7 A 7 A 7 A 7 A 7 A 7 A	## 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Time	Time
Contact Ph	Date 8.7.1.3 8.7.1.3 8.7.1.3 8.7.1.3 8.7.1.3 9.7.1.3 1.7.1.3 1.7.1.3	Date	Date
	Grab		
COST)			
Company Name: Show (No love Start Broject ID: Sampler (print):	Sample I.D. No. SUMWOR SUMWID SUMMIN SUMMI	Relinquished by:	(Signature) (Signature)

5

Page_

COC No. A 36787

158 Starlite Drive

Marietta, OH 45750

CHAIN-OF-CUSTODY RECORD <u>Microbac</u>

Phone: 740-373-4071

Fax: 740-373-4835

Company Name: ⊃ha (CCT)	8			2																Program	
Project Contact:			one #:				<u> </u>	0-												CWA	
Turn Around Requirements:		Location: RFAMP	4.0 P			NEBS		20[0]	A.		Z									Dob AFCEE	
Project ID: SWMM 54		MNA				IATNO		(nol		2115								(3SN	Other	***************************************
Sampler (print): Sampler (print):	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Signature:	M. A.			EB OF C		1.C	STEP	wind	zybla				····				# (ר∀B	ADDITIONAL	o E
Sample I.D. No.	Grab	Date	Time		Matrix*		Hold		d	1	-)								JĄTOT	מואים הוס אים ה	2
TO NWADS	/	8.8.13	IN T		30	8		Character -	MATERIAL STATES	California C	K										
NOS W DO	1	% ₩	0. D		7,0	\O			to goods	Spenier	N										
NG 500 5	670	Ř Š	10.20		GW	9		distribution of the second	evidoss _{e,}	ntigia.	d										
7035	D	Ø.8.0	200		S S	X		7	Q	4)	O			٥						MSIMSL	
																				4	
																					-
																	_				
																	_				
																					7
																		-			
											_	-									
							.				_	_									
								\dashv				\dashv					\dashv	-			
							-				\dashv	+					1				
					.:						\dashv	_			-		_				
							·	, <u>†</u>													
Relinquished by: (Signature)		Date	Time	Received by: (Signature)	by:			ш ₍₀)	elinqui Signatu	Relinquished by: (Signature)	; ,				Date		Time	Received by: (Signature)	ed by: ure)		
Relinquished by: (Signature)		Date	Time	Received (Signature	Received for Laboratory by: (Signature)	ry by:			Date				Time		Rer	Remarks:					
				à								$\frac{1}{2}$									

4

Page_

Serial Number 73334

Part Excellen Newton Newton State Part	\[\bar{\chi}{\chi}\]	ANALYSIS REQUEST AND CHAIN OF C	IAIN OF CUSTODY RECORD		Testu 5102 Sava	TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404	annah enue 404			Website: www.testamer Phone: (912) 354-7858 Fax: (912) 352-0165	Website: www.testamericainc.com Phone: (912) 354-7858 Fax: (912) 352-0165	c.com
SOLUTION WITH HEAVEN WITH HEAVEN WITH HEAVEN BY A STANDARD	IMEN	TAL TESTING			Alten	nate Laboratk	ory Name/L	ocation	L L	hone: ax:		
CONTRACTING. CONT		PROJECT NO.	PROJECT LOCATION (STATE)				REQUIR	ED ANALYS	Si		PAGE	PO
Style="border-like-style-like-s		P.O. NUMBER CLIENT PHONE	CONTRACT NO.			· (grs)	207	200) } } }		STANDARD RI DELIVERY DATE DUI	
Succession Suc		CLIENT E-MAIL CERT HEDOW	R CFS.com	qı		055 055 055	~990 ~990	-090	i-080 PLI.0		EXPEDITED R DELIVERY (SURCHARGE	EPORT (
Style=10entification	S X X X X X	Gelegy wo 31	214	(RETAW) SUG JOSIMES RO		8 8	76 76	b)5)5	-, -, -, -, -, -, -, -, -, -, -, -, -, -	DATE DU NUMBER.OF (PER SHIPME)	SOOLERS SUBMIT
3 3:00 TIME RECEIVED BY: (SIGNATURE) TIME RECEIVED BY: (SIGNATURE) TIME RECEIVED BY: (SIGNATURE) DATE THE RECEIVED BY: (SIGNATURE) THE RECEIVED		SAMPLE IDENTIFIC	ATION	VOUEC	NONAC	Į Š	(BER OF CO	NTAINERS S	SUBMITTED			EMARKS
S4Th 12 S S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S S		Symma				<u>-</u>	3 1	2				
3 3500 TIME RECEIVED BY: (SIGNATURE) TIME RECEIVED BY: (SIGNATURE) DATE RECEIVED BY: (SIGNATURE) RECEIVED BY: (SIGNATURE) DATE RECEIVED BY: (SIGNATURE) RECEIVED BY: (SIGN		54 MW 12				7 1	8	~) J			
TIME RELINQUISHED BY: (SIGNATURE) TIME RECEIVED BY: (SIGNATURE) TIME RECEIVED BY: (SIGNATURE) DATE THAT RECEIVED BY: (SIGNATURE) THAT RECEIVED BY: (SIGNATURE) THAT RECEIVED BY: (SIGNATURE) DATE THAT RECEIVED BY: (SIGNATURE) THAT RECEIV			Thir	- - - - - -		7 7	N	2			:	
TIME RECEIVED BY: (SIGNATURE) TIME RECEIVED BY: (SIGNATURE) TIME RECEIVED BY: (SIGNATURE) DATE TIME												
F43 3:00 TIME RELINQUISHED BY: (SIGNATURE) TIME RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SI												
TIME RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) DATE									-			
S-13 3:00 TIME RECEIVED BY: (signature) TIME RECEIVED BY: (signature) DATE TIME RECEIVED BY: (signature) RECEIVED BY: (signature) DATE TIME RECEIVED BY: (signature) RECEIVED BY: (signature) RECEIVED BY: (signature) DATE TIME RECEIVED BY: (signature) RECEIVED BY: (s												
TIME RECEIVED BY: (SIGNATURE) TIME RECEIVED BY: (SIGNATURE) TIME RECEIVED BY: (SIGNATURE) DATE TIME												
TIME RECEIVED BY: (SIGNATURE) TIME RECEIVED BY: (SIGNATURE) TIME RECEIVED BY: (SIGNATURE) LABORATORY USE ONLY TIME CUSTODY INTACT CUSTODY TIME CUSTODY INTACT CUSTODY LABORATORY USE ONLY LABORATORY USE ONLY LABORATORY SAVANNAH LABORATORY REMARKS LABORATORY SAVANNAH LABORATORY REMARKS LA LO OCTODY INTACT CUSTODY LOG NO. LO												
5-13 3too TIME RECEIVED BY: (signature) DATE TIME RELINQUISHED BY: (signature) DATE TIME RECEIVED BY: (signature) DATE TIME RECEIVED BY: (signature) DATE TIME RECEIVED BY: (signature) DATE TIME CUSTODY INTACT CUSTODY SAVANNAH LABORATORY REMARKS $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
TIME RECEIVED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) DATE LABORATORY BENARKS LABORATORY BENARKS LABORATORY RENARKS		స్ట	RELINQUISHED BY: (SI	(GNATURE)		DATE	TIME	RELINC	элізнер ву: (SIGNATURE)	DATE	TIME
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			RECEIVED BY: (SIGNATU	JRE)		DATE	TIME	RECEIV	/ED BY: (SIGNA	URE)	DATE	TIME
NO 0 14.0°C		DATE		LABORATORY CUSTODY	USE ONLY SAVANN	NAH (AH	LABORATO	HY REMAR				
	l	14,06/13 095		9E7L:10.	680	76235-			ر ت ت	<u>,)</u>		

Serial Number 73333

		ANALYSIS REQUEST AND CHAIN OF	IN OF CUSTODY RECORD	ECORD		TestAmerica Savannah	avannah			Mohothous and	Mohoring wasan transfer and a horizon	a de la	
Test	747	Pest America				5102 LaRoche Avenue Savannah, GA 31404	lvenue 31404			Phone: (912) 354-78 Fax: (912) 352-0165	Phone: (912) 354-7858 Fax: (912) 352-0165		
					0	Alternate Laboratory Name/Location	atory Name	e/Location		i		- Appel	
THE LEADE	R IN ENVIRO	ENTAL								Fhone: Fax:			
PROJECT REFERENCE ROLLER Sumu 39	ENCE SLAND		PROJECT LOCATION (STATE)	MATRIX TYPE			REQ	REQUIRED ANALYSIS	SiS		PAGE	-OF	
TAL (LAB) PROJE	CT MANAGER		CONTRACT NO.	31 \ (7'	٥	5		G	STANDAR	STANDARD REPORT DELIVERY	
G. Hilphane	bane	CHEN PHONE CHEN CHINE	CLIENT FAX	OIANI		yor gx2	, O.T.	ra	· I	E/av	DATE DUE	DUE	
CLIENT NAME		DENTE-WAIL DESTREEM HIBSONY OCES.	JO Or.com	(e) ava	o (oir' 8	250 250 200 200 200 200 200 200	029	20_1	,~09	h1~ '€	EXPEDITE DELIVERY (SURCHA)	EXPEDITED REPORT DELIVERY (SURCHARGE)	
CLIENT ADDRESS 4646	Phillemen	CLIENT ADDRESS 4646 Phillipping & Reforms you	רסוצ	(Rat/		€8 ∞8	26	03 06	90	X.	DATE DUE	DUE	
COMPANY CONT	RACTING THIS			OSITE (NW) SUC ABS RO	GUEOUS	<u>C.</u>	<i>Vi</i>) <i>Vi O</i>		licon licon		NUMBER (NUMBER OF COOLERS SUBMITTED PER SHIPMENT:	MITTED
SAMPLE G DATE	LE TIME	SAMPLE IDENTIFICATION	NO	AQUE		2	JMBER OF	NUMBER OF CONTAINERS SUBMITTED	SUBMITTE	Ω		REMARKS	
)म डि	Sym511s13		X		e	w	50	-				
7,8,1	1413	Symbolis 13		×		66	3	3					
of													
145													
1													2).
													٠
			The second secon										
BELINOUISHED BY: (SIGNATIRE)	Y: (SIGNATURE)	TIME TAME	THE WORLD NO WORLD NOW IDE			i i	Ų	1					
M.K.	No.	₽ P	AELINQUISHEU BY: (SIGN	(ATURE)		ก ก	E S		QUISHED	RELINQUISHED BY: (SIGNATURE)	DATE	TE TIME	
RECEWED BY: (SIGNATURE)	SNATURE)	DATE TIME	RECEIVED BY: (SIGNATURE)	sir		DATE	TIME	RECE	RECEIVED BY: (SIGNATURE)	(GNATURE)	DATE	TIME	
/2				LABORATORY USE ONLY	/ USE ONI	\.\.							
SECULIVED FOH LABORATORY BY:	ABORATORY BY:	TIME CUSTODY INTACT (((0))()() OAYY NO O	CUSTODY INTACT YES () NO ()	CUSTODY SEAL NO.	NSO S	SAVANNAH LOG NO. 680-45852		LABORATORY REMAHKS C. (MARKS S.O°C				
											٠	TAL8240-680 (1008)	80 (1008)

Serial Number 72974

Website: www.testamericainc.com Phone: (912) 354-7858 Fax: (912) 352-0165			PAGE	STANDARD REPORT DELIVERY	DATE DUE	EXPEDITED REPORT DELIVERY (S) IRCHARGE)	DATE DUE	NUMBER OF COOLERS SUBMITTED PER SHIPMENT:	REMARKS	300 CR									580-98791 Chain of Custody	DATE TIME	DATE TIME		Z. 82.	TAL8240-680 (1008)
Website: www.testamer Phone: (912) 354-7858 Fax: (912) 352-0165	C	Phone:	NALYSIS (DQ		906 906	The second secon	NUMBER OF CONTAINERS SUBMITTED	3 ! !	3 (1	37	2	3 [[311	W	1		86-089	RELINQUISHED BY: (SIGNATURE)	RECEIVED BY: (SIGNATURE)		LABORATORY REMARKS 3. 4 2. 4 2.	Š
vannah venue 1404	tory Name/Loc	A			5810	1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	700		MBER OF CON	3 1	3	3	3 ,	3 (3 /	3	8			TIME	TIME		LABORATOR 3.	
TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404	Alternate Laboratory Name/Location	(•)		9°9 9°4 9°4	((0) 44/1 11/00	120 °	989 V7] KEB	JOEOUS		2	2 7	7.	211	2 i (7 6	7 - 7	7 1			DATE	DATE	LABORATORY USE ONLY	SAVANNAH LOG NO.	
RECORD			MATRIX	31)	<u>INDIC∀</u>	(Đ) 8Af	EH)	OSTIEC (WAY) SUG (MAS AO	20ND YØNEC	1	<i>></i>	· ·	>	S	``	\	\			SIGNATURE)	URE)	LABORATOR	CUSTODY SEAL NO.	
n of Custody Record			PROJECT LOCATION (STATE)	CONTRACT NO.	CLIENT FAX	-		71017	NO					meloi	meso i	•				RELINQUISHED BY: (SIGNATURE)	RECEIVED BY: (SIGNATURE)		CUSTODY INTACT YES O	
ANALYSIS REQUEST AND CHAIN OF			957		NE 3-722-3			٠ ا	SAMPLE IDENTIFICATION				•	MS ME	MSD	\				TIME STATE	TIME		10.19	-
IS REQUEST	2	AL TESTING	PROJECT NO.	P.O. NUMBER	CLIENT PHONE	CLIENT E-MAIL		applicable)	SAMI	W 10	817	54RB021914	,70%	SHINGSIMB	Strasoins	SYMUSIZ	54TM12			DATE /	104E/		2/20/14	77
ANALYS	3	NVIRONMENTA	Ann Dist	A A が イン	****	,		アルドクシン・3条 ひ状 いてRACTING THIS WORK (if app	<u>ш</u>	0 Symw10	0 54AW 1		•							SKENATURE)			TORY BE:	
ANALYSIS REQUE		THE LEADER IN ENVIRONMENTAL TESTING	PROJECT REFERENCE	TAL (LAB) PROJECT MANAGER	CLIENT (SITE) PM	CLIENT NAME	CLIENT ADDRESS	COMPANY CONTRACTING THIS WORK (If applicable)	SAMPLE SAMPLE DATE TIME	2-A-14 1040	2814-14 0930	2-19-14 0945	12.19-14 1200	2007 Pi-19 1200	2-19-19	2-17-14 1330	2-9-19 1330	,		RELINOUSHED BY GRAVE	RECEIVED BY SIGNATURE)	25,	RECEIVED FOR LABORATORY BY (SEENATURE)	

16/4 h x 1 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2	7.testantencante.com 354-7858 2-0165			PAGE	STANDARD REPORT DELIVERY	DATE DUE	EXPEDITED REPORT DELIVERY (SURCHARGE)	DATE DUE	NUMBER OF COOLERS SUBMITTED PER SHIPMENT:	REMARKS	CVWINN				680-	1017	95 C	nain o	f Cus	tody			TIME	: . DATE TIME	STANDOS SERVICIOS SE		
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Phone: (912) 354-7858 Fax: (912) 352-0165		Phone: Fax:	REQUIRED ANALYSIS	5 18 5 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10 10 10	090 090 090	76 76	The few way and	NUMBER OF CONTAINERS SUBMITTED	2 2 3		(T)	1 3 1		- CV)						RELINQUISHED BY: (SIGNATURE)	RECEIVED BY: (SIGNATURE)	TYTER WOODS IN THE MASTER COMMISSION OF THE WOODS OF THE	LABORATORY REMARKS	
Took I moving Caronnah	5102 LaRoche Avenue Savannah, GA 31404	Alternate Laboratory Name/Location			(''' 'I'	CONEL SOLVER	220 2000 2000 2000 2000 2000 2000 2000	10011 1001 1001 1001 1001 1001	ON THE PART OF THE	ANON	5 5 7 8	1 2 1 3	8121	8 1 2 1	1213	8121							DATE TIME	DATE TIME	CATROLIN PGC CAROLINA SECTION CONTRACTOR CON	SAVANNAH LOG NO. AGO- (O(70)	0.89
OF CUSTODY RECORD				PROJECT LOCATION MATRIX (STATE) /		GLENT FAX	(b) 8ARE	R31	OOR SEW	COMP	>>	Ź	×	×		><							RELINQUISHED BY: (SIGNATURE)	RECEIVED BY: (SIGNATURE)		CUSTODY INTACT CUSTODY YES SEAL NO. NO O	
ANALYSIS REQUEST AND CHAIN OF			MENTAL TESTING	PROJECT NO.	P.O. NUMBER	<u> </u>		Services		SAMPLE IDENTIFICATION	54 MWO!	0 3 2 3 5 5 5 5	S. T. M. S. S.	Str. (3) 13	という	Syk8067814							SONTE TIME OF	CATE " TIME	MARINE NOW PROPERTY OF THE PRO	DATE TIME	- 4
WV			THE LEADER IN ENVIRONMENTAL TESTING	PROJECT REFERENCE CALABO CALABO	TAL ('AB) PROJECT MANAGER	Collent (Site) PM Collent (Site) PM		OLIENT ADDRESS	ျှီပွဲ	SAMPLE SAMPLE TIME	SZ	3 3 1 0 0 4 0	SIX 14 13 IS	5 X 14 (45 S	(M) 1 (M) M) M	SIXIN 172.5	3 A				-	-	RELINGUISHED BY: (SIGNATURE)	REDEIVED BY: (SIGNATURE)	18	GECEIVED FOR IGABORATORY BY:	

Selection of the select

A CONTRACTOR CONTRACTO

るというと

Serial Number

\$55.55

:

..::

Appendix B-2 Data Validation

CB&I Federal Services, LLC (CFS) 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100

Fax: +1 (410) 273-7100

Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CFS Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, CFS RFAAP Project Chemist

SUBJECT:

RFAAP Data Validation - Total and Dissolved Organic and Inorganic Carbon

Microbac Laboratories, Inc. L13080490

DATE:

March 18, 2014

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on August 8, 2013. Samples were analyzed for Total Organic Carbon (TOC), Dissolved Organic Carbon (DOC), Total Inorganic Carbon (TIC), and Dissolved Inorganic Carbon (DIC) using USEPA 415.1. The samples with the odd fraction lab IDs are the total fractions and the samples with the even fraction lab IDs are the dissolved fractions. A total of eight aqueous samples were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
54MW07	L13080490-01	54MW03	L13080490-05
54MW07	L13080490-02	54MW03	L13080490-06
54MW05	L13080490-03	54MW02	L13080490-07
54MW05	L13080490-04	54MW02	L13080490-08

Data were reviewed and validated using a combination of project QAPP, DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010), and method-specific criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qua	lified	Parameter
Yes	No	
	Х	Holding Times and Preservation
	Х	Initial and Continuing Calibration
Х		Blank Analysis
	Х	Laboratory Control Sample and Laboratory Control Sample Duplicate
Х		Matrix Spike and Spike Duplicate
	Х	Laboratory Duplicate
	Х	Field Duplicate
Х		Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT TOC, TIC, DOC, & DIC REVIEW SDG L13080490

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. Holding time criteria: Cool 4°C±2°C, HCl pH<2, 28 days for TOC, TIC, DOC, and DIC (USEPA criteria). The dates and times were compared between the sample collection and laboratory analysis.

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 08/08/13, the coolers were received on 08/09/13 by the primary laboratory (Microbac Laboratories, Inc.) at 3.0°C and 2.0°C. All criteria were met. No qualifiers were applied.
- <u>Holding Time Review</u>: The samples were collected on 08/08/13. The TOC and TIC analysis were run on 08/13/13. The DOC and DIC analysis were run on 08/13/13. Sample collection dates may be found on the attached form 1s. All criteria were met.

II-Initial and Continuing Calibration

Bench and run summary sheets were reviewed to determine whether calibration was performed at the beginning of sample analysis using the following criteria. Percent recoveries for initial and continuing calibration (90-110%) must be within limits.

TOC, TIC, DOC, and DIC: 1 - blank

5 - standards (r≥0.995) ICV/CCV (90-110%)

• The TOC and TIC analysis were run on 08/13/13. The DOC and DIC analysis were run on 08/13/13. The initial calibration for TC was analyzed on 07/09/13 with a coefficient of determination of 0.9996. The initial calibration for TIC was analyzed on 07/09/13 with a coefficient of determination of 0.9999. The ICV and CCVs were evaluated for where they bracketed reported samples. All ICV/CCVs that bracketed reported samples were within criteria. All criteria were met. No qualifiers were applied. Samples 54MW07 (L13080490-01), 54MW07 (L13080490-02), 54MW05 (L13080490-03), 54MW05 (L13080490-04), 54MW03 (L13080490-05), 54MW03 (L13080490-06), 54MW02 (L13080490-07), and 54MW02 (L13080490-08) apply to these initial and continuing calibrations.

III-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. Calibration blanks were analyzed initially and at a 10% frequency thereafter for each batch. No contaminants should be detected in any of the associated blanks >MDL. The DoD QSM criteria specifies all concentrations should be less than ½MRL (<MRL for common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters) and <LOD (i.e. <2MDL) for the calibration blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters, or 5 times (5x) the maximum amount for other target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB080713 (L13080428-09) applies to all of the dissolved samples (DOC and DIC) in this SDG and rinse blank 54RB080713 (L13080428-09) applies to all total samples (TOC and TIC) in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	Analysis	QC Blank ID	Max Conc. mg/L	Action Level mg/L	B qualified samples (For this SDG)
08/12/13	TOC	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
08/13/13	TOC	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
08/12/13	TOC	WG440968-01	<1/2MRL	NA	None
08/13/13	TOC	WG440969-01	<1/2MRL	NA	None
08/13/13	DOC	WG440969-01	<1/2MRL	NA	None
08/12/13	TOC	54RB080713	0.607J	3.04	54MW07, 54MW05, 54MW03, 54MW02
08/12/13	TIC	54RB080713	<1/2MRL	NA	None
08/13/13	DOC	54RB080713	1.45J	7.25	54MW07, 54MW05, 54MW03, 54MW02
08/13/13	DIC	54RB080713	<1/2MRL	NA	None

J = Estimated value.

LOD = Limit of Detection

MRL = Method Reporting Limit

MDL = Method Detection Limit

NA = Not Applicable

IV-Laboratory Control Sample and Laboratory Control Sample Duplicate

The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) serve as a monitor of the overall performance of each step during the analysis, including the sample preparation. LCS and LCSD are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. All aqueous LCS results must fall within the control limits (85-115%; RPD≤15%).

- Samples WG440968-02 and WG440968-03 were used as the aqueous LCS/LCSD for TOC and TIC analysis on 08/12/13. All criteria were met. No qualifiers were applied. Samples 54MW07 (L13080490-01) and 54MW05 (L13080490-03) apply to this LCS/LCSD.
- Samples WG440969-02 and WG440969-03 were used as the aqueous LCS/LCSD for TOC and TIC analysis on 08/13/13. All criteria were met. No qualifiers were applied. Samples 54MW03 (L13080490-05) and 54MW02 (L13080490-07) apply to this LCS/LCSD.
- Samples WG440969-02 and WG440969-03 were used as the aqueous LCS/LCSD for DOC and DIC analysis on 08/13/13. All criteria were met. No qualifiers were applied. Samples 54MW07 (L13080490-02), 54MW05 (L13080490-04), 54MW03 (L13080490-06), and 54MW02 (L13080490-08) apply to this LCS/LCSD.

V-Matrix Spike and Spike Duplicate

Matrix spikes (MSs) and matrix spike duplicates (MSDs) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at a frequency of one MS/MSD per 20 samples of similar matrix. The percent recoveries (%Rs or RPD) must be within the specified control limits (85-115%; RPD≤15%).

- Sample 54MW02 (L13080490-07) was used as the aqueous MS/MSD for TOC and TIC analysis on 08/13/13. All criteria were met. No qualifiers were applied. Samples 54MW07 (L13080490-01), 54MW05 (L13080490-03), 54MW03 (L13080490-05), and 54MW02 (L13080490-07) apply to this MS/MSD.
- Sample 54MW02 (L13080490-08) was used as the aqueous MS/MSD for DOC and DIC analysis on 08/13/13. DOC (79.6%) was outside criteria. The parent spiked sample was qualified "L" bias low based upon the low recovery. Samples 54MW07 (L13080490-02), 54MW05 (L13080490-04), 54MW03 (L13080490-06), and 54MW02 (L13080490-08) apply to this MS/MSD.

VI-Laboratory Duplicate Sample Analysis

Duplicate sample determinations are used to demonstrate acceptable method precision by the laboratory at the time of analysis. Duplicate analysis is performed to generate data in order to determine the long-term precision of the analytical method on various matrices. RPDs must be within established control limits (≤30%RPD).

 No aqueous laboratory duplicate was analyzed for TOC, TIC, DOC, and DIC with this SDG; therefore, it was not evaluated. See Section IV for lab precision statement using LCS/LCSD.

VII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

No aqueous field duplicate was analyzed for TOC, TIC, DOC, and DIC with this SDG; therefore, it
was not evaluated.

VIII-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. The following calculations were performed for verification.

Any sample value >MDL and <MRL or <3*MDL (whichever is greater) was qualified as estimated, "J."

• The total and dissolved fractions were compared. The organic and inorganic carbon data results for samples 54MW07 (L13080490-01), 54MW07 (L13080490-02), 54MW05 (L13080490-03), 54MW05 (L13080490-04), 54MW03 (L13080490-05), 54MW03 (L13080490-06), 54MW02 (L13080490-07), and 54MW02 (L13080490-08) are presented in **Table 3**. The samples with the odd fraction lab IDs are the total fractions and the samples with the even fraction lab IDs are the dissolved fractions. Data qualification was applied based upon professional judgment. Generally, if the concentrations are greater than the MRL and the dissolved concentration is greater than its total concentration by >10%D, then both results have been flagged as estimated with a "J." We are looking at the TOC/TIC to evaluate the immobilization potential of TNT and RDX. The DOC/DIC is a byproduct of organic compound oxidation and indicates the difference in microbial oxidation processes within and outside the plume area. If the samples exhibit continual microbial oxidation coupled with the time differences of sample preservation from sample collection (i.e. TOC in field and DOC at the lab), this might be the cause of total / dissolved imbalance here.

Table 3 Total/Dissolved Summary

Sample ID	Analyte	MRL (mg/L)	Total Fraction (mg/L)	Dissolved Fraction (mg/L)	%D	Qualifier
54MW07	TOC/DOC	1.0; 2.0	0.822J	2.73	69.9	J
54MW07	TIC/DIC	1.0; 2.0	0.825J	17.9	95.4	J
54MW05	TOC/DOC	1.0; 2.0	0.908J	5.35	83.0	J
54MW05	TIC/DIC	1.0; 2.0	1.75	36.0	95.1	J
54MW03	TOC/DOC	1.0; 2.0	1.11	5.77	80.8	J
54MW03	TIC/DIC	1.0; 2.0	0.597J	53.1	98.9	J
54MW02	TOC/DOC	1.0; 2.0	1.50	4.95	69.7	J
54MW02	TIC/DIC	1.0; 2.0	0.735J	42.1	98.3	J

J = Estimated value.

MRL = Method Reporting Limit

NA = Not Applicable

Sample: 54MW07 (L13080490-01), TOC

TC: Y = m*X (mg/L) + b

TIC: Y = m*X (mg/L) + b

m = 36.20

b = 6.332

D - 0.332

Y = 65.97 DF = 1

m = 29.78

b = 8.713

Y = 33.29 DF = 1

X = (1.65 mg/L) * 1 = 1.65 mg/L

X = (0.8253 mg/L) * 1 = 0.8253 mg/L

TOC (mg/L) = TC (mg/L) - TIC (mg/L) = 1.65 - 0.8253 = 0.824 mg/L

Reported Value = 0.822 mg/L

% Difference = 0.24%

Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition				
Laboratory Qualifiers ¹					
No Code	Confirmed identification.				
U	Undetected at the limit of detection: The associated data value is the				
	limit of detection, adjusted by any dilution factor used in the analysis.				
J	Estimated: The analyte was positively identified; the quantitation is estimation.				
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.				
N	Non-target analyte: The analyte is a tentatively identified compound				
	(using mass spectroscopy).				
Q	One or more quality control criteria failed.				
USEPA Region III Data Validation Qualifiers ²					
R	Unreliable result. Analyte may or may not be present in the sample.				
	Supporting data necessary to confirm result.				
В	Not detected substantially above the level of the reported in laboratory				
	or field blanks.				
J	Analyte present. Reported value may not be accurate or precise.				
UJ	Not detected, quantitation limit may be inaccurate or imprecise.				
N	Tentative Identification. Consider present. Special methods may be to				
	confirm its presence or absence in future sampling efforts.				
NJ	Qualitative identification questionable due to poor resolution.				
	Presumptively present at approximate quantity.				
K	Analyte present. Reported value may be biased high. Actual value is expected to be lower.				
L	Analyte present. Reported value may be biased low. Actual value is expected to be higher.				
UL	Not detected, quantitation limit is probably higher.				
L VL	140t detected, quantitation limit is probably higher.				

The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

2 The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993).

Form I Copy

Microbac

Lab Report #: L13080490

Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080490-01

PrePrep Method: N/A

Instrument: TOC-VWP

Client ID: 54MW07

Prep Date: N/A

Matrix: Water

Prep Method: 415.1

Workgroup #: WG440968

Analytical Method: 415.1

Cal Date: 07/09/2013 14:51

Analyst: DIH

Run Date: 08/13/2013 13:01

Collect Date: 08/08/2013 07:50

Dilution: 1

Sample Tag: 01

Units: mg/L

File ID: TC08122013.030

	Analyte	CAS#	Result	Qual	LOQ	LOD
Total Organic Carbon		TOC	0.822	J B	1.00	0.500
J Estimated value ; the analyte concentration was less than the LOQ.						

Page 1 of 9

Generated at Aug 21, 2013 12:37

Form I Copy

Microbac

Lab Report #: L13080490 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080490-01

PrePrep Method: N/A

Instrument: TOC-VWP

Client ID: 54MW07

Prep Method: 415.1

Prep Date: N/A

Matrix: Water

Workgroup #: WG440968

Analytical Method: 415.1

Cal Date: 07/09/2013 14:51

Analyst: DIH

Run Date: 08/13/2013 13:01

Collect Date: 08/08/2013 07:50

Dilution: 1

File ID: TC08122013.030

Sample Tag: 01

Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Inorganic Carbon		0.825	J T	1.00	0.500
J Estimated value ; the analyte concentration wa	s less than the LOC).			

Page 2 of 9

Lab Report #: L13080490 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080490-02

Client ID: 54MW07

Matrix: Water Workgroup #: WG440969

Collect Date: 08/08/2013 07:50

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 2

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/13/2013 16:15

File ID: TC08122013.045

Analyte	CAS#	Result	Qual	LOQ	LOD
Organic Carbon, Dissolved	TOC	2.73	В	2.00	1.00

Sample #: L13080490-02

Client ID: 54MW07

Matrix: Water

Workgroup #: WG440969

Collect Date: 08/08/2013 07:50

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 2

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/13/2013 16:15

File ID: TC08122013.045

Analyte	CAS#	Result	Qual	LOQ	LOD
Inorganic Carbon, Dissolved		17.9	J	2.00	1.00

Sample #: L13080490-03

Client ID: 54MW05

Matrix: Water

Workgroup #: WG440968

Collect Date: 08/08/2013 09:05

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH Dilution: 1

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/13/2013 13:13

File ID: TC08122013.031

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Inorganic Carbon		1.75	丁 -	1.00	0.500

Sample #: L13080490-03

Client ID: 54MW05

Matrix: Water

Workgroup #: WG440968

Collect Date: 08/08/2013 09:05

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 1

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/13/2013 13:13

File ID: TC08122013.031

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Organic Carbon	TOC	0.908	J B	1.00	0,500
J Estimated value ; the analyte conce	ntration was less than the LOC).			

Units: mg/L

Page 3 of 9

Lab Report #: L13080490 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080490-04 Client ID: 54MW05

Collect Date: 08/08/2013 09:05

Matrix: Water Workgroup #: WG440969

Sample Tag: DL01

PrePrep Method: N/A Prep Method: 415.1

Analytical Method: 415.1 Analyst: DIH Dilution: 2

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51 Run Date: 08/13/2013 16:28

File ID: TC08122013.046

Analyte	CAS#	Result	Qual	LOQ	LOD
Inorganic Carbon, Dissolved		36.0	」	2.00	1.00

Sample #: L13080490-04

Client ID: 54MW05

Matrix: Water Workgroup #: WG440969 Collect Date: 08/08/2013 09:05

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1 Analyst: DIH

Dilution: 2

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51 Run Date: 08/13/2013 16:28 File ID: TC08122013.046

Analyte	CAS#	Result	Qual	LOQ	LOD
Organic Carbon, Dissolved	TOC	5.35	\mathcal{B}	2.00	1.00

Sample #: L13080490-05

Client ID: 54MW03

Matrix: Water

Workgroup #: WG440969 Collect Date: 08/08/2013 10:20

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 1

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51 Run Date: 08/13/2013 18:09

File ID: TC08122013.054

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Organic Carbon	TOC	1,11	В	1.00	0.500

Sample #: L13080490-05

Client ID: 54MW03

Matrix: Water

Workgroup #: WG440969

Collect Date: 08/08/2013 10:20 Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH Dilution: 1

Units: mg/L

Instrument: TOC-WP

Prep Date: N/A

Cal Date: 07/09/2013 14:51 Run Date: 08/13/2013 18:09

File ID: TC08122013.054

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Inorganic Carbon		0.597	J ブ	1.00	0.500
1 Estimated value : the analyte concentration	was less than the LOC).			

Page 4 of 9

Lab Report #: L13080490 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080490-06 Client ID: 54MW03

Matrix: Water Workgroup #: WG440969 Collect Date: 08/08/2013 10:20

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1 Analytical Method: 415.1

> Analyst: DIH Dilution: 2

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51 Run Date: 08/13/2013 16:42 File ID: TC08122013.047

Analyte	CAS#	Result	Qual	LOQ	LOD
Organic Carbon, Dissolved	TOC	5.77	\mathcal{B}	2.00	1.00

Sample #: L13080490-06 Client ID: 54MW03

Matrix: Water Workgroup #: WG440969 Collect Date: 08/08/2013 10:20

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1 Analytical Method: 415.1

Analyst: DIH

Dilution: 2

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51 Run Date: 08/13/2013 16:42 File ID: TC08122013.047

Analyte	CAS#	Result	Qual	LOQ	LOD
Inorganic Carbon, Dissolved		53.1	丁	2.00	1.00

Sample #: L13080490-07 Client ID: 54MW02 Matrix: Water

Workgroup #: WG440969 Collect Date: 08/08/2013 11:35

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1 Analytical Method: 415.1

> Analyst: DIH Dilution: 1

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51 Run Date: 08/13/2013 18:21 File ID: TC08122013.055

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Organic Carbon	TOC	1.50	В	1.00	0.500

Sample #: L13080490-07 Client ID: 54MW02

Matrix: Water Workgroup #: WG440969

Collect Date: 08/08/2013 11:35

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1 Analyst: DIH

Dilution: 1 Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51 Run Date: 08/13/2013 18:21 File ID: TC08122013.055

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Inorganic Carbon		0.735	J 7	1.00	0.500
J Estimated value ; the analyte concentration was less than the LOQ.					

Page 5 of 9

Form I Copy

Microbac

Lab Report #: L13080490
Lab Project #: 2773.087
Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080490-08

Client ID: 54MW02

Matrix: Water

Workgroup #: WG440969 Collect Date: 08/08/2013 11:35

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1 Analytical Method: 415.1

Analyst: DIH
Dilution: 2

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51
Run Date: 08/13/2013 16:55

File ID: TC08122013.048

Analyte	CAS#	Result	Qual	LOQ	LOD
Inorganic Carbon, Dissolved		42.1	(ア)	2.00	1.00

Sample #: L13080490-08

Client ID: 54MW02

Matrix: Water

Workgroup #: WG440969 Collect Date: 08/08/2013 11:35

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 2

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51 Run Date: 08/13/2013 16:55

File ID: TC08122013.048

Analyte	CAS#	Result	Qual	LOQ	LOD
Organic Carbon, Dissolved	TOC	4.95	В	2.00	1.00

Sample #: L13080490-09 ---

-Client ID: 54MW02-

Matrix: Water
Workgroup #: WG440969
Collect Date: 08/08/2013 11:35

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH
Dilution: 1

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51 Run Date: 08/13/2013 18:33

File ID: TC08122013.056

	Analyte	CAS#	Result	Qual	LOQ	LOD	
-Total-Inorg	ganic Carbon				1.00	0.500	
U Analyte was not detected. The concentration is below the reported LOD.							

Page 6 of 9

Generated at Aug 21, 2013 12:37

Generated: 08/21/2013 12:40

CB&I Federal Services, LLC (CFS) 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100

Fax: +1 (410) 273-7100

Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CFS Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, CFS RFAAP Project Chemist

SUBJECT:

RFAAP Data Validation – Perchlorate

Microbac Laboratories, Inc. L13080490

DATE:

March 18, 2014

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on August 8, 2013. Aqueous samples were analyzed for perchlorate analysis using liquid chromatography mass spectroscopy (LC/MS) SW-846 method 6850 Modified by Microbac Laboratories. A total of four aqueous samples were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
54MW07	L13080490-01	54MW03	L13080490-05
54MW05	L13080490-03	54MW02	L13080490-07

Data were reviewed and validated by Eric Malarek using a combination of project QAPP, *DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010* (DoD, 2010), *DoD Perchlorate Handbook August, Rev1, Change 1, 2007* (DoD, 2007), method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the *Region III Modifications to the National Functional Guidelines for Inorganic Data Review* (April, 1993). Parameters evaluated are presented in **Table 1**. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qual	ified	Parameter
Yes	No	
	Х	Holding Times and Preservation
Х		Instrument Performance Check
Х		Initial and Continuing Calibration
	Χ	Blank Analysis
	Χ	Internal Standards
	Х	Interference Check Sample
	Х	Laboratory Control Sample (LCS)
Χ		Matrix Spike (MS) and Spike Duplicate (MSD)
	Х	Field Duplicate
	Х	Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT PERCHLORATE REVIEW SDG L13080490

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. For perchlorate analysis, aqueous samples are received and stored at cool @4°C±2°C with a maximum holding time of 28 days from collection (DoD Perchlorate Handbook criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 08/08/13, the coolers were received on 08/09/13 by the primary laboratory (Microbac Laboratories, Inc.) at 3.0°C and 2.0°C. All criteria were met. No qualifiers were applied.
- Holding Time Review: The aqueous samples were collected on 08/08/13 for perchlorate analysis.
 The aqueous samples were prepped and analyzed on 08/14/13. Sample collection dates may be found on the attached form 1s. All holding time criteria were met. No qualifiers were applied.

II-Instrument Performance Check

LC/MS instrument performance checks are performed to ensure mass resolution, identification and, to some degree, sensitivity. The analysis of the instrument performance check solution must be performed at the beginning of each 12-hour period during which samples are analyzed.

The instrument performance check, ¹⁸O-Perchlorate, met the mass calibration criteria. No qualification was applied.

III-Initial and Continuing Calibration

Requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data. Initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of the analysis run, and continuing calibration verification documents that the initial calibration is still valid.

Perchlorate:

1- blank (<1/2MRL DoD Perchlorate Handbook)

5 – standards (r≥0.995 or RSD≤20% DoD Perchlorate Handbook)

ICV (≤15%D DoD Perchlorate Handbook) CCV/ICS (≤15%D DoD Perchlorate Handbook) LODV (±30%D DoD Perchlorate Handbook)

• For aqueous perchlorate initial calibration performed on 07/12/13 on instrument LCMS1, all criteria were met for all target compounds (RSD≤20%). All ICV/CCV/ICS/LODV standards were within criteria. No qualifiers were applied. Perchlorate was determined using linear regression method with correlation coefficients ≥0.995 for primary and confirmation columns. Samples 54MW07 (L13080490-01), 54MW05 (L13080490-03), 54MW03 (L13080490-05), and 54MW02 (L13080490-07) apply to this initial and continuing calibrations.

IV-Blanks

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. No contaminants should be detected in any of the associated blanks >MDL. The DoD Perchlorate Handbook criterion specifies all concentrations should be less than $\frac{1}{2}$ MRL for method blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤ 5 times (5x) the maximum amount for target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB080713 (L13080428-09) applies to all samples in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	QC Blank ID	Compound	Max Conc. Action Level μg/L μg/L		B qualified samples (for this SDG)
08/14/13	ICB/CCBs	All perchlorate <1/2MRL	NA	NA	None
08/14/13	WG441352-02	All perchlorate <1/2MRL	NA	NA	None
08/13/13	54RB080713	All perchlorate <1/2MRL	NA	NA	None

MRL = Method Reporting Limit.

NA = Not Applicable.

V-Internal Standards

Internal standards performance criteria ensure that LC/MS sensitivity and response are stable during every analytical run. Internal standard area counts for samples and blanks must not vary by more than a factor of two (-50% to +100%) from the associated calibration standard. The DoD Handbook specifies retention times (RT) $1.0 \pm 2\%$ of last calibration standard and the ratio of RT of sample to standard should be 3.06 and fall between 2.3 and 3.8. The internal standard peak area responses should fall between 50% to 150% recoveries.

• All criteria were met. No qualifiers were applied.

VI-Interference Check Sample (ICS)

The LCMS interference check sample (ICS) verifies inter-element and background correction factors. LCMS Interference Check is performed at the beginning and end of each sample analysis run. Control limits are 70-130% (DoD QSM limits 70-130%).

• All criteria were met. No qualifiers were applied.

VII-Laboratory Control Sample

The laboratory control sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. DoD Perchlorate Handbook and laboratory aqueous limits are 80-120%.

Sample WG441352-03 was used as aqueous LCS for perchlorate analysis dated 08/14/13. All criteria were met. No qualifiers were applied. Samples 54MW07 (L13080490-01), 54MW05 (L13080490-03), 54MW03 (L13080490-05), and 54MW02 (L13080490-07) apply to this LCS sample.

VIII-Matrix Spike (MS) and Spike Duplicate (MSD)

Matrix Spike (MS) and Spike Duplicate (MSD) are generated to determine long-term accuracy and precision of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at a frequency of one MS/MSD per 20 samples of similar matrix. MS/MSD recoveries and relative percent differences between MS recoveries should be within the specified limits. DoD Perchlorate Handbook limits are 80-120%; RPD≤15%. The laboratory limits are 80-120%; RPD≤15%.

Sample 54MW02 (L13080490-07) was used as aqueous MS/MSD for perchlorate analysis dated 08/14/13. Perchlorate (70%) was below criteria. The parent spiked sample was qualified "L" bias low based upon the low recovery. The RPD for the MS/MSD was within criteria limits. Samples 54MW07 (L13080490-01), 54MW05 (L13080490-03), 54MW03 (L13080490-05), and 54MW02 (L13080490-07) apply to this MS/MSD sample.

IX-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

 No aqueous field duplicate was analyzed for perchlorate with this SDG; therefore, it was not evaluated.

X-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. The following calculations were performed for verification.

 Any sample value >MDL and <MRL or <3*MDL (whichever was greater) was qualified as estimated, "J."

Sample: 54MW02 (L13080490-07), Perchlorate

Y = mX + b

Y = Response Ratio = Sample Area/Area Internal Standard O18LP m = slope of curve X = Amount Ratio = Conc. Analyte/Conc. Internal Std. b = Y-intercept

Given:

m = 1.37 b = 0.00457 Y = Area = 97300/350000 = 0.278 X = 0.1996 Conc. μ g/L = (Ax * Cis * DF)

where: Conc. = Sample concentration in μ g/L

= Amount Ratio = Conc. Analyte/Conc. Internal Standard = Conc. Of internal Standard (μg/L)

Cis

DF = Dilution factor

Conc. μ g/L = (0.1996 * 5 * 1) = 1.00 μ g/L (Signal #1)

Reported Value = 1.00 μg/L % Difference = 0.0%

Values were within 10% difference

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the
	limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound
	(using mass spectroscopy).
Q	One or more quality control criteria failed.
U	SEPA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample.
	Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in laboratory
	or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to
	confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution.
	Presumptively present at approximate quantity.
K	Analyte present. Reported value may be biased high. Actual value is expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is expected to be higher.
UL	Not detected, quantitation limit is probably higher.
UL	Not detected, quantitation limit is probably higher.

¹The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: *DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2* (DoD, 2010).

²The USEPA data validation qualifiers are referenced from *Region III Modifications to the National Functional Guidelines for Inorganic Data Review* (April, 1993).

Form I Copy

Microbac

Lab Report #: L13080490 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080490-01

Client ID: 54MW07

Matrix: Water

Workgroup #: WG441352

Collect Date: 08/08/2013 07:50

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 6850

Analytical Method: 6850

Analyst: JWR

Dilution: 1

Units: ug/L

Instrument: LCMS1

Prep Date: 08/14/2013 13:30

Cal Date: 07/12/2013 13:15

Run Date: 08/14/2013 16:39

File ID: 1LM.LM22111

Analyte	CAS#	Result	Qual	LOQ	LOD
Perchlorate	14797-73-0	0.370		0,200	0.100

Sample #: L13080490-03

Client ID: 54MW05

Matrix: Water

Workgroup #: WG441352

Collect Date: 08/08/2013 09:05

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 6850

Analytical Method: 6850

Analyst: JWR

Dilution: 1

Units: ug/L

Instrument: LCMS1

Prep Date: 08/14/2013 13:30

Cal Date: 07/12/2013 13:15

Run Date: 08/14/2013 16:58

File ID: 1LM.LM22112

Analyte	CAS#	Result	Qual	LOQ	LOD
Perchlorate	14797-73-0	0.389		0.200	0.100

Sample #: L13080490-05

Client ID: 54MW03

Matrix: Water

Workgroup #: WG441352 Collect Date: 08/08/2013 10:20

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 6850

Analytical Method: 6850

Analyst: JWR Dilution: 1

Units: ug/L

Instrument: LCMS1

Prep Date: 08/14/2013 13:30 Cal Date: 07/12/2013 13:15

Run Date: 08/14/2013 17:17

File ID: 1LM.LM22113

Analyte	CAS#	Result	Qual	LOQ	LOD
Perchlorate	14797-73-0	0.446		0.200	0.100

Sample #: L13080490-07

Client ID: 54MW02

Matrix: Water

Workgroup #: WG441352

Collect Date: 08/08/2013 11:35 Sample Tag: 01

PrePrep Method: N/A

Prep Method: 6850

Analytical Method: 6850

Analyst: JWR Dilution: 1

Units: ug/L

Instrument: LCMS1

Prep Date: 08/14/2013 13:30

Cal Date: 07/12/2013 13:15

Run Date: 08/14/2013 15:42

File ID: 1LM.LM22108

Analyte	CAS#	Result	Qual	LOQ	LOD
Perchlorate	14797-73-0	1.00	L	0.200	0.100

Page 1 of 2

CB&I Federal Services, LLC (CFS) 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100

Fax: +1 (410) 273-7100

Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CFS Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, CFS RFAAP Project Chemist

SUBJECT:

RFAAP Data Validation - Explosives

Microbac Laboratories, Inc, SDG L13080490

DATE:

March 18, 2014

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on August 8, 2013. Samples were analyzed for select explosives using USEPA SW846 Method SW-846 8330B for aqueous matrices. A total of four aqueous samples were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
54MW07	L13080490-01	54MW03	L13080490-05
54MW05	L13080490-03	54MW02	L13080490-07

Data were reviewed by Eric Malarek and validated using a combination of project QAPP, Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010) (DoD QSM), method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qual	lified	Parameter	
Yes No			
	Х	Holding Times and Preservation	
	Х	Blank Analysis	
	Х	Initial Calibration	
	Х	Continuing Calibration	
	Х	System Monitoring Compounds	
	Х	Laboratory Control Sample	
Х		Matrix Spike/Spike Duplicate	
	Х	Field Duplicate	
Х		Quantitation Verification and Data Review	

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT EXPLOSIVES REVIEW SDG L13080490

I-Holding Times and Preservation

The objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample extraction and analysis. Holding time criteria: For aqueous samples, explosive compounds are shipped cooled ($@4^{\circ}C \pm 2^{\circ}C$) with a maximum holding time of 7 days from sample collection to preparative extraction and 40 days from preparative extraction to determinative analysis (USEPA criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 08/08/13, the coolers were received on 08/09/13 by the primary laboratory (Microbac Laboratories, Inc.) at 3.0°C and 2.0°C. All criteria were met. No qualifiers were applied.
- <u>Holding Time Review</u>: The aqueous samples were collected on 08/08/13. The samples were extracted on 08/14/13 and were analyzed on 08/15/13 for explosives. Sample collection dates may be found on the attached form 1s. All criteria were met. No qualifiers were applied.

II-Blank Analysis

The purpose of laboratory or field blank analyses is to determine the existence and magnitude of contamination problems resulting from laboratory or field activities. One method blank per analytical batch must be run on each instrument used to analyze samples. No contaminants should be present in the blanks. The DoD QSM criterion specifies all concentrations should be less than one-half MRL. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤ 5 times (5x) the maximum amount for explosive target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB080713 (L13080428-09) applies to all samples in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	QC Blank ID	Compound	Max Conc. μg/L	Action Level μg/L	B qualified samples (For this SDG)
08/15/13	WG441278-01	All target explosives <1/2MRL	NA	NA	None
08/15/13	54RB080713	All target explosives <1/2MRL	NA	NA	None

NA = Not Applicable

MRL = Method Reporting Limit MDL = Method Detection Limit

III-Initial Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the target compounds. The initial 5-point calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run. The DoD QSM specifies that the correlation coefficient must be ≥ 0.995 , the coefficient of determination ≥ 0.99 , and/or the percent relative standard deviation (%RSD) must be $\leq 20\%$.

• For the explosives initial calibration performed on 03/20/13 on instrument HPLC5, all criteria were met for target explosives compounds. All target compounds were determined using linear regression with correlation coefficients ≥0.995. No qualifiers were applied. Samples 54MW07 (L13080490-01), 54MW05 (L13080490-03), 54MW03 (L13080490-05), and 54MW02 (L13080490-07) apply to this initial calibration.

IV-Continuing Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the target compounds. Continuing calibration standards are analyzed after every 10 injections, and at the end of the analysis sequence. The DoD QSM specifies that the percent difference (%D) from initial calibration should be no greater than $\pm 20\%$.

- For explosives initial calibration verification performed on 03/20/13 @17:40 on instrument HPLC5, all
 criteria were met for target compounds. No qualifiers were applied. No aqueous field samples were
 reported using this initial verification calibration.
- For explosives continuing calibration performed on 08/14/13 @23:07 on instrument HPLC5, all criteria were met. No qualifiers were applied. No aqueous field samples were reported using this continuing calibration.
- For explosives continuing calibration performed on 08/15/13 @07:14 on instrument HPLC5, all criteria were met. No qualifiers were applied. No aqueous field samples were reported using this continuing calibration.
- For explosives continuing calibration performed on 08/15/13 @19:17 on instrument HPLC5, all criteria were met. No qualifiers were applied. Field samples 54MW07 (L13080490-01), 54MW05 (L13080490-03), 54MW03 (L13080490-05), and 54MW02 (L13080490-07) were reported using this continuing calibration.
- For explosives continuing calibration performed on 08/16/13 @01:26 on instrument HPLC5, all criteria were met. No qualifiers were applied. No aqueous field samples were reported using this continuing calibration.

V-System Monitoring Compound (Surrogates)

Laboratory performance on individual samples is established by means of spiking activities. The percent recovery (%R) for all samples and blanks must be within the laboratory control limits. DoD surrogate recovery limits are specified in Table G-3 of the DoD QSM (DoD, 2010). If the surrogate is not listed, then the laboratory criteria shall be used.

Aqueous Criteria:

1,2-dinitrobenzene (50-150%)

• All criteria were met. No qualifiers were applied.

VI-Laboratory Control Sample

Laboratory control samples (LCS) are used to monitor long-term precision and accuracy of the analytical method. The analysis is performed at a frequency of 1 per analytical batch. The percent recoveries (%Rs) must be within the laboratory control limits. DoD QSM aqueous LCS recovery limits are specified in Table G-12 of the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used.

Sample WG441278-02 was used as the aqueous LCS for the explosives analysis on 08/15/13. All criteria were met. No qualifiers were applied. Samples 54MW07 (L13080490-01), 54MW05 (L13080490-03), 54MW03 (L13080490-05), and 54MW02 (L13080490-07) apply to this LCS.

VII-Matrix Spike/Matrix Spike Duplicate

Data for matrix spike/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The percent recoveries (%Rs) and the relative percent difference (RPD) must be within the laboratory control limits. DoD QSM aqueous MS/MSD recovery limits follow the LCS criteria and are specified in Table G-12 of the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used. The DoD QSM aqueous precision limit for explosives is ≤20% RPD.

Sample 54MW02 (L13080490-07) was used as the aqueous MS/MSD for the explosives analysis on 08/15/13. Target compound 4-nitrotoluene (200%; RPD=74.4%) was outside criteria. For all other target compounds, all criteria were met. Target compound 4-nitrotoluene was non-detect for the spiked sample; therefore, was qualified estimated "UJ" based upon the high RPD. Samples 54MW07 (L13080490-01), 54MW05 (L13080490-03), 54MW03 (L13080490-05), and 54MW02 (L13080490-07) apply to this MS/MSD.

VIII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 50% RPD for the aqueous samples.

No aqueous field duplicate was analyzed for explosives with this SDG; therefore, it was not
evaluated.

IX-Quantitation Verification and Data Review

The accuracy of analytical results was verified through the calculation of several parameters. The calculation was based calibration factors. The absolute percent difference (%D) between the calculated and the reported value must be within 10% difference. All positive values must have less than or equal to 40% RPD between the primary and secondary columns.

- All values >MDL and <MRL or <3*MDL (whichever was greater) were qualified as estimated "J" (if required).
- Any positive detections were confirmed by mass spectrum (MS) analysis. All MS confirmations were within criteria for all detected target analytes in this SDG. No qualifiers were applied.

Sample: 54MW02 (L13080490-07), 4-amino-2,6-dinitrotoluene

```
Y = mX + b
Y = Area of target compound for sample
m = slope of curve
X = Amount on column
b = Y-intercept
Given:
m = 0.28909729
b = -1.8106455
Y = Area = 23.70696
X = 88.27
Conc. \mug/L = (Ax * Vt * DF) / (Vs)
where: Conc. = Sample concentration in μg/L
               = Amount of compound being measured (µg/L).
       Vt
               = Volume of total extract (mL) from bench sheet.
       Vs
               = Volume of sample extracted (mL).
       DF
               = Dilution factor
Conc. \mu g/L = (491.30 * 10 * 1) / (900) = 0.981 \mu g/L (Signal #1)
Reported Value = 0.981 μg/L
% Difference = 0.0%
Values were within 10% difference.
```

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the
	limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound
	(using mass spectroscopy).
Q	One or more quality control criteria failed.
US	SEPA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample.
	Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in
	laboratory or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to
	confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution.
	Presumptively present at approximate quantity.
K	Analyte present. Reported value may be biased high. Actual value is expected to be lower.
1	Analyte present. Reported value may be biased low. Actual value is
<u> </u>	expected to be higher.
UL	Not detected, quantitation limit is probably higher.

The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994).

Form I Copy

Microbac

Lab Report #: L13080490

Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080490-01

Client ID: 54MW07

Matrix: Water

Workgroup #: WG441348 Collect Date: 08/08/2013 07:50

Sample Tag: 01

PrePrep Method: N/A

Prep Method: METHOD

Analytical Method: 8330B

Analyst: JWR

Dilution: 1

Units: ug/L

Instrument: HPLC5

Prep Date: 08/14/2013 08:00

Cal Date: 03/20/2013 17:01

Run Date: 08/15/2013 19:56

File ID: 5L010821.F

Analyte		CAS	#	Resi	ılt (Qual	LOQ	LOD
1.3-Dinitrobenzene		99-65	-0			U	1,12	0.281
2.4-Dinitrotoluene		121-14	l-2			U	1.12	0,281
2.6-Dinitrotoluene		606-20)-2			υ	1,12	0.281
2,4,6-Trinitrotoluene		118-96	5-7			U	1.12	0.281
2-Amino-4,6-dinitrotoluene			'8-2			U	1.12	0,281
2-Nitrotoluene	88-72		-2			U	1.12	0.281
4-Nitrotoluene		99-99	-0			U	1.12	0.281
4-Amino-2,6-dinitrotoluene		19406-5	51-0			U	1.12	0.281
RDX		121-82-4				U		0.281
Nitroglycerin		55-63	-0			U	1.12	0,281
Surrogate	R	ecovery	Low	er Limit	Upper Limit	Q		
1,2-Dinitrobenzene		92.5		50	150			

Analyte was not detected. The concentration is below the reported LOD. U

Page 1 of 6

Lab Report #: L13080490 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080490-03

PrePrep Method: N/A

Instrument: HPLC5

Client ID: 54MW05

Prep Method: METHOD

Prep Date: 08/14/2013 08:00

Matrix: Water

Analytical Method: 8330B

Cal Date: 03/20/2013 17:01

Workgroup #: WG441348

Analyst: JWR

Run Date: 08/15/2013 20:35

Collect Date: 08/08/2013 09:05

Dilution: 1

File ID: 5L010822.F

Units: ug/L

Sample Tag: 01

Analyte		CAS	#	Res	ult	Q	ual	LOQ	LOD
1,3-Dinitrobenzene		99-65	-0			1	U	1.20	0.301
2,4-Dinitrotoluene		121-14	1-2				U	1.20	0.301
2.6-Dinitrotoluene		606-20)-2				U	1.20	0.301
2,4,6-Trinitrotoluene		118-96	5-7				U	1.20	0.301
2-Amino-4,6-dinitrotoluene	35572-		'8-2				υ	1.20	0.301
2-Nitrotoluene	88-72-2		-2				υ	1.20	0.301
4-Nitrotoluene	99-99-0		-0				U	1.20	0.301
4-Amino-2,6-dinitrotoluene		19406-51-0					U	1.20	0.301
RDX		121-82-4			U		U	1.20	0.301
Nitroglycerin		55-63	-0				υ	1.20	0.301
Surrogate	R	ecovery	Low	er Limit	Upper	Limit	Q		
1,2-Dinitrobenzene		89.5		50	15	0		1	
U Analyte was not detected. The	concentration is	below the r	eported	LOD.					

Page 2 of 6

Form I Copy

Microbac

Lab Report #: L13080490 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080490-05

Client ID: 54MW03

Matrix: Water

Workgroup #: WG441348 Collect Date: 08/08/2013 10:20

Sample Tag: 01

PrePrep Method: N/A

Prep Method: METHOD

Analytical Method: 8330B Analyst: JWR

Dilution: 1

Instrument: HPLC5

Prep Date: 08/14/2013 08:00

Cal Date: 03/20/2013 17:01

Run Date: 08/15/2013 21:14 File ID: 5L010823.F

Units: ug/L

Analyte	CAS	# Res	ult Qı	ıal	LOQ	LOD
1,3-Dinitrobenzene	99-65-	0	ı	J	1.11	0.278
2,4-Dinitrotoluene	121-14	-2	1	J	1.11	0.278
2,6-Dinitrotoluene	606-20	-2	ı	J	1.11	0.278
2,4,6-Trinitrotoluene	118-96	-7	l l	J	1.11	0.278
2-Amino-4,6-dinitrotoluene	35572-7	8-2	ı	J	1.11	0.278
2-Nitrotoluene	88-72-	2	ı	J	1,11	0.278
4-Nitrotoluene	99-99-	0	(J	1.11	0.278
4-Amino-2,6-dinitrotoluene	19406-5	1-0	ı	J	1.11	0.278
RDX	121-82	-4	ι	J	1.11	0.278
Nitroglycerin	55-63-	0	Į.	J	1.11	0.278
Surrogate	Recovery	Lower Limit	Upper Limit	0		

Surrogate	Recovery	Lower Limit	Upper Limit	Q	
1,2-Dinitrobenzene	95.5	50	150		

υ Analyte was not detected. The concentration is below the reported LOD.

Page 3 of 6

Form I Copy

Microbac

Lab Report #: L13080490 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080490-07

PrePrep Method: N/A

Instrument: HPLC5

Client ID: 54MW02

Prep Method: METHOD

Prep Date: 08/14/2013 08:00

Matrix: Water

Analytical Method: 8330B

Cal Date: 03/20/2013 17:01

Workgroup #: WG441348

Analyst: JWR

Run Date: 08/15/2013 21:53

Collect Date: 08/08/2013 11:35

Dilution: 1

File ID: 5L010824.F

Sample Tag: 01

Units: ug/L

Analyte	CAS	5#	Resu	ılt	Qı	ıal	LOQ	LOD
1,3-Dinitrobenzene	99-6	5-0			ı	J	1.11	0.278
2,4-Dinitrotoluene	121-1	.4-2			ı	J	1.11	0.278
2,6-Dinitrotoluene	606-2	20-2			Į	J	1.11	0.278
2,4,6-Trinitrotoluene	118-9	6-7	0.97	4		7	1.11	0.278
2-Amino-4,6-dinitrotoluene	35572	78-2	1.53	3			1.11	0.278
2-Nitrotoluene	88-7	2-2			Į	J	1.11	0.278
4-Nitrotoluene	99-9	9-0			l	VJ	1.11	0.278
4-Amino-2,6-dinitrotoluene	19406	51-0	0.98	1			1.11	0.278
RDX	121-8	2-4			ι	J	1,11	0.278
Nitroglycerin	55-6	3-0			l	J	1.11	0.278
Surrogate	Recovery	Lowe	er Limit	Upper I	Limit	Q		

1,2-Dinitrobenzene		93.4	50	150					
J	J Estimated value ; the analyte concentration was less than the LOQ.								
11	Analyte was not detected. The concentration is below the reported LOD								

Page 4 of 6

Generated at Aug 21, 2013 12:37

Generated: 08/21/2013 12:40

CB&I Federal Services, LLC (CFS) 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100

Fax: +1 (410) 273-7103 Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CFS Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, CFS RFAAP Project Chemist

SUBJECT:

RFAAP Data Validation - Chloride, Nitrate, and Sulfate

Microbac Laboratories, Inc. L13080490

DATE:

March 18, 2014

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on August 8, 2013. Samples were analyzed for the anions chloride, nitrate, and sulfate using USEPA SW-846 9056. A total of four aqueous samples were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
54MW07	L13080490-01	54MW03	L13080490-05
54MW05	L13080490-03	54MW02	L13080490-07

Data were reviewed and validated using a combination of project QAPP, *DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010* (DoD, 2010), and method-specific criteria. The data qualifier scheme was consistent with the *Region III Modifications to the National Functional Guidelines for Inorganic Data Review* (April, 1993). Parameters evaluated are presented in **Table 1**. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qua	lified	Parameter
Yes	No	
	Х	Holding Times and Preservation
	Х	Initial and Continuing Calibration
	Х	Blank Analysis
	Х	Laboratory Control Sample
	Х	Laboratory Duplicate Sample
	Х	Matrix Spike and Spike Duplicate
	Х	Field Duplicate Sample
Х		Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT ANIONS REVIEW SDG L13080490

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. Holding time criteria: Cool $4^{\circ}C\pm2^{\circ}C$ and 28 days for sulfate and chloride and Cool to $4^{\circ}C\pm2^{\circ}C$ with H_2SO_4 to pH<2 and 2 days for nitrate. The dates and times were compared between the sample collection and laboratory analysis (USEPA criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 08/08/13, the coolers were received on 08/09/13 by the primary laboratory (Microbac Laboratories, Inc.) at 3.0°C and 2.0°C. All criteria were met. No qualifiers were applied.
- <u>Holding Time Review</u>: Samples were collected on 08/08/13. The samples were prepped and analyzed on 08/09/13 for chloride, sulfate, and nitrate analysis. Sample collection dates may be found on the attached form 1s. All holding time criteria were met. No qualifiers were applied.

II-Initial and Continuing Calibration

Requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data. Initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of the analysis run, and continuing calibration verification documents that the initial calibration is still valid.

Anions: 1 - blank

5 – standards (r≥0.995 or r²≥0.99) ICV/CCV (90-110%) Method Reporting Limit (MRL) (75-125%)

• Chloride, sulfate, and nitrate analysis was calibrated on 07/23/13 using linear equation techniques. All coefficients of determinations were ≥0.99 for chloride, sulfate, and nitrate. All ICV/CCV/MRL criteria were met for all anions and runs. No qualifiers were applied. Samples 54MW07 (L13080490-01), 54MW05 (L13080490-03), 54MW03 (L13080490-05), and 54MW02 (L13080490-07) apply to these initial and continuing calibrations.

III-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. Calibration blanks were analyzed initially and at a 10% frequency thereafter for each batch. No contaminants should be detected in any of the associated blanks >MDL. The DoD QSM criteria specifies all concentrations should be less than $\frac{1}{2}$ MRL (<MRL for common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters) and <2MDL for the calibration blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is \leq 10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, 2-butanone, and phthalate esters, or 5 times (5x) the maximum amount for other target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB080713 (L13080428-09) applies to all samples in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	Analysis	QC Blank ID	Max Conc. mg/L	Action Level mg/L	B qualified samples (for this SDG)
08/09/13	Chloride	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
08/09/13	Sulfate	ICB/CCBs	<lod< td=""><td>NA NA</td><td>None</td></lod<>	NA NA	None
08/09/13	Nitrate	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
08/09/13	Chloride	WG440828-01	<1⁄₂MRL	NA	None
08/09/13	Sulfate	WG440828-01	<1/2MRL	NA	None
08/09/13	Nitrate	WG440828-01	<½MRL	NA	None
08/09/13	Chloride	54RB080713	0.117	0.585	None
08/09/13	Sulfate	54RB080713	<½MRL	NA	None
08/09/13	Nitrate	54RB080713	<½MRL	NA	None

LOD = Limit of Detection

MRL = Method Reporting Limit

MDL = Method Detection Limit

NA = Not Applicable

IV-Laboratory Control Sample

The laboratory control sample (LCS) serve as a monitor of the overall performance of each step during the analysis, including the sample preparation. LCS are generated to determine long-term accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Per DoD QSM, all LCS results must fall within the specified control limits:

Anions: 90-110% (DOD QSM = 80-120%)

 Sample WG440828-02 was used as the aqueous LCS for chloride, sulfate, and nitrate analysis on 08/09/13. All criteria were met. No qualifiers were applied. Samples 54MW07 (L13080490-01), 54MW05 (L13080490-03), 54MW03 (L13080490-05), and 54MW02 (L13080490-07) apply to this LCS.

V-Duplicate Sample Analysis

Duplicate sample determinations are used to demonstrate acceptable method precision by the laboratory at the time of analysis. Duplicate analysis is performed to generate data in order to determine the long-term precision of the analytical method on various matrices. Per DoD QSM, RPDs must be within established control limits (≤20%RPD).

• No site lab duplicate was performed with this SDG; therefore, was not evaluated.

VI-Matrix Spike and Matrix Spike Duplicate

Matrix spikes (MSs) and MSDs are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at

a frequency of one MS/MSD per 20 samples or preparatory batch of similar matrix. Per DoD QSM, MS/MSD recoveries and RPDs should be within the specified limits:

Anions:

90-110%; RPD≤20% (DOD QSM = 80-120%; RPD≤20%)

Sample 54MW02 (L13080490-07) was used as the aqueous MS/MSD for chloride, sulfate, and nitrate analysis on 08/09/13. All criteria were met. No qualifiers were applied. Samples 54MW07 (L13080490-01), 54MW05 (L13080490-03), 54MW03 (L13080490-05), and 54MW02 (L13080490-07) apply to this MS/MSD.

VII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

 No aqueous field duplicate was analyzed for chloride, sulfate, and nitrate analysis with this SDG; therefore, it was not evaluated.

VIII-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. The following calculations were performed for verification.

• Any sample value >MDL and <MRL or <3*MDL (whichever is greater) was qualified as estimated, "J."

Sample: 54MW07 (L13080490-01), sulfate

Y = mX + b

Y = Sample Area m = slope of curve X = Concentration (mg/L) b = Y-intercept DF = Dilution Factor Given: m = 0.1355 b = -0.0194 Y = Area = 3.677 DF = 1

X = 27.3 mg/L * DF = 27.3 mg/L * 1 = 27.3 mg/L

Reported concentration = 27.3 mg/L %D = 0.0% Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition			
	Laboratory Qualifiers ¹			
No Code	Confirmed identification.			
U	Undetected at the limit of detection: The associated data value is the limit of detection, adjusted by any dilution factor used in the analysis.			
J	Estimated: The analyte was positively identified; the quantitation is estimation.			
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.			
N	Non-target analyte: The analyte is a tentatively identified compound (using mass spectroscopy).			
Q	One or more quality control criteria failed.			
USEPA Region III Data Validation Qualifiers ²				
R	Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.			
В	Not detected substantially above the level of the reported in laboratory or field blanks.			
J	Analyte present. Reported value may not be accurate or precise.			
UJ	Not detected, quantitation limit may be inaccurate or imprecise.			
N	Tentative Identification. Consider present. Special methods may be to confirm its presence or absence in future sampling efforts.			
NJ	Qualitative identification questionable due to poor resolution. Presumptively present at approximate quantity.			
K	Analyte present. Reported value may be biased high. Actual value is expected to be lower.			
L	Analyte present. Reported value may be biased low. Actual value is expected to be higher.			
UL	Not detected, quantitation limit is probably higher.			

The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

2 The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993).

Lab Report #: L13080490 Lab Project #: 2773.087

Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080490-01

Collect Date: 08/08/2013 07:50

PrePrep Method: N/A

Client ID: 54MW07 Matrix: Water

Workgroup #: WG440828

Prep Method: 9056

Analytical Method: 9056

Analyst: KRB

Dilution: 1

Instrument: IC2

Prep Date: 08/09/2013 14:21

Cal Date: 07/23/2013 18:03

Run Date: 08/09/2013 15:36

File ID: 12_080913-07

Sample Tag: 01

Units: mg/L

	Analyte	CAS#	Result	Qual	LOQ	LOD
Chloride		16887-00-6	2.35		0.200	0.100
Nitrate		14797-55-8		U	0.600	0.100
Sulfate		14808-79-8	27.3		1.00	0.500
11	Analyte was not detected. The con	centration is below the reported L	.OD.		· · · · · · · · · · · · · · · · · · ·	

Generated: 08/21/2013 12:40

Lab Project #: L13080490 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080490-03

Client ID: 54MW05

Matrix: Water

Workgroup #: WG440828 Collect Date: 08/08/2013 09:05

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 9056

Analytical Method: 9056

Analyst: KRB
Dilution: 1

Units: mg/L

Instrument: IC2

Prep Date: 08/09/2013 14:21

Cal Date: 07/23/2013 18:03

Run Date: 08/09/2013 15:55

File ID: 12_080913-08

Analyte	CAS#	Result	Qual	LOQ	LOD
Chloride	16887-00-6	7.83		0.200	0.100
Nitrate	14797-55-8	0.849		0.600	0.100
Sulfate	14808-79-8	15.0		1.00	0.500

Sample #: L13080490-05

Client ID: 54MW03

Matrix: Water

Workgroup #: WG440828 Collect Date: 08/08/2013 10:20

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 9056

Analytical Method: 9056

Analyst: KRB

Dilution: 1

Units: mg/L

Instrument: IC2

Prep Date: 08/09/2013 14:21

Cal Date: 07/23/2013 18:03 Run Date: 08/09/2013 16:13

File ID: 12_080913-09

Analyte	CAS#	Result	Qual	LOQ	LOD
Chloride	16887-00-6	4.84		0.200	0.100
Nitrate	14797-55-8	0.521	J 7	0.600	0.100
Sulfate	14808-79-8	26.1		1.00	0.500

Generated: 08/21/2013 12:40

Form I Copy

Microbac

Lab Report #: L13080490 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080490-07

PrePrep Method: N/A

Instrument: IC2

Client ID: 54MW02

Prep Method: 9056

Prep Date: 08/09/2013 14:21

Matrix: Water

Analytical Method: 9056

Workgroup #: WG440828

Cal Date: 07/23/2013 18:03

Analyst: KRB

Run Date: 08/09/2013 16:32

Collect Date: 08/08/2013 11:35

Dilution: 1

File ID: 12_080913-10

Sample Tag: 01

Units: mg/L

	Analyte	CAS#	Result	Qual	LOQ	LOD
Chloride		16887-00-6	6.06		0.200	0.100
Nitrate		14797-55-8	0.326	JJ	0.600	0.100
Sulfate		14808-79-8	30.8		1.00	0.500
J	Estimated value ; the analyte conce	entration was less than the LOQ.				

CB&I Federal Services, LLC (CFS) 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100 Fax: +1 (410) 273-7103

Eric.malarek@CBIfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CFS Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, CFS RFAAP Project Chemist

SUBJECT:

RFAAP Data Validation - Total and Dissolved Organic and Inorganic Carbon

Microbac Laboratories, Inc. L13080428

DATE:

January 13, 2014

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on August 7, 2013. Samples were analyzed for Total Organic Carbon (TOC), Dissolved Organic Carbon (DOC), Total Inorganic Carbon (TIC), and Dissolved Inorganic Carbon (DIC) using USEPA 415.1. The samples with the odd fraction lab IDs are the total fractions and the samples with the even fraction lab IDs are the dissolved fractions. A total of twelve aqueous samples were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
54MW09	L13080428-01	54MW10	L13080428-07
54MW09	L13080428-02	54MW10	L13080428-08
54MW11	L13080428-03	54RB080713	L13080428-09
54MW11	L13080428-04	54RB080713	L13080428-10
54MW08	L13080428-05	54MW12	L13080428-11
54MW08	L13080428-06	54MW12	L13080428-12

Data were reviewed and validated using a combination of project QAPP, DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010), and method-specific criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualified		Parameter
Yes	No	
	Х	Holding Times and Preservation
	Х	Initial and Continuing Calibration
Х		Blank Analysis
	Х	Laboratory Control Sample and Laboratory Control Sample Duplicate
	Х	Matrix Spike and Spike Duplicate
	Х	Laboratory Duplicate
	Х	Field Duplicate
Х		Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT TOC, TIC, DOC, & DIC REVIEW SDG L13080428

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. Holding time criteria: Cool 4°C±2°C, HCl pH<2, 28 days for TOC, TIC, DOC, and DIC (USEPA criteria). The dates and times were compared between the sample collection and laboratory analysis.

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 08/07/13, the coolers were received on 08/08/13 by the primary laboratory (Microbac Laboratories, Inc.) at 4.0°C and 3.0°C. All criteria were met. No qualifiers were applied.
- <u>Holding Time Review</u>: The samples were collected on 08/07/13. The TOC and TIC analysis were run on 08/12/13 and 08/13/13. The DOC and DIC analysis were run on 08/13/13. Sample collection dates may be found on the attached form 1s. All criteria were met.

II-Initial and Continuing Calibration

Bench and run summary sheets were reviewed to determine whether calibration was performed at the beginning of sample analysis using the following criteria. Percent recoveries for initial and continuing calibration (90-110%) must be within limits.

TOC, TIC, DOC, and DIC:

1 - blank

5 - standards (r≥0.995) ICV/CCV (90-110%)

• The TOC and TIC analysis were run on 08/12/13 and 08/13/13. The DOC and DIC analysis were run on 08/13/13. The initial calibration for TC was analyzed on 07/09/13 with a coefficient of determination of 0.9996. The initial calibration for TIC was analyzed on 07/09/13 with a coefficient of determination of 0.9999. The ICV and CCVs were evaluated for where they bracketed reported samples. All ICV/CCVs that bracketed reported samples were within criteria. All criteria were met. No qualifiers were applied. Samples 54MW09 (L13080428-01), 54MW09 (L13080428-02), 54MW11 (L13080428-03), 54MW11 (L13080428-04), 54MW08 (L13080428-05), 54MW08 (L13080428-06), 54MW10 (L13080428-07), 54MW10 (L13080428-08), 54RB080713 (L13080428-09), 54RB080713 (L13080428-10), 54MW12 (L13080428-11), and 54MW12 (L13080428-12) apply to these initial and continuing calibrations.

III-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. Calibration blanks were analyzed initially and at a 10% frequency thereafter for each batch. No contaminants should be detected in any of the associated blanks >MDL. The DoD QSM criteria specifies all concentrations should be less than ½MRL (<MRL for common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters) and <LOD (i.e. <2MDL) for the calibration blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters, or 5 times (5x) the maximum amount for other target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB080713 (L13080428-09) applies to all of the dissolved samples (DOC and DIC) in this SDG and rinse blank 54RB080713 (L13080428-09) applies to all total samples (TOC and TIC) in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	Analysis	QC Blank ID	Max Conc. mg/L	Action Level mg/L	B qualified samples (For this SDG)
08/12/13	TOC	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
08/13/13	тос	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
08/12/13	TOC	WG440968-01	<1/2MRL	NA	None
08/13/13	DOC	WG440969-01	<1/2MRL	NA	None
08/12/13	TOC	54RB080713	0.607J	3.04	54MW08
08/12/13	TIC	54RB080713	<1/2MRL	NA	None
08/13/13	DOC	54RB080713	1.45J	7.25	54MW09, 54MW11, 54MW08, 54MW10, 54MW12
08/13/13	DIC	54RB080713	<1/2MRL	NA	None

J = Estimated value.

LOD = Limit of Detection

MRL = Method Reporting Limit

MDL = Method Detection Limit

NA = Not Applicable

IV-Laboratory Control Sample and Laboratory Control Sample Duplicate

The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) serve as a monitor of the overall performance of each step during the analysis, including the sample preparation. LCS and LCSD are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. All aqueous LCS results must fall within the control limits (85-115%; RPD≤15%).

- Samples WG440968-02 and WG440968-03 were used as the aqueous LCS/LCSD for TOC and TIC analysis on 08/12/13. All criteria were met. No qualifiers were applied. Samples 54MW09 (L13080428-01), 54MW11 (L13080428-03), 54MW08 (L13080428-05), 54MW10 (L13080428-07), 54RB080713 (L13080428-09), and 54MW12 (L13080428-11) apply to this LCS/LCSD.
- Samples WG440969-02 and WG440969-03 were used as the aqueous LCS/LCSD for DOC and DIC analysis on 08/13/13. All criteria were met. No qualifiers were applied. Samples 54MW09 (L13080428-02), 54MW11 (L13080428-04), 54MW08 (L13080428-06), 54MW10 (L13080428-08), 54RB080713 (L13080428-10), and 54MW12 (L13080428-12) apply to this LCS/LCSD.

V-Matrix Spike and Spike Duplicate

Matrix spikes (MSs) and matrix spike duplicates (MSDs) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at a frequency of one MS/MSD per 20 samples of similar matrix. The percent recoveries (%Rs or RPD) must be within the specified control limits (85-115%; RPD≤15%).

- No site specific aqueous MS/MSD was performed for TOC and TIC analysis on 08/07/13; therefore, was not evaluated. See Section IV for lab accuracy statement using LCS/LCSD.
- No site specific aqueous MS/MSD was performed for DOC and DIC analysis on 08/08/13; therefore, was not evaluated. See Section IV for lab accuracy statement using LCS/LCSD.

VI-Laboratory Duplicate Sample Analysis

Duplicate sample determinations are used to demonstrate acceptable method precision by the laboratory at the time of analysis. Duplicate analysis is performed to generate data in order to determine the long-term precision of the analytical method on various matrices. RPDs must be within established control limits (≤30%RPD).

No aqueous laboratory duplicate was analyzed for TOC, TIC, DOC, and DIC with this SDG; therefore, it was not evaluated. See Section IV for lab precision statement using LCS/LCSD.

VII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

No aqueous field duplicate was analyzed for TOC, TIC, DOC, and DIC with this SDG; therefore, it
was not evaluated.

VIII-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. The following calculations were performed for verification.

- Any sample value >MDL and <MRL or <3*MDL (whichever is greater) was qualified as estimated, "J."
- The total and dissolved fractions were compared. The organic and inorganic carbon data results for samples 54MW09 (L13080428-01), 54MW09 (L13080428-02), 54MW11 (L13080428-03), 54MW11 (L13080428-04), 54MW08 (L13080428-05), 54MW08 (L13080428-06), 54MW10 (L13080428-08), 54RB080713 (L13080428-09), 54RB080713 (L13080428-10), 54MW12 (L13080428-11), and 54MW12 (L13080428-12) are presented in **Table 3**. The samples with the odd fraction lab IDs are the total fractions and the samples with the even fraction lab IDs are the dissolved fractions. Data qualification was applied based upon professional judgment. Generally, if the concentrations are greater than the MRL and the dissolved concentration is greater than its total concentration by >10%D, then both results have been flagged as estimated with a "J." We are looking at the TOC/TIC to evaluate the immobilization potential of TNT and RDX. The DOC/DIC is a byproduct of organic compound oxidation and indicates the difference in microbial oxidation processes within and outside the plume area. If the samples exhibit continual microbial oxidation coupled with the time differences of sample preservation from sample collection (i.e. TOC in field and DOC at the lab), this might be the cause of total / dissolved imbalance here.

Table 3 Total/Dissolved Summary

Sample ID	Analyte	MRL (mg/L)	Total Fraction Dissolved Fraction (mg/L) (mg/L)		%D	Qualifier
54MW09	TOC/DOC	1.0; 2.0	4.17	1 - 1 - 1 - 1		J
54MW09	TIC/DIC	1.0; 2.0	18.4	38.0	51.6	J
54MW11	TOC/DOC	1.0; 2.0	3.11	5.73	45.7	J
54MW11	TIC/DIC	1.0; 2.0	37.6	59.9	37.2	J
54MW08	TOC/DOC	1.0; 2.0	2,30	4.89	53.0	J
54MW08	TIC/DIC	1.0; 2.0	36.5	58.0	37.1	J
54MW10	TOC/DOC	1.0; 2.0	4.28	5.74	25.4	J
54MW10	TIC/DIC	1.0; 2.0	39.3	51.4	23.5	J
54RB080713	TOC/DOC	1.0; 2.0	0.607J	1.45	58.2	J
54RB080713	TIC/DIC	1.0; 2.0	1.00U	2.00U	NA	None
54MW12	TOC/DOC	1.0; 2.0	3.27	5.71	42.7	J
54MW12	TIC/DIC	1.0; 2.0	3.74	48.1	92.2	J

J = Estimated value.

MRL = Method Reporting Limit

NA = Not Applicable

Sample: 54MW09 (L13080428-01), TOC

TC: Y = m*X (mg/L) + b

TIC: Y = m*X (mg/L) + b

m = 36.20

m = 29.78

b = 6.332

b = 8.713

Y = 823.5

Y = 556.7

DF = 1

DF = 1

X = (22.57 mg/L) * 1 = 22.57 mg/L

X = (18.40 mg/L) * 1 = 18.40 mg/L

TOC (mg/L) = TC (mg/L) - TIC (mg/L) = 22.57 - 18.40 = 4.17 mg/L

Reported Value = 4.17 mg/L

% Difference = 0.0%

Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the
	limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is
	estimation.
В	Blank contamination: The analyte was detected above one-half the
	reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound
	(using mass spectroscopy).
Q	One or more quality control criteria failed.
	USEPA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample.
	Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in laboratory
	or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to
	confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution.
	Presumptively present at approximate quantity.
K	Analyte present. Reported value may be biased high. Actual value is
	expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is
	expected to be higher.
UL	Not detected, quantitation limit is probably higher.

¹The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

²The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for

Inorganic Data Review (April, 1993).

Microbac

Lab Report #: L13080428 Lab Project #: 2773.087

Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080428-01

Client ID: 54MW09

Matrix: Water

Workgroup #: WG440968

Collect Date: 08/07/2013 09:50

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 1

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/12/2013 17:59

File ID: TC08122013.006

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Organic Carbon	TOC	4.17	ブ	1.00	0.500

Sample #: L13080428-01

Client ID: 54MW09

Matrix: Water

Workgroup #: WG440968

Collect Date: 08/07/2013 09:50

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 1

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/12/2013 17:59

File ID: TC08122013.006

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Inorganic Carbon		18.4	7	1.00	0.500

Sample #: L13080428-02

Client ID: 54MW09

Matrix: Water

Workgroup #: WG440969

Collect Date: 08/07/2013 09:50

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1 Analytical Method: 415.1

Analyst: DIH

Dilution: 2

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/13/2013 14:23

File ID: TC08122013.037

						7
Analyte	CAS#	Result	Qual	LOQ	LOD	
Inorganic Carbon, Dissolved		38.0	-5	2.00	1.00	

Sample #: L13080428-02

Client ID: 54MW09

Matrix: Water

Workgroup #: WG440969

Collect Date: 08/07/2013 09:50

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 2 Units: mg/L Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/13/2013 14:23

File ID: TC08122013.037

Analyte	CAS#	Result	Qual	LOQ	LOD
Organic Carbon, Dissolved	TOC	5.04	\mathcal{B}	2.00	1.00

Page 1 of 9

Lab Report #: L13080428 Lab Project #: 2773.087

Project Name: Radford

Lab Contact: Stephanle Mossburg

Certificate of Analysis

Sample #: L13080428-03

Client ID: 54MW11

Matrix: Water Workgroup #: WG440968

Collect Date: 08/07/2013 10:55

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 1

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/12/2013 18:12

File ID: TC08122013.007

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Organic Carbon	TOC	3.11	- ブ	1.00	0.500

Sample #: L13080428-03

Client ID: 54MW11

Matrix: Water

Workgroup #: WG440968 Collect Date: 08/07/2013 10:55

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH Dilution: 1

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/12/2013 18:12

File ID: TC08122013.007

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Inorganic Carbon		37.6	7	1.00	0.500

Sample #: L13080428-04

Client ID: 54MW11

Matrix: Water

Workgroup #: WG440969

Collect Date: 08/07/2013 10:55

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1 Analyst: DIH

> Dilution: 2 Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/13/2013 14:37

File ID: TC08122013.038

						1
Analyte	CAS#	Result	Qual	LOQ	LOD	
Ingranic Carbon Dissolved		59.9		2,00	1.00	

Sample #: L13080428-04

Client ID: 54MW11

Matrix: Water

Workgroup #: WG440969

Collect Date: 08/07/2013 10:55

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH Dilution: 2

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/13/2013 14:37

File ID: TC08122013.038

Qual LOQ LOD CAS# Result Analyte 1.00 2.00 TOC 5.73 Organic Carbon, Dissolved

Page 2 of 9

Generated at Aug 21, 2013 12:36

Lab Report #: L13080428

Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080428-05

Client ID: 54MW08

Matrix: Water

Workgroup #: WG440968

Collect Date: 08/07/2013 12:05

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 1

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/12/2013 18:26

File ID: TC08122013.008

Analyte	CAS#	Result	Qual	LOQ	LOD]
Total Organic Carbon	TOC	2.30	В	1.00	0,500	1

Sample #: L13080428-05

Client ID: 54MW08

Matrix: Water

Workgroup #: WG440968

Collect Date: 08/07/2013 12:05

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 1

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/12/2013 18:26

File ID: TC08122013.008

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Inorganic Carbon		36.5	T	1,00	0.500

Sample #: L13080428-06

Client ID: 54MW08

Matrix: Water

Workgroup #: WG440969

Collect Date: 08/07/2013 12:05

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1 Analyst: DIH

Dilution: 2

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/13/2013 14:51

File ID: TC08122013.039

Analyte	CAS#	Result	Qual	LOQ	LOD	
Organic Carbon, Dissolved	TOC	4.89	β	2.00	1.00	

Sample #; L13080428-06

Client ID: 54MW08

Matrix: Water

Workgroup #: WG440969

Collect Date: 08/07/2013 12:05

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 2 Units: mg/L Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/13/2013 14:51

File ID: TC08122013.039

Analyte	CAS#	Result	Qual	LOQ	LOD
Inorganic Carbon, Dissolved		58.0	T	2.00	1.00

Page 3 of 9

Lab Report #: L13080428 Lab Project #: 2773.087

Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

PrePrep Method: N/A Sample #: L13080428-07

Prep Method: 415.1 Client ID: 54MW10 Analytical Method: 415.1 Matrix: Water

Analyst: DIH Workgroup #: WG440968

Dilution: 1 Collect Date: 08/07/2013 13:15

Units: mg/L Sample Tag: 01

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/12/2013 18:41

File ID: TC08122013.009

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Inorganic Carbon		39.3	Ţ	1.00	0.500

Sample #: L13080428-07

Client ID: 54MW10 Matrix: Water

Workgroup #: WG440968

Collect Date: 08/07/2013 13:15

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 1 Units: mg/L Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/12/2013 18:41

File ID: TC08122013.009

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Organic Carbon	тос	4.28	丁	1.00	0.500

Sample #: L13080428-08

Client ID: 54MW10

Matrix: Water

Workgroup #: WG440969

Collect Date: 08/07/2013 13:15

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH Dilution: 2

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/13/2013 15:38

File ID: TC08122013.042

						,
Analyte	CAS#	Result	Qual	LOQ	LOD	
Organic Carbon Dissolved	TOC	5.74	B	2.00	1.00	

Sample #: L13080428-08

Client ID: 54MW10

Matrix: Water

Workgroup #: WG440969

Collect Date: 08/07/2013 13:15

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 2

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/13/2013 15:38

File ID: TC08122013.042

Analyte	CAS#	Result	Qual	LOQ	LOD
			-		
Inorganic Carbon, Dissolved		51.4)	2.00	1.00

Page 4 of 9

Microbac

Lab Report #: 13080428
Lab Project #: 2773.087
Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080428-09

Client ID: 54RB080713 Matrix: Water

Workgroup #: WG440968

Collect Date: 08/07/2013 13:35

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1 Analytical Method: 415.1

Analyst: DIH

Dilution: 1 Units: mg/L Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/12/2013 18:54

File ID: TC08122013.010

	Analyte	CAS#	Result	Qual	LOQ	LOD
Total Inorganic	Carbon			U	1.00	0.500
U	Analyte was not detected. The concentration is	below the reported	LOD.			

Page 5 of 9

Generated at Aug 21, 2013 12:36

Microbac

Lab Project#: L13080428
Lab Project#: 2773.087
Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080428-09

Client ID: 54RB080713

Matrix: Water
Workgroup #: WG440968

Collect Date: 08/07/2013 13:35

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH
Dilution: 1

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/12/2013 18:54

File ID: TC08122013.010

	Analyte	CAS#	Result	Qual	LOQ	LOD
Total Organic	Carbon	TOC	0.607	ょ ブ	1.00	0.500
J	J Estimated value; the analyte concentration was less than the LOQ.					

Page 6 of 9

Generated at Aug 21, 2013 12:36

Microbac

Lab Report #: L13080428 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080428-10

PrePrep Method: N/A

Instrument: TOC-VWP

Client ID: 54RB080713

Prep Date: N/A

Matrix: Water

Prep Method: 415.1

Workgroup #: WG440969

Analytical Method: 415.1

Cal Date: 07/09/2013 14:51

Analyst: DIH

Run Date: 08/13/2013 15:50

Collect Date: 08/07/2013 13:35

Dilution: 2

Sample Tag: DL01

Units: mg/L

File ID: TC08122013.043

	Analyte	CAS#	Result	Qual	LOQ	LOD
Inorganic Carl	oon, Dissolved			U	2.00	1.00
υ	Analyte was not detected. The concentration is	below the reported	LOD.			

Page 7 of 9

Microbac

Lab Report #: L13080428 Lab Project #: 2773.087

Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080428-10

PrePrep Method: N/A

Instrument: TOC-VWP

Client ID: 54RB080713

Prep Method: 415.1

Prep Date: N/A

Matrix: Water

Workgroup #: WG440969

Analytical Method: 415.1

Cal Date: 07/09/2013 14:51

Analyst: DIH

Collect Date: 08/07/2013 13:35

Dilution: 2

Run Date: 08/13/2013 15:50 File ID: TC08122013.043

Sample Tag: DL01

Units: mg/L

	Analyte	CAS#	Result	Qual	LOQ	LOD
Organic Carbo	n, Dissolved	TOC	1.45	ょす	2.00	1.00
J	Estimated value; the analyte concentration wa		•			

Page 8 of 9

Lab Project #: 2773.087
Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080428-11

Collect Date: 08/07/2013 14:20

Client ID: 54MW12

Matrix: Water

Workgroup #: WG440968

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 2

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/13/2013 20:36

File ID: TC08122013,066

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Inorganic Carbon		3.74	T	2.00	1.00

Sample #: L13080428-11

Client ID: 54MW12

Matrix: Water

Workgroup #: WG440968

Collect Date: 08/07/2013 14:20

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH
Dilution: 2

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/13/2013 20:36

File ID: TC08122013,066

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Organic Carbon	TOC	3.27	フ	2.00	1.00

Sample #: L13080428-12

Client ID: 54MW12

Matrix: Water

Workgroup #: WG440969

Collect Date: 08/07/2013 14:20

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH
Dilution: 2

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/13/2013 16:02

File ID: TC08122013.044

Analyte	CAS#	Result	Qual	LOQ	LOD
Inorganic Carbon, Dissolved		48.1	ブ	2.00	1.00

Sample #: L13080428-12

mpie #: __L13080428-12

Client ID: 54MW12 Matrix: Water

Workgroup #: WG440969

Collect Date: 08/07/2013 14:20

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH
Dilution: 2

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/13/2013 16:02

File ID: TC08122013.044

Analyte	CAS#	Result	Qual	LOQ	LOD
Organic Carbon, Dissolved	TOC	5.71	В	2.00	1.00

Page 9 of 9

CB&I Federal Services, LLC (CFS) 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100 Fax: +1 (410) 273-7103

Eric.malarek @CBI federal services.com

MEMORANDUM

TO:

Tim Leahy, CFS Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, CFS RFAAP Project Chemist

SUBJECT:

RFAAP Data Validation – Perchlorate

Microbac Laboratories, Inc. L13080428

DATE:

January 10, 2014

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on August 7, 2013. Aqueous samples were analyzed for perchlorate analysis using liquid chromatography mass spectroscopy (LC/MS) SW-846 method 6850 Modified by Microbac Laboratories. A total of six aqueous samples were validated. The sample IDs are:

F	ield Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
	54MW09	L13080428-01	54MW10	L13080428-07
	54MW11	L13080428-03	54RB080713	L13080428-09
	54MW08	L13080428-05	54MW12	L13080428-11

Data were reviewed and validated by Eric Malarek using a combination of project QAPP, *DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010* (DoD, 2010), *DoD Perchlorate Handbook August, Rev1, Change 1, 2007* (DoD, 2007), method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the *Region III Modifications to the National Functional Guidelines for Inorganic Data Review* (April, 1993). Parameters evaluated are presented in **Table 1**. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qual	ified	Parameter
Yes	No	
	Х	Holding Times and Preservation
	Х	Instrument Performance Check
Х		Initial and Continuing Calibration
	Х	Blank Analysis
	Х	Internal Standards
	Х	Interference Check Sample
	Х	Laboratory Control Sample (LCS)
	Х	Matrix Spike (MS) and Spike Duplicate (MSD)
	Х	Field Duplicate
Х		Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT PERCHLORATE REVIEW SDG L13080428

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. For perchlorate analysis, aqueous samples are received and stored at cool @4°C±2°C with a maximum holding time of 28 days from collection (DoD Perchlorate Handbook criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 08/07/13, the coolers were received on 08/08/13 by the primary laboratory (Microbac Laboratories, Inc.) at 4.0°C and 3.0°C. All criteria were met. No qualifiers were applied.
- <u>Holding Time Review</u>: The aqueous samples were collected on 08/07/13 for perchlorate analysis. The aqueous samples were prepped and analyzed on 08/13/13. Sample collection dates may be found on the attached form 1s. All holding time criteria were met. No qualifiers were applied.

II-Instrument Performance Check

LC/MS instrument performance checks are performed to ensure mass resolution, identification and, to some degree, sensitivity. The analysis of the instrument performance check solution must be performed at the beginning of each 12-hour period during which samples are analyzed.

• The instrument performance check, ¹⁸O-Perchlorate, met the mass calibration criteria. No qualification was applied.

III-Initial and Continuing Calibration

Requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data. Initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of the analysis run, and continuing calibration verification documents that the initial calibration is still valid.

Perchlorate:

1- blank (<1/2MRL DoD Perchlorate Handbook)
5 -- standards (r≥0.995 or RSD≤20% DoD Perchlorate Handbook)
ICV (≤15%D DoD Perchlorate Handbook)
CCV/ICS (≤15%D DoD Perchlorate Handbook)
LODV (±30%D DoD Perchlorate Handbook)

• For aqueous perchlorate initial calibration performed on 07/12/13 on instrument LCMS1, all criteria were met for all target compounds (RSD≤20%). All ICV/CCV/ICS/LODV standards were within criteria. No qualifiers were applied. Perchlorate was determined using linear regression method with correlation coefficients ≥0.995 for primary and confirmation columns. Samples 54MW09 (L13080428-01), 54MW11 (L13080428-03), 54MW08 (L13080428-05), 54MW10 (L13080428-07), 54RB080713 (L13080428-09), and 54MW12 (L13080428-11) apply to this initial and continuing calibrations.

IV-Blanks

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. No contaminants should be detected in any of the associated blanks >MDL. The DoD Perchlorate Handbook criterion specifies all concentrations should be less than ½ MRL for method blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤5 times (5x) the maximum amount for target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB080713 (L13080428-09) applies to all samples in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	QC Blank ID	Compound	Max Conc. μg/L	Action Level μg/L	B qualified samples (for this SDG)
08/13/13	ICB/CCBs	All perchlorate <1/2MRL	NA	NA	None
08/13/13	WG441246-02	All perchlorate <½MRL	NA	NA	None
08/13/13	54RB080713	All perchlorate <1/2MRL	NA	NA	None

MRL = Method Reporting Limit.

NA = Not Applicable

V-Internal Standards

Internal standards performance criteria ensure that LC/MS sensitivity and response are stable during every analytical run. Internal standard area counts for samples and blanks must not vary by more than a factor of two (-50% to +100%) from the associated calibration standard. The DoD Handbook specifies retention times (RT) $1.0 \pm 2\%$ of last calibration standard and the ratio of RT of sample to standard should be 3.06 and fall between 2.3 and 3.8. The internal standard peak area responses should fall between 50% to 150% recoveries.

All criteria were met. No qualifiers were applied.

VI-Interference Check Sample (ICS)

The LCMS interference check sample (ICS) verifies inter-element and background correction factors. LCMS Interference Check is performed at the beginning and end of each sample analysis run. Control limits are 70-130% (DoD QSM limits 70-130%).

All criteria were met. No qualifiers were applied.

VII-Laboratory Control Sample

The laboratory control sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. DoD Perchlorate Handbook and laboratory aqueous limits are 80-120%.

Sample WG441246-03 was used as aqueous LCS for perchlorate analysis dated 08/13/13. All criteria were met. No qualifiers were applied. Samples 54MW09 (L13080428-01), 54MW11 (L13080428-03), 54MW08 (L13080428-05), 54MW10 (L13080428-07), 54RB080713 (L13080428-09), and 54MW12 (L13080428-11) apply to this LCS sample.

VIII-Matrix Spike (MS) and Spike Duplicate (MSD)

Matrix Spike (MS) and Spike Duplicate (MSD) are generated to determine long-term accuracy and precision of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at a frequency of one MS/MSD per 20 samples of similar matrix. MS/MSD recoveries and relative percent differences between MS recoveries should be within the specified limits. DoD Perchlorate Handbook limits are 80-120%; RPD≤15%. The laboratory limits are 80-120%; RPD≤15%.

Sample 54MW08 (L13080428-05) was used as aqueous MS/MSD for perchlorate analysis dated 08/13/13. All criteria were met. No qualifiers were applied. Samples 54MW09 (L13080428-01), 54MW11 (L13080428-03), 54MW08 (L13080428-05), 54MW10 (L13080428-07), 54RB080713 (L13080428-09), and 54MW12 (L13080428-11) apply to this MS/MSD sample.

IX-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

 No aqueous field duplicate was analyzed for perchlorate with this SDG; therefore, it was not evaluated.

X-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. The following calculations were performed for verification.

Any sample value >MDL and <MRL or <3*MDL (whichever was greater) was qualified as estimated,
 "J."

Sample: 54MW09 (L13080428-01), Perchlorate

Y = mX + b

Y = Response Ratio = Sample Area/Area Internal Standard O18LP m = slope of curve X = Amount Ratio = Conc. Analyte/Conc. Internal Std. b = Y-intercept

Given:

m = 1.37 b = 0.00457 Y = Area = 25900/276000 = 0.09384 X = 0.06516 Conc. μ g/L = (Ax * Cis * DF)

where: Conc. = Sample concentration in μg/L

Ax = Amount Ratio = Conc. Analyte/Conc. Internal Standard

Cis = Conc. Of internal Standard (μg/L)

DF = Dilution factor

Conc. μ g/L = (0.06156 * 5 * 1) = 0.326 μ g/L (Signal #1)

Reported Value = 0.327 μ g/L % Difference = 0.3%

Values were within 10% difference

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the
	limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound
	(using mass spectroscopy).
Q	One or more quality control criteria failed.
	USEPA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample.
	Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in laboratory
	or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to
	confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution.
	Presumptively present at approximate quantity.
K	Analyte present. Reported value may be biased high. Actual value is
	expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is
	expected to be higher.
UL	Not detected, quantitation limit is probably higher.

The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993).

Microbac

Lab Report #: L13080428 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080428-01

Collect Date: 08/07/2013 09:50

Client ID: 54MW09

Matrix: Water

Workgroup #: WG441246

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 6850

Analytical Method: 6850

Analyst: JWR Dilution: 1

Units: ug/L

Instrument: LCMS1

Prep Date: 08/13/2013 16:15

Cal Date: 07/12/2013 13:15

Run Date: 08/13/2013 19:05

File ID: 1LM.LM22072

Analyte	CAS#	Result	Qual	LOQ	LOD
Perchlorate	14797-73-0	0.327		0.200	0.100

Sample #: L13080428-03

Client ID: 54MW11

Matrix: Water

Workgroup #: WG441246

Collect Date: 08/07/2013 10:55

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 6850

Analytical Method: 6850

Analyst: JWR

Dilution: 1

Units: ug/L

Instrument: LCMS1

Prep Date: 08/13/2013 16:15

Cal Date: 07/12/2013 13:15

Run Date: 08/13/2013 19:24

File ID: 1LM.LM22073

		Analyte	CAS#	Result	Qual	LOQ	LOD
P	erchlorate		14797-73-0	0.132	o ブ	0.200	0.100
J		Estimated value ; the analyte concentra	ation was less than the LOQ.				

Page 1 of 3

Generated at Aug 21, 2013 12:36

Microbac

Lab Report #: L13080428 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080428-05

Client ID: 54MW08 Matrix: Water

Workgroup #: WG441246 Collect Date: 08/07/2013 12:05

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 6850 Analytical Method: 6850

Analyst: JWR

Units: ug/L

Dilution: 1

Instrument: LCMS1

Prep Date: 08/13/2013 16:15

Cal Date: 07/12/2013 13:15

Run Date: 08/13/2013 18:08

File ID: 1LM.LM22069

Analyte	CAS#	Result	Qual	LOQ	LOD
Perchlorate	14797-73-0	0.334		0.200	0.100

Sample #: L13080428-07

Client ID: 54MW10 Matrix: Water Workgroup #: WG441246

Collect Date: 08/07/2013 13:15

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 6850 Analytical Method: 6850

Analyst: JWR

Dilution: 1 Units: ug/L Instrument: LCMS1

Prep Date: 08/13/2013 16:15

Cal Date: 07/12/2013 13:15 Run Date: 08/13/2013 19:42

File ID: 1LM.LM22074

Analyte	CAS#	Result	Qual	LOQ	LOD
Perchlorate	14797-73-0	0.365		0.200	0.100

Sample #: L13080428-09

Client ID: 54RB080713 Matrix: Water

Workgroup #: WG441246 Collect Date: 08/07/2013 13:35

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 6850

Analytical Method: 6850 Analyst: JWR

> Dilution: 1 Units: ug/L

Instrument: LCMS1

Prep Date: 08/13/2013 16:15

Cal Date: 07/12/2013 13:15 Run Date: 08/13/2013 21:36

File ID: 1LM.LM22080

	Analyte	CAS#	Result	Qual	LOQ	LOD
Perchlorate	•	14797-73-0		υ	0.200	0,100
U Analyte was not detected. The concentration is below the reported LOD.						

Page 2 of 3

Generated at Aug 21, 2013 12:36

Microbac

Lab Report #: L13080428 Lab Project #: 2773.087

Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080428-11

PrePrep Method: N/A

Instrument: LCMS1

Client ID: 54MW12

Prep Method: 6850

Matrix: Water

Prep Date: 08/13/2013 16:15

Workgroup #: WG441246

Analytical Method: 6850

Cal Date: 07/12/2013 13:15

Collect Date: 08/07/2013 14:20

Analyst: JWR

Run Date: 08/13/2013 20:20

Dilution: 10

Sample Tag: DL01

Units: ug/L

File ID: 1LM.LM22076

Analyte	CAS#	Result	Qual	LOQ	LOD
Perchlorate	14797-73-0	9.88		2.00	1.00

Page 3 of 3

CB&I Federal Services, LLC (CFS) 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100

Fax: +1 (410) 273-7100

Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CFS Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, CFS RFAAP Project Chemist

SUBJECT:

RFAAP Data Validation – Explosives

Microbac Laboratories, Inc. SDG L13080428

DATE:

January 10, 2014

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on August 7, 2013. Samples were analyzed for select explosives using USEPA SW846 Method SW-846 8330B for aqueous matrices. A total of seven aqueous samples (includes one dilution sample) were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
54MW09	L13080428-01	54RB080713	L13080428-09
54MW11	L13080428-03	54MW12	L13080428-11
54MW08	L13080428-05	54MW12	L13080428-11DL
54MW10	L13080428-07		

Data were reviewed by Eric Malarek and validated using a combination of project QAPP, Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010) (DoD QSM), method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qual	lified	Parameter
Yes	No	
	Х	Holding Times and Preservation
	Х	Blank Analysis
	Х	Initial Calibration
	Х	Continuing Calibration
	Х	System Monitoring Compounds
	Х	Laboratory Control Sample
	Х	Matrix Spike/Spike Duplicate
	Х	Field Duplicate
Χ		Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications, except for the following. For sample 54MW12 (L13080428-11), target compound 2,4,6-trinitrotoluene exceeded calibration range. Sample 54MW12 (L13080428-11DL) should be used for this compound. There were no impacts for data usability based on this outlier.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT EXPLOSIVES REVIEW SDG L13080428

I-Holding Times and Preservation

The objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample extraction and analysis. Holding time criteria: For aqueous samples, explosive compounds are shipped cooled ($@4^{\circ}C \pm 2^{\circ}C$) with a maximum holding time of 7 days from sample collection to preparative extraction and 40 days from preparative extraction to determinative analysis (USEPA criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 08/07/13, the coolers were received on 08/08/13 by the primary laboratory (Microbac Laboratories, Inc.) at 4.0°C and 3.0°C. All criteria were met. No qualifiers were applied.
- Holding Time Review: The aqueous samples were collected on 08/07/13. The samples were extracted on 08/14/13 and were analyzed on 08/15/13 for explosives. Sample collection dates may be found on the attached form 1s. All criteria were met. No qualifiers were applied.

II-Blank Analysis

The purpose of laboratory or field blank analyses is to determine the existence and magnitude of contamination problems resulting from laboratory or field activities. One method blank per analytical batch must be run on each instrument used to analyze samples. No contaminants should be present in the blanks. The DoD QSM criterion specifies all concentrations should be less than one-half MRL. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤ 5 times (5x) the maximum amount for explosive target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB080713 (L13080428-09) applies to all samples in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	QC Blank ID	Compound	Max Conc. μg/L	Action Level μg/L	B qualified samples (For this SDG)
08/15/13	WG441278-01	All target explosives <1/2MRL	NA	NA	None
08/15/13	54RB080713	All target explosives <1/2MRL	NA	NA	None

NA = Not Applicable

MRL = Method Reporting Limit

MDL = Method Detection Limit

III-Initial Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the target compounds. The initial 5-point calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run. The DoD QSM specifies that the correlation coefficient must be ≥ 0.995 , the coefficient of determination ≥ 0.99 , and/or the percent relative standard deviation (%RSD) must be $\leq 20\%$.

• For the explosives initial calibration performed on 03/20/13 on instrument HPLC5, all criteria were met for target explosives compounds. All target compounds were determined using linear regression with correlation coefficients ≥0.995. No qualifiers were applied. Samples 54MW09 (L13080428-01), 54MW11 (L13080428-03), 54MW08 (L13080428-05), 54MW10 (L13080428-07), 54RB080713 (L13080428-09), 54MW12 (L13080428-11), and 54MW12 (L13080428-11DL) apply to this initial calibration.

IV-Continuing Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the target compounds. Continuing calibration standards are analyzed after every 10 injections, and at the end of the analysis sequence. The DoD QSM specifies that the percent difference (%D) from initial calibration should be no greater than $\pm 20\%$.

- For explosives initial calibration verification performed on 03/20/13 @17:40 on instrument HPLC5, all
 criteria were met for target compounds. No qualifiers were applied. No aqueous field samples were
 reported using this initial verification calibration.
- For explosives continuing calibration performed on 08/14/13 @23:07 on instrument HPLC5, all criteria were met. No qualifiers were applied. Field samples 54MW09 (L13080428-01), 54MW11 (L13080428-03), 54MW08 (L13080428-05), 54MW10 (L13080428-07), 54RB080713 (L13080428-09), and 54MW12 (L13080428-11) were reported using this continuing calibration.
- For explosives continuing calibration performed on 08/15/13 @07:14 on instrument HPLC5, all criteria were met. No qualifiers were applied. No aqueous field samples were reported using this continuing calibration.
- For explosives continuing calibration performed on 08/15/13 @11:36 on instrument HPLC5, all criteria were met. No qualifiers were applied. Sample 54MW12 (L13080428-11DL) was reported using this continuing calibration.
- For explosives continuing calibration performed on 08/15/13 @19:17 on instrument HPLC5, all criteria were met. No qualifiers were applied. No aqueous field samples were reported using this continuing calibration.

V-System Monitoring Compound (Surrogates)

Laboratory performance on individual samples is established by means of spiking activities. The percent recovery (%R) for all samples and blanks must be within the laboratory control limits. DoD surrogate recovery limits are specified in Table G-3 of the DoD QSM (DoD, 2010). If the surrogate is not listed, then the laboratory criteria shall be used.

Aqueous Criteria:

1,2-dinitrobenzene (50-150%)

• All criteria were met. No qualifiers were applied.

VI-Laboratory Control Sample

Laboratory control samples (LCS) are used to monitor long-term precision and accuracy of the analytical method. The analysis is performed at a frequency of 1 per analytical batch. The percent recoveries (%Rs) must be within the laboratory control limits. DoD QSM aqueous LCS recovery limits are specified in Table G-12 of the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used.

Sample WG441278-02 was used as the aqueous LCS for the explosives analysis on 08/15/13. All criteria were met. No qualifiers were applied. Samples 54MW09 (L13080428-01), 54MW11 (L13080428-03), 54MW08 (L13080428-05), 54MW10 (L13080428-07), 54RB080713 (L13080428-09), 54MW12 (L13080428-11), and 54MW12 (L13080428-11DL) apply to this LCS.

VII-Matrix Spike/Matrix Spike Duplicate

Data for matrix spike/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The percent recoveries (%Rs) and the relative percent difference (RPD) must be within the laboratory control limits. DoD QSM aqueous MS/MSD recovery limits follow the LCS criteria and are specified in Table G-12 of the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used. The DoD QSM aqueous precision limit for explosives is ≤20% RPD.

• No site specific aqueous MS/MSD was performed for the explosives analysis on 08/15/13; therefore, were not evaluated.

VIII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 50% RPD for the aqueous samples.

No aqueous field duplicate was analyzed for explosives with this SDG; therefore, it was not
evaluated.

IX-Quantitation Verification and Data Review

The accuracy of analytical results was verified through the calculation of several parameters. The calculation was based calibration factors. The absolute percent difference (%D) between the calculated and the reported value must be within 10% difference. All positive values must have less than or equal to 40% RPD between the primary and secondary columns.

- All values >MDL and <MRL or <3*MDL (whichever was greater) were qualified as estimated "J" (if required).
- For sample 54MW12 (L13080428-11), target compound 2,4,6-trinitrotoluene exceeded calibration range. Sample 54MW12 (L13080428-11DL) should be used for this compound. There were no impacts for data usability based on this outlier.
- All positive detections were confirmed by mass spectrum (MS) analysis. All MS confirmations were within criteria for all detected target analytes in this SDG. No qualifiers were applied.

Sample: 54MW12 (L13080428-11), 4-amino-2,6-dinitrotoluene

```
Y = mX + b
Y = Area of target compound for sample
m = slope of curve
X = Amount on column
b = Y-intercept
Given:
m = 0.28909729
b = -1.8106455
Y = Area = 122.26541
X = 429.18
Conc. \mu g/L = (Ax * Vt * DF) / (Vs)
where: Conc. = Sample concentration in μg/L
        Ax
               = Amount of compound being measured (µg/L).
        Vt
               = Volume of total extract (mL) from bench sheet.
               = Volume of sample extracted (mL).
        Vs
        DF
               = Dilution factor
Conc. \mu g/L = (429.18 * 10 * 1) / (860) = 4.99 \mu g/L (Signal #1)
Reported Value = 4.99 µg/L
% Difference = 0.0%
```

Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition				
	Laboratory Qualifiers ¹				
No Code	Confirmed identification.				
U	Undetected at the limit of detection: The associated data value is the				
	limit of detection, adjusted by any dilution factor used in the analysis.				
J	Estimated: The analyte was positively identified; the quantitation is estimation.				
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.				
N	Non-target analyte: The analyte is a tentatively identified compound				
	(using mass spectroscopy).				
Q	One or more quality control criteria failed.				
USEPA Region III Data Validation Qualifiers ²					
R	Unreliable result. Analyte may or may not be present in the sample.				
	Supporting data necessary to confirm result.				
В	Not detected substantially above the level of the reported in				
	laboratory or field blanks.				
J	Analyte present. Reported value may not be accurate or precise.				
UJ	Not detected, quantitation limit may be inaccurate or imprecise.				
N	Tentative Identification. Consider present. Special methods may be to				
	confirm its presence or absence in future sampling efforts.				
NJ	Qualitative identification questionable due to poor resolution.				
	Presumptively present at approximate quantity.				
K	Analyte present. Reported value may be biased high. Actual value is				
	expected to be lower.				
L	Analyte present. Reported value may be biased low. Actual value is				
	expected to be higher.				
UL	Not detected, quantitation limit is probably higher.				

The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994).

Lab Project #: 2773.087

Project Name: Radford

Lab Contact: Stephanie Mossburg

Instrument: HPLC5

Certificate of Analysis

PrePrep Method: N/A

Prep Method: METHOD

Prep Date: 08/14/2013 08:00

Client ID: 54MW09 Matrix: Water

Sample #: L13080428-01

Analytical Method: 8330B

Cal Date: 03/20/2013 17:01

Workgroup #: WG441348

Analyst: JWR

Run Date: 08/15/2013 01:04

Collect Date: 08/07/2013 09:50

Dilution: 1

File ID: 5L010796.F

Sample Tag: 01

Units: ug/L

Analyte	CAS	# Res	sult Ç	ual	LOQ	LOD
1,3-Dinitrobenzene	99-65	5-0		U	1.14	0.284
2,4-Dinitrotoluene	121-1	4-2		U	1.14	0.284
2,6-Dinitrotoluene	606-20	0-2		U	1.14	0.284
2,4,6-Trinitrotoluene	118-90	6-7		U	1.14	0.284
2-Amino-4,6-dinitrotoluene	35572-	35572-78-2		U	1.14	0.284
2-Nitrotoluene	88-72	2-2		υ	1.14	0.284
4-Nitrotoluene	99-99	1-0		U	1.14	0.284
4-Amino-2,6-dinitrotoluene	19406-	51-0		U	1.14	0.284
RDX	121-8:	2-4		U	1.14	0.284
Nitroglycerin	55-63	3-0		U	1.14	0.284
Surrogate	Recovery	Lower Limit	Upper Limit	Q		
1,2-Dinitrobenzene	91.3	50	150			
U Analyte was not detected. The	concentration is below the r	reported LOD.				

Page 1 of 8

Microbac

Lab Report #: L13080428 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080428-03

PrePrep Method: N/A

Instrument: HPLC5

Client ID: 54MW11

Prep Method: METHOD

Prep Date: 08/14/2013 08:00

Matrix: Water

Analytical Method: 8330B

Workgroup #: -WG441348

Cal Date: 03/20/2013 17:01

Analyst: JWR

Run Date: 08/15/2013 01:43

Collect Date: 08/07/2013 10:55

Dilution: 1

File ID: 5L010797.F

Sample Tag: 01

Units: ug/L

Analyte	CAS	# Res	sult	Qual	LOQ	LOD
1.3-Dinitrobenzene	99-65	0		U	1.11	0.278
2,4-Dinitrotoluene	121-14	-2		U	1.11	0.278
2.6-Dinitrotoluene	606-20	1-2		U	1.11	0.278
2,4,6-Trinitrotoluene	118-96	-7		U	1.11	0.278
2-Amino-4,6-dinitrotoluene	35572-78-2			U	1.11	0.278
2-Nitrotoluene	88-72	·2		U	1.11	0.278
4-Nitrotoluene	99-99	-0		U	1.11	0.278
4-Amino-2,6-dinitrotoluene	19406-5	1-0		υ	1.11	0.278
RDX	121-82-4			U	1.11	0.278
Nitroglycerin	55-63	-0		υ	1.11	0.278
Surrogate	Recovery	Lower Limit	Upper Limit	Q		

Surrogate	Recovery	Lower Limit	Upper Limit	Q
1,2-Dinitrobenzene	94.3	50	150	

Analyte was not detected. The concentration is below the reported LOD. U

Page 2 of 8

Lab Report #: L13080428 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080428-05

PrePrep Method: N/A

Instrument: HPLC5

Client ID: 54MW08

Prep Method: METHOD

Prep Date: 08/14/2013 08:00

Matrix: Water

Analytical Method: 8330B

Cal Date: 03/20/2013 17:01

Workgroup #: WG441348

Analyst: JWR

Run Date: 08/15/2013 02:22

Collect Date: 08/07/2013 12:05

Dilution: 1

File ID: 5L010798.F

Sample Tag: 01

Units: ug/L

Analyte		CAS#	Res	ult	Qual	rog	LOD
1,3-Dinitrobenzene	9	99-65-0			U	1.25	0.313
2,4-Dinitrotoluene	1	21-14-2			U	1.25	0.313
2,6-Dinitrotoluene	6	06-20-2			U	1.25	0.313
2,4,6-Trinitrotoluene	1:	18-96-7			U	1.25	0.313
2-Amino-4,6-dinitrotoluene	35	572-78-2			U	1.25	0.313
2-Nitrotoluene	8	38-72-2			U	1.25	0.313
4-Nitrotoluene	ç	99-99-0			U	1.25	0.313
4-Amino-2,6-dinitrotoluene	19	406-51-0			U	1.25	0.313
RDX	1:	21-82-4			U	1.25	0.313
Nitroglycerin	5	55-63-0			U	1.25	0.313
Surrogate	Recover	y Lov	er Limit	Upper Limit	Q		
1,2-Dinitrobenzene	91.6		50	150			
U Analyte was not detected. The o	concentration is below	the reported	LOD.				

Page 3 of 8

Generated at Aug 21, 2013 12:36

Microbac

Lab Report #: L13080428 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080428-07

PrePrep Method: N/A

Instrument: HPLC5

Client ID: 54MW10

Prep Method: METHOD

Prep Date: 08/14/2013 08:00

Matrix: Water

Analytical Method: 8330B

Cal Date: 03/20/2013 17:01

Workgroup #: WG441348

Analyst: JWR

Run Date: 08/15/2013 03:01

Collect Date: 08/07/2013 13:15

Dilution: 1

File ID: 5L010799.F

Sample Tag: 01

Units: ug/L

Analyte		CAS	#	Rest	ılt	Qı	ıal	LOQ	LOD
1,3-Dinitrobenzene		99-65-	0			ι	J	1.25	0.313
2,4-Dinitrotoluene		121-14	-2			ι)	1.25	0.313
2,6-Dinitrotoluene		606-20	-2			į	J	1.25	0.313
2,4,6-Trinitrotoluene	-	118-96	-7			ι	J	1.25	0.313
2-Amino-4,6-dinitrotoluene		35572-7	8-2			ι	j	1.25	0.313
2-Nitrotoluene		88-72-	2			ţ	J	1.25	0.313
4-Nitrotoluene		99-99-	0			ι	J	1.25	0.313
4-Amino-2,6-dinitrotoluene		19406-5	1-0			ι	ı	1.25	0.313
RDX		121-82	-4	2.23	3			1.25	0.313
Nitroglycerin		55-63-	0			ι	l	1.25	0.313
Surrogate	Reco	very	Low	er Limit	Upper Li	mit	Q		

Surrogate	Recovery	Lower Limit	Upper Limit	Q
1,2-Dinitrobenzene	88.2	50	150	

υ Analyte was not detected. The concentration is below the reported LOD.

Page 4 of 8

Generated at Aug 21, 2013 12:36

Microbac

Lab Report #: L13080428 Lab Project #: 2773,087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080428-09

PrePrep Method: N/A

Instrument: HPLC5

Client ID: 54RB080713

Prep Method: METHOD

Prep Date: 08/14/2013 08:00

Matrix: Water

Analytical Method: 8330B

Cal Date: 03/20/2013 17:01

Workgroup #: WG441348

Analyst: JWR

Run Date: 08/15/2013 03:41

Collect Date: 08/07/2013 13:35

Dilution: 1

File ID: 5L010800.F

Sample Tag: 01

Units: ug/L

Analyte	CAS	# Re	esult	Qual	LOQ	LOD
1,3-Dinitrobenzene	99-65	5-0		U	1.20	0.301
2,4-Dinitrotoluene	121-1	4-2		U	1.20	0.301
2,6-Dinitrotoluene	606-2	0-2		U	1.20	0.301
2,4,6-Trinitrotoluene	118-9	6-7		U	1.20	0.301
2-Amino-4,6-dinitrotoluene	35572-	78-2		U	1.20	0.301
2-Nitrotoluene	88-72	2-2		U	1.20	0.301
4-Nitrotoluene	99-99	J-O		U	1.20	0.301
4-Amino-2,6-dinitrotoluene	19406-	51-0		U	1.20	0.301
RDX	121-8	2-4		U	1.20	0.301
Nitroglycerin	55-63	3-0		U	1.20	0.301
Surrogate	Recovery	Lower Limit	Upper Limit	Q		

Surrogate	Recovery	Lower Limit	Upper Limit	Q
1,2-Dinitrobenzene	97.7	50	150	

Analyte was not detected. The concentration is below the reported LOD.

Page 5 of 8

Generated at Aug 21, 2013 12:36

Microbac

Lab Project#: L13080428
Lab Project#: 2773.087
Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080428-11

PrePrep Method: N/A

Instrument: HPLC5

Client ID: 54MW12

Prep Method: METHOD

Prep Date: 08/14/2013 08:00

Matrix: Water

Analytical Method: 8330B

Cal Date: 03/20/2013 17:01

Workgroup #: WG441348

Analyst: JWR

Run Date: 08/15/2013 04:20

Collect Date: 08/07/2013 14:20

Analyst: JWR

tun date. 00/15/2013 04:

30,000 50,000

Dilution: 1

File ID: 5L010801,F

Sample Tag: 01

Units: ug/L

File ID. 3L

Analyte	CAS	#	Resu	ılt Q	ual	LOQ	LOD
1,3-Dinitrobenzene	99-65	-0			U	1.16	0.291
2,4-Dinitrotoluene	121-1	4-2			υ	1.16	0.291
2,6-Dinitrotoluene	606-2	0-2			U	1.16	0.291
2,4,6-Trinitrotoluene	118-90	3-7	65.9	1	JR	1.16	0.291
2-Amino-4,6-dinitrotoluene	35572-	78-2	8.67		* '	1.16	0.291
2-Nitrotoluene	88-72	-2			U	1.16	0.291
4-Nitrotoluene	99-99	-0			U	1.16	0.291
4-Amino-2,6-dinitrotoluene	19406-	51-0	4.99	1		1.16	0.291
RDX	121-82	2-4	14.6			1.16	0.291
Nitroglycerin	55-63	-0			U	1.16	0.291
Surrogate	Recovery	Lower L	imit	Upper Limit	Q		
1,2-Dinitrobenzene	98.0	50		150			

			1	200		
J	Estimated value; the analyte concentration	on was greater th	an the highest stand	dard		
U	Analyte was not detected. The concentral	ion is below the r	eported LOD.			

Page 6 of 8

Generated at Aug 21, 2013 12:36

Generated: 08/21/2013 12:40

Microbac

Lab Report #: L13080428 Lab Project#: 2773.087 Project Name: Radford

Lab Contact: Stephanle Mossburg

Certificate of Analysis

Sample #: L13080428-11

PrePrep Method: N/A

Instrument: HPLC5

Client ID: 54MW12

Prep Method: METHOD

Prep Date: 08/14/2013 08:00

Matrix: Water

Analytical Method: 8330B

Cal Date: 03/20/2013 17:01

Workgroup #: WG441348

Analyst: JWR

Run Date: 08/15/2013 13:07

Collect Date: 08/07/2013 14:20

Dilution: 5

File ID: 5L010810.F

Sample Tag: DL01

Units: ug/L

Analyte CAS# Result Qual LOQ LOD 1,3-Dinitrobenzene 99-65-0 5.81 1.45 2,4-Dinitrotoluene 121-14-2 U 5.81 1.45 2,6-Dinitrotoluene 606-20-2 U 5.81 1.45 2,4,6-Trinitrotoluene 118-96-7 65.9 5.81 1.45 2-Amino-4,6-dinitrotoluene 35572-78-2 8.65 J 5.81 1.45 2-Nitrotoluene 88-72-2 5.81 1.45 4-Nitrotoluene 99-99-0 5.81 1.45 4-Amino-2,6-dinitrotoluene 19406-51-0 5.18 5.81 1.45 RDX 121-82-4 14.5 JJ 5.81 1.45 Nitroglycerin 55-63-0 5.81 1.45

Surrogate	Recovery	Lower Limit	Upper Limit	Q
1,2-Dinitrobenzene	79.3	50	150	

J	The reported result is an estimated value.

Analyte was not detected. The concentration is below the reported LOD. U

Page 7 of 8

CB&I Federal Services, LLC (CFS) 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel; +1 (410) 273-7100

Fax: +1 (410) 273-7100

Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CFS Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, CFS RFAAP Project Chemist

SUBJECT:

RFAAP Data Validation - Chloride, Nitrate, and Sulfate

Microbac Laboratories, Inc. L13080428

DATE:

January 24, 2014

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on August 7, 2013. Samples were analyzed for the anions chloride, nitrate, and sulfate using USEPA SW-846 9056. A total of seven aqueous samples were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
54MW09	L13080428-01	54MW10	L13080428-07
54MW11	L13080428-03	54RB080713	L13080428-09
54MW08	L13080428-05	54MW12	L13080428-11

Data were reviewed and validated using a combination of project QAPP, DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010), and method-specific criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qua	lified	Parameter
Yes No		
Х		Holding Times and Preservation
Х		Initial and Continuing Calibration
	Х	Blank Analysis
	Х	Laboratory Control Sample
	Х	Laboratory Duplicate Sample
	Х	Matrix Spike and Spike Duplicate
	Х	Field Duplicate Sample
Х		Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

RFAAP VALIDATION REPORT ANIONS REVIEW SDG L13080428

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. Holding time criteria: Cool $4^{\circ}C\pm2^{\circ}C$ and 28 days for sulfate and chloride and Cool to $4^{\circ}C\pm2^{\circ}C$ with H_2SO_4 to pH<2 and 2 days for nitrate. The dates and times were compared between the sample collection and laboratory analysis (USEPA criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 08/07/13, the coolers were received on 08/08/13 by the primary laboratory (Microbac Laboratories, Inc.) at 4.0°C and 3.0°C. All criteria were met. No qualifiers were applied.
- <u>Holding Time Review</u>: Samples were collected on 08/07/13. The samples were prepped and analyzed on 08/09/13 for chloride, sulfate, and nitrate analysis. Sample collection dates may be found on the attached form 1s. All holding time criteria were met. No qualifiers were applied.

II-Initial and Continuing Calibration

Requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data. Initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of the analysis run, and continuing calibration verification documents that the initial calibration is still valid.

Anions: 1 – blank

5 – standards (r≥0.995 or r²≥0.99) ICV/CCV (90-110%)

Method Reporting Limit (MRL) (75-125%)

• Chloride, sulfate, and nitrate analysis was calibrated on 07/23/13 using linear equation techniques. All coefficients of determinations were ≥0.99 for chloride, sulfate, and nitrate. All ICV/CCV/MRL criteria were met for all anions and runs. No qualifiers were applied. Samples 54MW09 (L13080428-01), 54MW11 (L13080428-03), 54MW08 (L13080428-05), 54MW10 (L13080428-07), 54RB080713 (L13080428-09), and 54MW12 (L13080428-11) apply to these initial and continuing calibrations.

III-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. Calibration blanks were analyzed initially and at a 10% frequency thereafter for each batch. No contaminants should be detected in any of the associated blanks >MDL. The DoD QSM criteria specifies all concentrations should be less than ½MRL (<MRL for common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters) and <2MDL for the calibration blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, 2-butanone, and phthalate esters, or 5 times (5x) the maximum amount for other target compounds. Table 2 summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB080713 (L13080428-09) applies to all samples in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	Analysis	QC Blank ID	Max Conc. mg/L	Action Level mg/L	B qualified samples (for this SDG)
08/09/13	Chloride	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
08/09/13	Sulfate	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
08/09/13	Nitrate	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
08/09/13	Chloride	WG440725-01	<1/2MRL	NA	None
08/09/13	Sulfate	WG440725-01	<½MRL	NA	None
08/09/13	Nitrate	WG440725-01	<1/2MRL	NA	None
08/09/13	Chloride	54RB080713	0.117	0.585	None
08/09/13	Sulfate	54RB080713	<1/2MRL	NA NA	None
08/09/13	Nitrate	54RB080713	<½MRL	NA NA	None

LOD = Limit of Detection

MRL = Method Reporting Limit

MDL = Method Detection Limit

NA = Not Applicable

IV-Laboratory Control Sample

The laboratory control sample (LCS) serve as a monitor of the overall performance of each step during the analysis, including the sample preparation. LCS are generated to determine long-term accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Per DoD QSM, all LCS results must fall within the specified control limits:

Anions:

90-110% (DOD QSM = 80-120%)

Sample WG440725-02 was used as the aqueous LCS for chloride, sulfate, and nitrate analysis on 08/09/13. All criteria were met. No qualifiers were applied. Samples 54MW09 (L13080428-01), 54MW11 (L13080428-03), 54MW08 (L13080428-05), 54MW10 (L13080428-07), 54RB080713 (L13080428-09), and 54MW12 (L13080428-11) apply to this LCS.

V-Duplicate Sample Analysis

Duplicate sample determinations are used to demonstrate acceptable method precision by the laboratory at the time of analysis. Duplicate analysis is performed to generate data in order to determine the long-term precision of the analytical method on various matrices. Per DoD QSM, RPDs must be within established control limits (≤20%RPD).

No site lab duplicate was performed with this SDG; therefore, was not evaluated.

VI-Matrix Spike and Matrix Spike Duplicate

Matrix spikes (MSs) and MSDs are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at

a frequency of one MS/MSD per 20 samples or preparatory batch of similar matrix. Per DoD QSM, MS/MSD recoveries and RPDs should be within the specified limits:

Anions:

90-110%; RPD≤20% (DOD QSM = 80-120%; RPD≤20%)

Sample 54RB080713 (L13080428-09) was used as the aqueous MS/MSD for chloride, sulfate, and nitrate analysis on 08/09/13. All criteria were met. No qualifiers were applied. Samples 54MW09 (L13080428-01), 54MW11 (L13080428-03), 54MW08 (L13080428-05), 54MW10 (L13080428-07), 54RB080713 (L13080428-09), and 54MW12 (L13080428-11) apply to this MS/MSD.

VII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

 No aqueous field duplicate was analyzed for chloride, sulfate, and nitrate analysis with this SDG; therefore, it was not evaluated.

VIII-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. The following calculations were performed for verification.

• Any sample value >MDL and <MRL or <3*MDL (whichever is greater) was qualified as estimated, "J."

Sample: 54MW09 (L13080428-01), sulfate

Y = mX + b

Y = Sample Area m = slope of curve X = Concentration (mg/L) b = Y-intercept DF = Dilution Factor Given: m = 0.1355 b = -0.0194 Y = Area = 5.286 DF = 1

X = 39.2 mg/L * DF = 39.2 mg/L * 1 = 39.2 mg/L

Reported concentration = 39.2 mg/L %D = 0.0% Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition			
Laboratory Qualifiers ¹				
No Code	Confirmed identification.			
U	Undetected at the limit of detection: The associated data value is the			
	limit of detection, adjusted by any dilution factor used in the analysis.			
J	Estimated: The analyte was positively identified; the quantitation is estimation.			
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.			
N	Non-target analyte: The analyte is a tentatively identified compound			
	(using mass spectroscopy).			
Q	One or more quality control criteria failed.			
	USEPA Region III Data Validation Qualifiers ²			
R	Unreliable result. Analyte may or may not be present in the sample.			
	Supporting data necessary to confirm result.			
В	Not detected substantially above the level of the reported in laboratory			
	or field blanks.			
J	Analyte present. Reported value may not be accurate or precise.			
UJ	Not detected, quantitation limit may be inaccurate or imprecise.			
N	Tentative Identification. Consider present. Special methods may be to			
	confirm its presence or absence in future sampling efforts.			
NJ	Qualitative identification questionable due to poor resolution.			
	Presumptively present at approximate quantity.			
K	Analyte present. Reported value may be biased high. Actual value is			
	expected to be lower.			
L	Analyte present. Reported value may be biased low. Actual value is			
	expected to be higher.			
UL	Not detected, quantitation limit is probably higher.			

The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993).

Microbac

Lab Report #: L13080428

Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080428-01

PrePrep Method: N/A

Instrument: IC2

Client ID: 54MW09

Prep Method: 9056

Prep Date: 08/08/2013 15:00

Matrix: Water

Analytical Method: 9056

Cal Date: 07/23/2013 18:03

Workgroup #: WG440725

Analyst: KRB

Run Date: 08/09/2013 00:29

Collect Date: 08/07/2013 09:50

Dilution: 1

File ID: 12_080813-51

Sample Tag: 01

Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD
Chloride	16887-00-6	5.32		0.200	0.100
Nitrate	14797-55-8	0.194	J 7,7	0.600	0.100
Sulfate	14808-79-8	39,2		1.00	0.500
J Estimated value ; the analyte conce	entration was less than the LOQ.				

Microbac

Lab Report #: L13080428 Lab Project #: 2773.087

Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080428-03

Client ID: 54MW11

Matrix: Water

Workgroup #: WG440725 Collect Date: 08/07/2013 10:55

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 9056

Analytical Method: 9056 Analyst: KRB

Dilution: 1

Units: mg/L

Instrument: IC2

Prep Date: 08/08/2013 15:00

Cal Date: 07/23/2013 18:03

Run Date: 08/09/2013 00:48

File ID: 12_080813-52

4,13		0.000	
		0.200	0.100
0.120	J 3	0.600	0.100
91.8		1.00	0.500
	91.8	91.8	91.8 1.00

Page 2 of 6

Generated at Aug 21, 2013 12:36

Generated: 08/21/2013 12:40

Microbac

Lab Project #: 2773.087

Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080428-05

Client ID: 54MW08

Workgroup #: WG440725

Sample Tag: 01

Matrix: Water

Collect Date: 08/07/2013 12:05

Analytical Method: 9056

Dilution: 1 Units: mg/L

Analyst: KRB

PrePrep Method: N/A

Prep Method: 9056

Instrument: IC2

Prep Date: 08/08/2013 15:00

Cal Date: 07/23/2013 18:03

Run Date: 08/09/2013 01:26

File ID: 12_080813-54

CAS#	Result	Qual	LOQ	LOD
16887-00-6	4.54		0.200	0.100
14797-55-8	0.273	J J	0.600	0.100
14808-79-8	38.0		1.00	0.500
	16887-00-6 14797-55-8 14808-79-8	16887-00-6 4.54 14797-55-8 0.273	16887-00-6 4.54 14797-55-8 0.273 J J 14808-79-8 38.0	16887-00-6 4.54 0.200 14797-55-8 0.273 J 0.600 14808-79-8 38.0 1.00

Page 3 of 6

Microbac

Lab Report #: L13080428 Lab Project#: 2773.087

Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080428-07

PrePrep Method: N/A

Instrument: IC2

Client ID: 54MW10

Prep Method: 9056

Prep Date: 08/08/2013 15:00

Matrix: Water

Analytical Method: 9056

Cal Date: 07/23/2013 18:03

Workgroup #: WG440725

Analyst: KRB

Run Date: 08/09/2013 01:44

Collect Date: 08/07/2013 13:15

Dilution: 1

Sample Tag: 01

Units: ma/L

File ID: 12_080813-55

omia.	mgr

ar ann	Analyte	CAS#	Result	Qual	LOQ	LOD
Chloride		16887-00-6	4.83		0.200	0.100
Nitrate		14797-55-8	0.206	J 7	0.600	0.100
Sulfate	A	14808-79-8	44.3		1.00	0.500
J	Estimated value ; the analyte conc	entration was less than the LOQ.				

Page 4 of 6

Microbac

Lab Report #: L13080428 Lab Project #: 2773.087

Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080428-09

PrePrep Method: N/A

Instrument: IC2

Client ID: 54RB080713

Matrix: Water

Prep Method: 9056 Analytical Method: 9056 Prep Date: 08/08/2013 15:00

Workgroup #: WG440725

Analyst: KRB

Cal Date: 07/23/2013 18:03

Collect Date: 08/07/2013 13:35

Dilution: 1

Run Date: 08/09/2013 02:03

Sample Tag: 01

Units: mg/L

File ID: 12_080813-56

Jampie 149. VI	CHERONAL CO.	3111.91

	Analyte	CAS#	Result	Qual	LOQ	LOD
Chloride		16887-00-6	0.117	J J	0.200	0.100
Nitrate		14797-55-8		υ	0.600	0.100
Sulfate		14808-79-8		U	1.00	0.500
J	Estimated value ; the analyte conce	entration was less than the LOQ.				
U	Analyte was not detected. The con-	centration is below the reported L	.OD,			

Generated: 08/21/2013 12:40

Microbac

Lab Report #: L13080428 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanle Mossburg

Certificate of Analysis

Sample #: L13080428-11

PrePrep Method: N/A

Instrument: IC2

Client ID: 54MW12

Prep Method: 9056

Prep Date: 08/08/2013 15:00

Matrix: Water Workgroup #: WG440725 Analytical Method: 9056

Cal Date: 07/23/2013 18:03

Collect Date: 08/07/2013 14:20

Analyst: KRB Dilution: 1

Run Date: 08/09/2013 03:56

File ID: 12_080813-62

Sample Tag: 01

Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD
Chloride	16887-00-6	5.03		0.200	0.100
Nitrate	14797-55-8	4.80		0.600	0.100
Sulfate	14808-79-8	39.6		1.00	0.500

Page 6 of 6

CB&I Federal Services, LLC (CFS) 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017

Tel: +1 (410) 273-7100 Fax: +1 (410) 273-7103

Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CFS Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, CFS RFAAP Project Chemist

SUBJECT:

RFAAP Data Validation - Total and Dissolved Organic and Inorganic Carbon

Microbac Laboratories, Inc. L13080274

DATE:

December 19, 2013

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on August 5, 2013. Samples were analyzed for Total Organic Carbon (TOC), Dissolved Organic Carbon (DOC), Total Inorganic Carbon (TIC), and Dissolved Inorganic Carbon (DIC) using USEPA 415.1. The samples with the odd fraction lab IDs are the total fractions and the samples with the even fraction lab IDs are the dissolved fractions. A total of twelve aqueous samples were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
54MW13	L13080274-01	54MW04	L13080274-07
54MW13	L13080274-02	54MW04	L13080274-08
54MW01	L13080274-03	54MW14	L13080274-09
54MW01	L13080274-04	54MW14	L13080274-10
54TM01	L13080274-05	54TM14	L13080274-11
54TM01	L13080274-06	54TM14	L13080274-12

Data were reviewed and validated using a combination of project QAPP, DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010), and method-specific criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualified		Parameter
Yes	No	
	Х	Holding Times and Preservation
	Х	Initial and Continuing Calibration
Х		Blank Analysis
	Х	Laboratory Control Sample and Laboratory Control Sample Duplicate
	Х	Matrix Spike and Spike Duplicate
	Х	Laboratory Duplicate
Х		Field Duplicate
Х		Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT TOC, TIC, DOC, & DIC REVIEW SDG L13080274

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. Holding time criteria: Cool 4°C±2°C, HCl pH<2, 28 days for TOC, TIC, DOC, and DIC (USEPA criteria). The dates and times were compared between the sample collection and laboratory analysis.

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 08/05/13, the coolers were received on 08/06/13 by the primary laboratory (Microbac Laboratories, Inc.) at 3.0°C and 1.0°C. Even though one of the receipt temperatures was below criteria for the coolers; there were no impacts to the data quality and no qualifiers were applied based upon this outlier.
- Holding Time Review: The samples were collected on 08/05/13. The TOC and TIC analysis were run on 08/07/13. The DOC and DIC analysis were run on 08/09/13. Sample collection dates may be found on the attached form 1s. All criteria were met.

II-Initial and Continuing Calibration

Bench and run summary sheets were reviewed to determine whether calibration was performed at the beginning of sample analysis using the following criteria. Percent recoveries for initial and continuing calibration (90-110%) must be within limits.

TOC, TIC, DOC, and DIC: 1 - blank

5 - standards (r≥0.995) ICV/CCV (90-110%)

• The TOC and TIC analysis were run on 08/07/13. The DOC and DIC analysis were run on 08/09/13. The initial calibration for TC was analyzed on 07/09/13 with a coefficient of determination of 0.9996. The initial calibration for TIC was analyzed on 07/09/13 with a coefficient of determination of 0.9999. The ICV and CCVs were evaluated for where they bracketed reported samples. All ICV/CCVs that bracketed reported samples were within criteria. All criteria were met. No qualifiers were applied. Samples 54MW13 (L13080274-01), 54MW13 (L13080274-02), 54MW01 (L13080274-03), 54MW01 (L13080274-04), 54TM01 (L13080274-05), 54TM01 (L13080274-06), 54MW04 (L13080274-07), 54MW04 (L13080274-08), 54MW14 (L13080274-09), 54MW14 (L13080274-10), 54TM14 (L13080274-11), and 54TM14 (L13080274-12) apply to these initial and continuing calibrations.

III-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. Calibration blanks were analyzed initially and at a 10% frequency thereafter for each batch. No contaminants should be detected in any of the associated blanks >MDL. The DoD QSM criteria specifies all concentrations should be less than ½MRL (<MRL for common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters) and <LOD (i.e. <2MDL) for the calibration blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters, or 5 times (5x) the maximum amount for other target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB080713 (L13080428-09) applies to all of the dissolved samples (DOC and DIC) in this SDG and rinse blank 54RB080713 (L13080428-09) applies to all total samples (TOC and TIC) in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	Analysis	QC Blank ID	Max Conc. mg/L	Action Level mg/L	B qualified samples (For this SDG)
08/07/13	TOC	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
08/07/13	TOC	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
08/07/13	TOC	WG440410-01	<1/2MRL	NA	None
08/08/13	DOC	WG440411-01	<1/2MRL	NA	None
08/12/13	TOC	54RB080713	0.607J	3.04	54MW13, 54TM01, 54MW04
08/12/13	TIC	54RB080713	<½MRL	NA	None
08/13/13	DOC	54RB080713	1.45J	7.25	54MW13, 54MW01, 54TM01, 54MW04, 54MW14, 54TM14
08/13/13	DIC	54RB080713	<½MRL	NA	None

J = Estimated value.

LOD = Limit of Detection

MRL = Method Reporting Limit

MDL = Method Detection Limit

NA = Not Applicable

IV-Laboratory Control Sample and Laboratory Control Sample Duplicate

The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) serve as a monitor of the overall performance of each step during the analysis, including the sample preparation. LCS and LCSD are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. All aqueous LCS results must fall within the control limits (85-115%; RPD≤15%).

- Samples WG440410-02 and WG440410-03 were used as the aqueous LCS/LCSD for TOC and TIC analysis on 08/07/13. All criteria were met. No qualifiers were applied. Samples 54MW13 (L13080274-01), 54MW01 (L13080274-03), 54TM01 (L13080274-05), 54MW04 (L13080274-07), 54MW14 (L13080274-09), and 54TM14 (L13080274-11) apply to this LCS/LCSD.
- Samples WG440411-02 and WG440411-03 were used as the aqueous LCS/LCSD for DOC and DIC analysis on 08/08/13. All criteria were met. No qualifiers were applied. Samples 54MW13 (L13080274-02), 54MW01 (L13080274-04), 54TM01 (L13080274-06), 54MW04 (L13080274-08), 54MW14 (L13080274-10), and 54TM14 (L13080274-12) apply to this LCS/LCSD.

V-Matrix Spike and Spike Duplicate

Matrix spikes (MSs) and matrix spike duplicates (MSDs) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at a frequency of one MS/MSD per 20 samples of similar matrix. The percent recoveries (%Rs or RPD) must be within the specified control limits (85-115%; RPD≤15%).

- No site specific aqueous MS/MSD was performed for TOC and TIC analysis on 08/07/13; therefore, was not evaluated. See Section IV for lab accuracy statement using LCS/LCSD.
- No site specific aqueous MS/MSD was performed for DOC and DIC analysis on 08/08/13; therefore, was not evaluated. See Section IV for lab accuracy statement using LCS/LCSD.

VI-Laboratory Duplicate Sample Analysis

Duplicate sample determinations are used to demonstrate acceptable method precision by the laboratory at the time of analysis. Duplicate analysis is performed to generate data in order to determine the long-term precision of the analytical method on various matrices. RPDs must be within established control limits (≤30%RPD).

No aqueous laboratory duplicate was analyzed for TOC, TIC, DOC, and DIC with this SDG; therefore, it was not evaluated. See Section IV for lab precision statement using LCS/LCSD.

VII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

- Field groundwater sample duplicate pair 54MW01 (L13080274-03; L13080274-04) and 54TM01 (L13080274-05; L13080274-06) was analyzed for TOC, TIC, DOC, and DIC analysis in this SDG. TOC was detected at 3.32 mg/L in the parent sample and at 2.38 mg/L in the duplicate pair; resulting in a RPD of 33.0%. TIC was detected at 20.4 mg/L in the parent sample and at 16.8 mg/L in the duplicate pair; resulting in a RPD of 19.4%. DOC was detected at 3.74 mg/L in the parent sample and at 4.07 mg/L in the duplicate pair; resulting in a RPD of 8.5%. DIC was detected at 39.3 mg/L in the parent sample and at 37.7 mg/L in the duplicate pair; resulting in a RPD of 4.2%. TOC was qualified estimated "J" for the duplicate pair based upon the high RPD. All criteria were met for TIC, DOC, and DIC analysis.
- Field groundwater sample duplicate pair 54MW14 (L13080274-09; L13080274-10) and 54TM14 (L13080274-11; L13080274-12) was analyzed for TOC, TIC, DOC, and DIC analysis in this SDG. TOC was detected at 3.64 mg/L in the parent sample and at 4.00 mg/L in the duplicate pair; resulting in a RPD of 9.4%. TIC was detected at 29.6 mg/L in the parent sample and at 30.3 mg/L in the duplicate pair; resulting in a RPD of 2.3%. DOC was detected at 4.36 mg/L in the parent sample and at 4.13 mg/L in the duplicate pair; resulting in a RPD of 5.4%. DIC was detected at 51.3 mg/L in the parent sample and at 45.4 mg/L in the duplicate pair; resulting in a RPD of 12.2%. All criteria were met for TOC, TIC, DOC, and DIC analysis. No qualifiers were applied.

VIII-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. The following calculations were performed for verification.

Any sample value >MDL and <MRL or <3*MDL (whichever is greater) was qualified as estimated, "J."

The total and dissolved fractions were compared. The organic and inorganic carbon data results for samples 54MW13 (L13080274-01), 54MW13 (L13080274-02), 54MW01 (L13080274-03), 54MW01 (L13080274-04), 54TM01 (L13080274-05), 54TM01 (L13080274-06), 54MW04 (L13080274-07), 54MW04 (L13080274-08), 54MW14 (L13080274-09), 54MW14 (L13080274-10), 54TM14 (L13080274-11), and 54TM14 (L13080274-12) are presented in **Table 3**. The samples with the odd fraction lab IDs are the total fractions and the samples with the even fraction lab IDs are the dissolved fractions. Data qualification was applied based upon professional judgment. Generally, if the concentrations are greater than the MRL and the dissolved concentration is greater than its total concentration by >10%D, then both results have been flagged as estimated with a "J." We are looking at the TOC/TIC to evaluate the immobilization potential of TNT and RDX. The DOC/DIC is a byproduct of organic compound oxidation and indicates the difference in microbial oxidation processes within and outside the plume area. If the samples exhibit continual microbial oxidation coupled with the time differences of sample preservation from sample collection (i.e. TOC in field and DOC at the lab), this might be the cause of total / dissolved imbalance here.

Table 3 Total/Dissolved Summary

Sample ID	Analyte	MRL (mg/L)	Total Fraction (mg/L)	Dissolved Fraction (mg/L)	%D	Qualifier
54MW13	TOC/DOC	1.0; 2.0	2.35	4.02	41.5	J
54MW13	TIC/DIC	1.0; 2.0	24.5	38.1	35.7	J
54MW01	TOC/DOC	1.0; 2.0	3.32	3.74	11.2	J
54MW01	TIC/DIC	1.0; 2.0	20.4	39.3	48.1	J
54TM01	TOC/DOC	1.0; 2.0	2.38	4.07	41.5	J
54TM01	TIC/DIC	1.0; 2.0	16.8	37.7	55.4	J
54MW04	TOC/DOC	1.0; 2.0	2.70	3.19	15.4	J
54MW04	TIC/DIC	1.0; 2.0	20.6	44.8	54.0	J
54MW14	TOC/DOC	1.0; 2.0	3.64	4.36	16.5	J
54MW14	TIC/DIC	1.0; 2.0	29.6	51.3	42.3	J
54TM14	TOC/DOC	1.0; 2.0	4.00	4.13	3.2	None
54TM14	TIC/DIC	1.0; 2.0	30.3	45.4	33.3	J

J = Estimated value.

MRL = Method Reporting Limit

NA = Not Applicable

Sample: 54MW13 (L13080274-01), TOC

TC: Y = m*X (mg/L) + b

TIC: Y = m*X (mg/L) + b

m = 36.20 b = 6.332 m = 29.78 b = 8.713 Y = 738.8

Y = 978.8 DF = 1

DF = 1

X = (26.86 mg/L) * 1 = 26.86 mg/L

X = (24.52 mg/L) * 1 = 24.52 mg/L

TOC (mg/L) = TC (mg/L) - TIC (mg/L) = 26.86 - 24.52 = 2.34 mg/L

Reported Value = 2.35 mg/L

% Difference = 0.4%

Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the
	limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound (using mass spectroscopy).
Q	One or more quality control criteria failed.
Į.	JSEPA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample.
	Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in laboratory
	or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to
	confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution.
	Presumptively present at approximate quantity.
K	Analyte present. Reported value may be biased high. Actual value is expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is
	expected to be higher.
UL	Not detected, quantitation limit is probably higher.

¹The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: *DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2* (DoD, 2010).

²The USEPA data validation qualifiers are referenced from *Region III Modifications to the National Functional Guidelines for Inorganic Data Review* (April, 1993).

Form I Copy

Lab Report #: L13080274 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080274-01

Client ID: 54MW13

Matrix: Water

Workgroup #: WG440410

Collect Date: 08/05/2013 09:10

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 1

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/07/2013 16:01

File ID: TC08072013.012

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Organic Carbon	TOC	2.35	\mathcal{B}	1.00	0.500

Sample #: L13080274-01

Client ID: 54MW13

Matrix: Water

Workgroup #: WG440410 Collect Date: 08/05/2013 09:10

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 1

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/07/2013 16:01

File ID: TC08072013.012

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Inorganic Carbon		24.5	ブ	1.00	0.500

Sample #: L13080274-02

Client ID: 54MW13

Matrix: Water

Workgroup #: WG440411

Collect Date: 08/05/2013 09:10

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1 Analyst: DIH

Dilution: 2

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/09/2013 13:02

File ID: TC08082013.049

Analyte	CAS#	Result	Qual	LOQ	LOD
Inorganic Carbon, Dissolved		38.1	5	2.00	1.00

Sample #: L13080274-02

Client ID: 54MW13

Matrix: Water

Workgroup #: WG440411

Collect Date: 08/05/2013 09:10

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 2

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/09/2013 13:02

File ID: TC08082013.049

Analyte	CAS#	Result	Qual	LOQ	LOD
Organic Carbon, Dissolved	TOC	4.02	В	2.00	1.00

Page 1 of 6

Sample #: L13080274-03

Collect Date: 08/05/2013 10:40

Client ID: 54MW01

Matrix: Water

Workgroup #: WG440410

Sample Tag: 01

Lab Report #: L13080274
Lab Project #: 2773.087
Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 1

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51
Run Date: 08/07/2013 16:15

File ID: TC08072013.013

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Organic Carbon	тос	3.32	5	1.00	0.500

Sample #: L13080274-03

Client ID: 54MW01

Matrix: Water

Workgroup #: WG440410

Collect Date: 08/05/2013 10:40

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

__Analyst: DIH

Dilution: 1

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/07/2013 16:15

File ID: TC08072013.013

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Inorganic Carbon		20.4	7	1.00	0.500

Sample #: L13080274-04

Client ID: 54MW01

Matrix: Water

Workgroup #: WG440411

Collect Date: 08/05/2013 10:40

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 2

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/09/2013 13:16

File ID: TC08082013.050

					1
Analyte	CAS#	Result	Qual	LOQ	LOD
Organic Carbon, Dissolved	TOC	3.74	T	2.00	1.00

Sample #: L13080274-04

Client ID: 54MW01

Matrix: Water

Workgroup #: WG440411

Collect Date: 08/05/2013 10:40

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 2

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/09/2013 13:16

File ID: TC08082013.050

Analyte	CAS#	Result	Qual	LOQ	LOD
Inorganic Carbon, Dissolved		39.3	B	2.00	1.00

Page 2 of 6

Lab Project #: 2773.087

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080274-05

Client ID: 54TM01

Matrix: Water

Workgroup #: WG440410

Collect Date: 08/05/2013 10:40

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 1

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/07/2013 16:49

File ID: TC08072013.016

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Organic Carbon	TOC	2.38	B	1.00	0.500

Sample #: L13080274-05

Client ID: 54TM01

Matrix: Water

IVIALI IX. VVALCI

Workgroup #: WG440410
Collect Date: 08/05/2013 10:40

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 1

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/07/2013 16:49

File ID: TC08072013.016

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Inorganic Carbon		16.8	T	1.00	0.500

Sample #: L13080274-06

Client ID: 54TM01

Matrix: Water

Workgroup #: WG440411

Collect Date: 08/05/2013 10:40

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH
Dilution: 2

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/09/2013 13:29

File ID: TC08082013.051

					T
Analyte	CAS#	Result	Qual	LOQ	LOD
Inorganic Carbon, Dissolved		37.7	T	2.00	1.00

Sample #: L13080274-06

Client ID: 54TM01

Matrix: Water

Workgroup #: WG440411

Collect Date: 08/05/2013 10:40

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

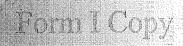
Analyst: DIH

Dilution: 2

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51


Run Date: 08/09/2013 13:29

File ID: TC08082013.051

Analyte	CAS#	Result	Qual	LOQ	LOD
Organic Carbon, Dissolved	TOC	4.07	ß	2.00	1.00

Units: mg/L

Page 3 of 6

Lab Report #: L13080274
Lab Project #: 2773.087
Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080274-07 PrePrep Method: N/A

Client ID: 54MW04 Prep Method: 415.1

Matrix: Water Analytical Method: 415.1

Matrix: Water Analytical Method: 415.
Workgroup #: WG440410 Analyst: DIH

Collect Date: 08/05/2013 12:15 Dilution: 1

Sample Tag: 01

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51 Run Date: 08/07/2013 17:02

File ID: TC08072013.017

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Organic Carbon	TOC	2.70	$ \mathcal{B} $	1.00	0.500

Sample #: L13080274-07

Client ID: 54MW04

Matrix: Water

Workgroup #: WG440410

Collect Date: 08/05/2013 12:15

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Units: mg/L

Analytical Method: 415.1

Analyst: DIH

Dilution: 1

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/07/2013 17:02

File ID: TC08072013.017

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Inorganic Carbon		20.6	ブ	1.00	0.500

Sample #: L13080274-08

Client ID: 54MW04

Matrix: Water

Workgroup #: WG440411

Collect Date: 08/05/2013 12:15

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 2 Units: mg/L Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/09/2013 13:42

File ID: TC08082013.052

Analyte	CAS#	Result	Qual	LOQ	LOĐ	
Inorganic Carbon, Dissolved		44.8)	2.00	1.00	

Sample #: L13080274-08

Client ID: 54MW04

Matrix: Water

Workgroup #: WG440411

Collect Date: 08/05/2013 12:15

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 2 Units: mg/L Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/09/2013 13:42

File ID: TC08082013.052

Analyte	CAS#	Result	Qual	LOQ	LOD
Organic Carbon, Dissolved	TOC	3.19	B	2.00	1.00

Page 4 of 6

Lab Project #: L13080274
Lab Project #: 2773.087
Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080274-09

Client ID: 54MW14

Matrix: Water

Workgroup #: WG440410

Collect Date: 08/05/2013 13:35

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 1

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/07/2013 17:15

File ID: TC08072013.018

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Inorganic Carbon		29.6	ブ	1.00	0.500

Sample #: L13080274-09

Client ID: 54MW14

Matrix: Water

Workgroup #: WG440410
Collect Date: 08/05/2013 13:35

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH Dilution: 1

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/07/2013 17:15

File ID: TC08072013.018

Analyte	CAS#	Result	Qual	LOQ	LOD
Total Organic Carbon	TOC	3.64	J	1.00	0.500

Sample #: L13080274-10

Client ID: 54MW14

Matrix: Water

Workgroup #: WG440411

Collect Date: 08/05/2013 13:35

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 2 Units: mg/L Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/09/2013 13:55

File ID: TC08082013.053

Analyte	CAS#	Result	Qual	LOQ	LOD	P
Inorganic Carbon, Dissolved		51.3	ブ	2.00	1.00	

Sample #: L13080274-10

Client ID: 54MW14

Matrix: Water

Workgroup #: WG440411

Collect Date: 08/05/2013 13:35

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 2

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/09/2013 13:55

File ID: TC08082013.053

Analyte	CAS#	Result	Qual	LOQ	LOD
Organic Carbon, Dissolved	TOC	4.36	B	2.00	1.00

Units: mg/L

Page 5 of 6

Lab Report #: L13080274 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080274-11

Client ID: 54TM14

Matrix: Water

Workgroup #: WG440410

Collect Date: 08/05/2013 13:35

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 1

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/07/2013 17:29

File ID: TC08072013.019

AIA.	T					7
Analyte	CAS#	Result	Qual	LOQ	LOD	ļ
Total Organic Carbon	TOC	4.00		1.00	0.500	ĺ

Sample #: L13080274-11

Client ID: 54TM14

Matrix: Water

Workgroup #: WG440410

Collect Date: 08/05/2013 13:35

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 1

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/07/2013 17:29

File ID: TC08072013.019

Analyte	CAS#	Result	Qual	roó	LOD
Total Inorganic Carbon		30.3	丁	1.00	0.500

Sample #: L13080274-12

Client ID: 54TM14

Matrix: Water

Workgroup #: WG440411

Sample Tag: DL01

Collect Date: 08/05/2013 13:35 Units: mg/L

PrePrep Method: N/A

Prep Method: 415.1 Analytical Method: 415.1

Analyst: DIH

Dilution: 2

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/09/2013 14:09

File ID: TC08082013.054

Analyte	CAS#	Result	Qual	LOQ	LOD		
Organic Carbon, Dissolved	TOC	4.13	B	2.00	1.00		

Sample #: L13080274-12

Client ID: 54TM14

Matrix: Water

Workgroup #: WG440411

Collect Date: 08/05/2013 13:35

Sample Tag: DL01

PrePrep Method: N/A

Prep Method: 415.1

Analytical Method: 415.1

Analyst: DIH

Dilution: 2

Units: mg/L

Instrument: TOC-VWP

Prep Date: N/A

Cal Date: 07/09/2013 14:51

Run Date: 08/09/2013 14:09

File ID: TC08082013.054

Analyte	CAS#	Result	Qual	LOQ	LOD
Inorganic Carbon, Dissolved		45.4	J	2.00	1.00

Page 6 of 6

CB&I Federal Services, LLC (CFS) 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017

Tel: +1 (410) 273-7100 Fax: +1 (410) 273-7103

Eric.malarek@CBIfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CFS Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, CFS RFAAP Project Chemist

SUBJECT:

RFAAP Data Validation – Perchlorate

Microbac Laboratories, Inc. L13080274

DATE:

December 5, 2013

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on August 5, 2013. Aqueous samples were analyzed for perchlorate analysis using liquid chromatography mass spectroscopy (LC/MS) SW-846 method 6850 Modified by Microbac Laboratories. A total of six aqueous samples were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
54MW13	L13080274-01	54MW04	L13080274-07
54MW01	L13080274-03	54MW14	L13080274-09
54TM01	L13080274-05	54TM14	L13080274-11

Data were reviewed and validated by Eric Malarek using a combination of project QAPP, *DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010* (DoD, 2010), *DoD Perchlorate Handbook August, Rev1, Change 1, 2007* (DoD, 2007), method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the *Region III Modifications to the National Functional Guidelines for Inorganic Data Review* (April, 1993). Parameters evaluated are presented in **Table 1**. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qual	ified	Parameter
Yes	No	
	Х	Holding Times and Preservation
	Х	Instrument Performance Check
	Х	Initial and Continuing Calibration
	Х	Blank Analysis
	Х	Internal Standards
	Х	Interference Check Sample
	Х	Laboratory Control Sample (LCS)
	Х	Matrix Spike (MS) and Spike Duplicate (MSD)
	Х	Field Duplicate
	Х	Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT PERCHLORATE REVIEW SDG L13080274

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. For perchlorate analysis, aqueous samples are received and stored at cool @4°C±2°C with a maximum holding time of 28 days from collection (DoD Perchlorate Handbook criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 08/05/13, the coolers were received on 08/06/13 by the primary laboratory (Microbac Laboratories, Inc.) at 3.0°C and 1.0°C. Even though one of the receipt temperatures was below criteria for the coolers; there were no impacts to the data quality and no qualifiers were applied based upon this outlier.
- Holding Time Review: The aqueous samples were collected on 08/05/13 for perchlorate analysis. The aqueous samples were prepped and analyzed on 08/09/13. Sample collection dates may be found on the attached form 1s. All holding time criteria were met. No qualifiers were applied.

Il-Instrument Performance Check

LC/MS instrument performance checks are performed to ensure mass resolution, identification and, to some degree, sensitivity. The analysis of the instrument performance check solution must be performed at the beginning of each 12-hour period during which samples are analyzed.

• The instrument performance check, ¹⁸O-Perchlorate, met the mass calibration criteria. No qualification was applied.

III-Initial and Continuing Calibration

Requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data. Initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of the analysis run, and continuing calibration verification documents that the initial calibration is still valid.

Perchlorate:

1- blank (<1/2MRL DoD Perchlorate Handbook)

5 – standards (r≥0.995 or RSD≤20% DoD Perchlorate Handbook)

ICV (≤15%D DoD Perchlorate Handbook)
CCV/ICS (≤15%D DoD Perchlorate Handbook)
LODV (±30%D DoD Perchlorate Handbook)

For aqueous perchlorate initial calibration performed on 07/12/13 on instrument LCMS1, all criteria were met for all target compounds (RSD≤20%). All ICV/CCV/ICS/LODV standards were within criteria. No qualifiers were applied. Perchlorate was determined using linear regression method with correlation coefficients ≥0.995 for primary and confirmation columns. Samples 54MW13 (L13080274-01), 54MW01 (L13080274-03), 54TM01 (L13080274-05), 54MW04 (L13080274-07), 54MW14 (L13080274-09), and 54TM14 (L13080274-11) apply to this initial and continuing calibrations.

IV-Blanks

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. No contaminants should be detected in any of the associated blanks >MDL. The DoD Perchlorate Handbook criterion specifies all concentrations should be less than ½ MRL for method blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤5 times (5x) the maximum amount for target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB080713 (L13080428-09) applies to all samples in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	QC Blank ID	Compound	Max Conc. µg/L	Action Level µg/L	B qualified samples (for this SDG)
08/09/13	ICB/CCBs	All perchlorate <1/2MRL	NA	NA	None
08/09/13	WG440826-02	All perchlorate <1/2MRL	NA	NA	None
08/13/13	54RB080713	All perchlorate <½MRL	NA	NA	None

MRL = Method Reporting Limit.

NA = Not Applicable.

V-Internal Standards

Internal standards performance criteria ensure that LC/MS sensitivity and response are stable during every analytical run. Internal standard area counts for samples and blanks must not vary by more than a factor of two (-50% to +100%) from the associated calibration standard. The DoD Handbook specifies retention times (RT) $1.0 \pm 2\%$ of last calibration standard and the ratio of RT of sample to standard should be 3.06 and fall between 2.3 and 3.8. The internal standard peak area responses should fall between 50% to 150% recoveries.

All criteria were met. No qualifiers were applied.

VI-Interference Check Sample (ICS)

The LCMS interference check sample (ICS) verifies inter-element and background correction factors. LCMS Interference Check is performed at the beginning and end of each sample analysis run. Control limits are 70-130% (DoD QSM limits 70-130%).

• All criteria were met. No qualifiers were applied.

VII-Laboratory Control Sample

The laboratory control sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. DoD Perchlorate Handbook and laboratory aqueous limits are 80-120%.

Sample WG440826-03 was used as aqueous LCS for perchlorate analysis dated 08/09/13. All criteria were met. No qualifiers were applied. Samples 54MW13 (L13080274-01), 54MW01 (L13080274-03), 54TM01 (L13080274-05), 54MW04 (L13080274-07), 54MW14 (L13080274-09), and 54TM14 (L13080274-11) apply to this LCS sample.

VIII-Matrix Spike (MS) and Spike Duplicate (MSD)

Matrix Spike (MS) and Spike Duplicate (MSD) are generated to determine long-term accuracy and precision of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at a frequency of one MS/MSD per 20 samples of similar matrix. MS/MSD recoveries and relative percent differences between MS recoveries should be within the specified limits. DoD Perchlorate Handbook limits are 80-120%; RPD≤15%. The laboratory limits are 80-120%; RPD≤15%.

 No site specific aqueous MS/MSD was performed for perchlorate analysis on 08/09/13; therefore, was not evaluated. See Section VII for lab accuracy statement using LCS.

IX-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

- Field groundwater sample duplicate pair 54MW01 (L13080274-03) and 54TM01 (L13080274-05) was analyzed for perchlorate analysis in this SDG. Perchlorate was non-detect for the duplicate pair. All criteria were met. No qualifiers were applied.
- Field groundwater sample duplicate pair 54MW14 (L13080274-09) and 54TM14 (L13080274-11) was analyzed for perchlorate analysis in this SDG. Perchlorate was detected in the parent sample at 0.456 μg/L and 0.489 μg/L for the duplicate pair; resulting in a RPD of 7.0%. All criteria were met. No qualifiers were applied.

X-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. The following calculations were performed for verification.

 Any sample value >MDL and <MRL or <3*MDL (whichever was greater) was qualified as estimated, "J."

Sample: 54MW03 (L13050819-01), Perchlorate

```
Y = Response Ratio = Sample Area/Area Internal Standard O18LP
m = slope of curve
X = Amount Ratio = Conc. Analyte/Conc. Internal Std.
b = Y-intercept
```

Given: m = 1.37 b = 0.00457 Y = Area = 47700/354000 = 0.1347 X = 0.09502

Y = mX + b

Conc. μ g/L = (Ax * Cis * DF)

where: Conc. = Sample concentration in μg/L

Ax = Amount Ratio = Conc. Analyte/Conc. Internal Standard

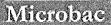
Cis = Conc. Of internal Standard (μg/L)

= Dilution factor DF

Conc. $\mu g/L = (0.09502 * 5 * 1) = 0.475 \mu g/L \text{ (Signal #1)}$

Reported Value = $0.477 \mu g/L$

% Difference = 0.4%


Values were within 10% difference

Laboratory and Data Validation Qualifiers

Qualifier	Definition						
Laboratory Qualifiers ¹							
No Code	Confirmed identification.						
U	Undetected at the limit of detection: The associated data value is the						
İ	limit of detection, adjusted by any dilution factor used in the analysis.						
J	Estimated: The analyte was positively identified; the quantitation is						
	estimation.						
В	Blank contamination: The analyte was detected above one-half the						
	reporting limit in an associated blank.						
N	Non-target analyte: The analyte is a tentatively identified compound						
	(using mass spectroscopy).						
Q	One or more quality control criteria failed.						
USEPA Region III Data Validation Qualifiers ²							
R	Unreliable result. Analyte may or may not be present in the sample.						
	Supporting data necessary to confirm result.						
В	Not detected substantially above the level of the reported in laboratory						
	or field blanks.						
J	Analyte present. Reported value may not be accurate or precise.						
UJ	Not detected, quantitation limit may be inaccurate or imprecise.						
N	Tentative Identification. Consider present. Special methods may be to						
	confirm its presence or absence in future sampling efforts.						
NJ	Qualitative identification questionable due to poor resolution.						
	Presumptively present at approximate quantity.						
K	Analyte present. Reported value may be biased high. Actual value is						
	expected to be lower.						
L	Analyte present. Reported value may be biased low. Actual value is						
	expected to be higher.						
UL	Not detected, quantitation limit is probably higher.						

The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993).

Sample #: L13080274-01

Collect Date: 08/05/2013 09:10

Client ID: 54MW13

Matrix: Water

Workgroup #: WG440826

Sample Tag: 01

Form I Copy

Lab Report #: L13080274
Lab Project #: 2773.087
Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

PrePrep Method: N/A

Prep Method: 6850

Analytical Method: 6850

Analyst: JWR

Dilution: 1 Units: ug/L Instrument: LCMS1

Prep Date: 08/09/2013 15:00

Cal Date: 07/12/2013 13:15 Run Date: 08/09/2013 21:44

File ID: 1LM.LM22030

Analyte	CAS#	Result	Qual	LOQ	LOD
Perchlorate	14797-73-0	0.477		0.200	0.100

Sample #: L13080274-03

ra-ou

Client ID: 54MW01

Matrix: Water

Workgroup #: WG440826

Collect Date: 08/05/2013 10:40 Sample Tag: 01

PrePrep Method: N/A

Prep Method: 6850

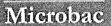
Analytical Method: 6850

Analyst: JWR Dilution: 1

Units: ug/L

Instrument: LCMS1

Prep Date: 08/09/2013 15:00


Cal Date: 07/12/2013 13:15

Run Date: 08/09/2013 22:03

File ID: 1LM.LM22031

Analyte	CAS#	Result	Qual	LOQ	LOD			
Perchlorate	14797-73-0		U	0.200	0.100			
U Analyte was not detected. The concentration is below the reported LOD.								

Page 1 of 4

Lab Report #: L13080274 Lab Project #: 2773.087

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080274-05

Client ID: 54TM01

Matrix: Water

Workgroup #: WG440826

Collect Date: 08/05/2013 10:40

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 6850

Analytical Method: 6850

Analyst: JWR

Dilution: 1 Units: ug/L Instrument: LCMS1

Prep Date: 08/09/2013 15:00

Cal Date: 07/12/2013 13:15

Run Date: 08/09/2013 22:22

File ID: 1LM.LM22032

 Analyte
 CAS #
 Result
 Qual
 LOQ
 LOD

 Perchlorate
 14797-73-0
 U
 0.200
 0.100

 U
 Analyte was not detected. The concentration is below the reported LOD.

Page 2 of 4

Lab Report #: L13080274
Lab Project #: 2773.087
Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080274-07

Client ID: 54MW04

Matrix: Water

Workgroup #: WG440826

Collect Date: 08/05/2013 12:15

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 6850

Analytical Method: 6850

Analyst: JWR

Dilution: 1

Units: ug/L

Instrument: LCMS1

Prep Date: 08/09/2013 15:00

Cal Date: 07/12/2013 13:15

Run Date: 08/09/2013 22:40

File ID: 1LM.LM22033

Analyte	CAS#	Result	Qual	LOQ	LOD
Perchlorate	14797-73-0		U	0.200	0.100
U Analyte was not detected. The concentration	on is below the reported I	.OD,		-1-21-1	

Page 3 of 4

Lab Project #: L13080274
Lab Project #: 2773.087
Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080274-09

Client ID: 54MW14

Matrix: Water
Workgroup #: WG440826

Collect Date: 08/05/2013 13:35

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 6850

Analytical Method: 6850

Analyst: JWR

Dilution: 1 Units: ug/L Instrument: LCMS1

Prep Date: 08/09/2013 15:00

Cal Date: 07/12/2013 13:15

Run Date: 08/09/2013 22:59

File ID: 1LM.LM22034

Analyte	CAS#	Result	Qual	LOQ	LOD
Perchlorate	14797-73-0	0.456		0.200	0.100

Sample #: L13080274-11

Client ID: 54TM14

Matrix: Water
Workgroup #: WG440826

Collect Date: 08/05/2013 13:35

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 6850

Analytical Method: 6850 Analyst: JWR

Dilution: 1

Units: ug/L

Instrument: LCMS1

Prep Date: 08/09/2013 15:00

Cal Date: 07/12/2013 13:15

Run Date: 08/09/2013 23:18

File ID: 1LM.LM22035

Analyte	CAS#	Result	Qual	LOQ	LOD
Perchlorate	14797-73-0	0.489		0.200	0.100

Page 4 of 4

CB&I Federal Services, LLC (CFS) 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100 Fax: +1 (410) 273-7103

Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CFS Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, CFS RFAAP Project Chemist

SUBJECT:

RFAAP Data Validation – Explosives

Microbac Laboratories, Inc, SDG L13080274

DATE:

December 5, 2013

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on August 5, 2013. Samples were analyzed for select explosives using USEPA SW846 Method SW-846 8330B for aqueous matrices. A total of six aqueous samples were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
54MW13	L13080274-01	54MW04	L13080274-07
54MW01	L13080274-03	54MW14	L13080274-09
54TM01	L13080274-05	54TM14	L13080274-11

Data were reviewed by Eric Malarek and validated using a combination of project QAPP, Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010) (DoD QSM), method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qual	lified	Parameter
Yes	No	
	Х	Holding Times and Preservation
	Х	Blank Analysis
	Х	Initial Calibration
	Х	Continuing Calibration
	Х	System Monitoring Compounds
	Х	Laboratory Control Sample and Laboratory Control Sample Duplicate
	Х	Matrix Spike/Spike Duplicate
	Х	Field Duplicate
Х		Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT EXPLOSIVES REVIEW SDG L13080274

I-Holding Times and Preservation

The objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample extraction and analysis. Holding time criteria: For aqueous samples, explosive compounds are shipped cooled ($@4^{\circ}C \pm 2^{\circ}C$) with a maximum holding time of 7 days from sample collection to preparative extraction and 40 days from preparative extraction to determinative analysis (USEPA criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 08/05/13, the coolers were received on 08/06/13 by the primary laboratory (Microbac Laboratories, Inc.) at 3.0°C and 1.0°C. Even though one of the receipt temperatures was below criteria for the coolers; there were no impacts to the data quality and no qualifiers were applied based upon this outlier.
- Holding Time Review: The aqueous samples were collected on 08/05/13. The samples were extracted on 08/06/13 and were analyzed on 08/15/13 for explosives. Sample collection dates may be found on the attached form 1s. All criteria were met. No qualifiers were applied.

II-Blank Analysis

The purpose of laboratory or field blank analyses is to determine the existence and magnitude of contamination problems resulting from laboratory or field activities. One method blank per analytical batch must be run on each instrument used to analyze samples. No contaminants should be present in the blanks. The DoD QSM criterion specifies all concentrations should be less than one-half MRL. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤5 times (5x) the maximum amount for explosive target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB080713 (L13080428-09) applies to all samples in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	QC Blank ID	Compound	Max Conc. μg/L	Action Level μg/L	B qualified samples (For this SDG)
08/14/13	WG440305-01	All target explosives <1/2MRL	NA	NA	None
08/15/13	54RB080713	All target explosives <½MRL	NA	NA	None

NA = Not Applicable

MRL = Method Reporting Limit MDL = Method Detection Limit

III-Initial Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the target compounds. The initial 5-point calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run. The DoD QSM specifies that the correlation coefficient must be ≥ 0.995 , the coefficient of determination ≥ 0.99 , and/or the percent relative standard deviation (%RSD) must be $\leq 20\%$.

• For the explosives initial calibration performed on 03/20/13 on instrument HPLC5, all criteria were met for target explosives compounds. All target compounds were determined using linear regression with correlation coefficients ≥0.995. No qualifiers were applied. Samples 54MW13 (L13080274-01), 54MW01 (L13080274-03), 54TM01 (L13080274-05), 54MW04 (L13080274-07), 54MW14 (L13080274-09), and 54TM14 (L13080274-11) apply to this initial calibration.

IV-Continuing Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the target compounds. Continuing calibration standards are analyzed after every 10 injections, and at the end of the analysis sequence. The DoD QSM specifies that the percent difference (%D) from initial calibration should be no greater than ±20%.

- For explosives initial calibration verification performed on 03/20/13 @17:40 on instrument HPLC5, all
 criteria were met for target compounds. No qualifiers were applied. No aqueous field samples were
 reported using this initial verification calibration.
- For explosives continuing calibration performed on 08/14/13 @15:01 on instrument HPLC5, all criteria were met. No qualifiers were applied. No aqueous field samples were reported using this continuing calibration.
- For explosives continuing calibration performed on 08/14/13 @23:07 on instrument HPLC5, all criteria were met. No qualifiers were applied. No aqueous field samples were reported using this continuing calibration.
- For explosives continuing calibration performed on 08/15/13 @11:36 on instrument HPLC5, all criteria were met. No qualifiers were applied. Samples 54MW13 (L13080274-01), 54MW01 (L13080274-03), 54TM01 (L13080274-05), 54MW04 (L13080274-07), 54MW14 (L13080274-09), and 54TM14 (L13080274-11) were reported using this continuing calibration.
- For explosives continuing calibration performed on 08/15/13 @19:17 on instrument HPLC5, all criteria were met. No qualifiers were applied. No aqueous field samples were reported using this continuing calibration.

V-System Monitoring Compound (Surrogates)

Laboratory performance on individual samples is established by means of spiking activities. The percent recovery (%R) for all samples and blanks must be within the laboratory control limits. DoD surrogate recovery limits are specified in Table G-3 of the DoD QSM (DoD, 2010). If the surrogate is not listed, then the laboratory criteria shall be used.

Aqueous Criteria: 1,2-dinitrobenzene (50-150%)

All criteria were met. No qualifiers were applied.

VI-Laboratory Control Sample and Laboratory Control Sample Duplicate

Laboratory control samples (LCS) and LCSD are used to monitor long-term precision and accuracy of the analytical method. The analysis is performed at a frequency of 1 per analytical batch. The percent recoveries (%Rs) must be within the laboratory control limits. DoD QSM aqueous LCS and LCSD recovery limits are specified in Table G-12 of the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used. The DoD QSM aqueous precision limit for explosives is ≤20% RPD.

Samples WG440305-02 and WG440305-03 were used as the aqueous LCS/LCSD for the explosives analysis on 08/14/13. All criteria were met. No qualifiers were applied. Samples 54MW13 (L13080274-01), 54MW01 (L13080274-03), 54TM01 (L13080274-05), 54MW04 (L13080274-07), 54MW14 (L13080274-09), and 54TM14 (L13080274-11) apply to this LCS/LCSD.

VII-Matrix Spike/Matrix Spike Duplicate

Data for matrix spike/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The percent recoveries (%Rs) and the relative percent difference (RPD) must be within the laboratory control limits. DoD QSM aqueous MS/MSD recovery limits follow the LCS criteria and are specified in Table G-12 of the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used. The DoD QSM aqueous precision limit for explosives is ≤20% RPD.

 No site specific aqueous MS/MSD was performed for the explosives analysis on 08/15/13; therefore, were not evaluated.

VIII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 50% RPD for the aqueous samples.

- Field groundwater sample duplicate pair 54MW01 (L13080274-03) and 54TM01 (L13080274-05) was analyzed for explosives analysis in this SDG. All target explosives were non-detect for the duplicate pair. All criteria were met. No qualifiers were applied.
- Field groundwater sample duplicate pair 54MW14 (L13080274-09) and 54TM14 (L13080274-11) was analyzed for explosives analysis in this SDG. All target explosives were non-detect for the duplicate pair. All criteria were met. No qualifiers were applied.

IX-Quantitation Verification and Data Review

The accuracy of analytical results was verified through the calculation of several parameters. The calculation was based calibration factors. The absolute percent difference (%D) between the calculated and the reported value must be within 10% difference. All positive values must have less than or equal to 40% RPD between the primary and secondary columns.

- All values >MDL and <MRL or <3*MDL (whichever was greater) were qualified as estimated "J" (if required).
- All positive detections were confirmed by mass spectrum (MS) analysis. All MS confirmations were within criteria for all detected target analytes in this SDG. No qualifiers were applied.

Sample: 54MW13 (L13080274-01), 4-amino-2,6-dinitrotoluene

Y = Area of target compound for sample m = slope of curve X = Amount on column b = Y-intercept

Given: m = 0.28909729 b = -1.8106455 Y = Area = 15.73369

X = 60.69

Y = mX + b

Conc. μ g/L = (Ax * Vt * DF) / (Vs)

where: Conc. = Sample concentration in μg/L

Ax = Amount of compound being measured (μg/L). Vt = Volume of total extract (mL) from bench sheet.

Vs = Volume of sample extracted (mL).

DF = Dilution factor

Conc. μ g/L = (60.69 * 10 * 1) / (950) = 0.639 μ g/L (Signal #1)

Reported Value = 0.639 μg/L % Difference = 0.0% Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the
	limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound
	(using mass spectroscopy).
Q	One or more quality control criteria failed.
U	SEPA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample.
	Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in
,	laboratory or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to
	confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution.
	Presumptively present at approximate quantity.
К	Analyte present. Reported value may be biased high. Actual value is expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is expected to be higher.
UL	Not detected, quantitation limit is probably higher.

The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994).

Microbac

Form I Copy

Lab Report #: L13080274
Lab Project #: 2773.087
Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080274-01

Client ID: 54MW13

Matrix: Water

Workgroup #: WG441341

Collect Date: 08/05/2013 09:10

Sample Tag: 01

PrePrep Method: N/A

Prep Method: METHOD

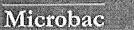
Analytical Method: 8330B

Analyst: JWR Dilution: 1

Units: ug/L

Instrument: HPLC5

Prep Date: 08/06/2013 09:01


Cal Date: 03/20/2013 17:01 Run Date: 08/15/2013 13:46

File ID: 5L010811.F

Analyte	CAS	#	Resu	ilt (Qual	LOQ	LOD
1.3-Dinitrobenzene	99-65-	-0			U	1.05	0.263
2,4-Dinitrotoluene	121-14	-2			U	1.05	0.263
2,6-Dinitrotoluene	606-20	1-2			U	1.05	0.263
2,4,6-Trinitrotoluene	118-96	-7	3.81	-		1.05	0.263
2-Amino-4,6-dinitrotoluene	35572-7	'8-2	0.79	8	ょす	1.05	0.263
2-Nitrotoluene	88-72-	-2			U	1.05	0.263
4-Nitrotoluene	99-99-	-0			U	1.05	0.263
4-Amino-2,6-dinitrotoluene	19406-5	51-0	0.63	9	υT	1.05	0.263
RDX	121-82	2-4	1.46	3		1.05	0.263
Nitroglycerin	55-63	-0			U	1.05	0.263
Surrogate	Recovery	Low	er Limit	Upper Limit	Q		

1,2-Dinitrobenz	ene	99.9	50	150		
J	Estimated value ; the analyte concentration	on was less than	the LOQ.		10.	
11	Analyte was not detected. The concentral	tion is below the r	eported LOD.			

Page 1 of 7

Lab Report #: L13080274 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080274-03

PrePrep Method: N/A

Instrument: HPLC5

Client ID: 54MW01

Prep Method: METHOD

Prep Date: 08/06/2013 09:01

Matrix: Water

Analytical Method: 8330B

Cal Date: 03/20/2013 17:01

Workgroup #: WG441341

Analyst: JWR

Run Date: 08/15/2013 14:25

Dilution: 1

Collect Date: 08/05/2013 10:40

File ID: 5L010812.F

Sample Tag: 0:	1	Units: ug/L

Analyte	CAS	# Res	ult Ç	ual	LOQ	LOD
1,3-Dinitrobenzene	99-65	i-0		U	1.06	0.266
2,4-Dinitrotoluene	121-1	4-2		U	1.06	0.266
2,6-Dinitrotoluene	606-2	0-2		U	1.06	0.266
2,4,6-Trinitrotoluene	118-9	6-7		U	1.06	0.266
2-Amino-4,6-dinitrotoluene	35572-	78-2		U	1.06	0.266
2-Nitrotoluene	88-72	2-2		U	1.06	0.266
4-Nitrotoluene	99-99	1-0		U	1.06	0.266
4-Amino-2,6-dinitrotoluene	19406-	51-0		U	1.06	0.266
RDX	121-8	2-4		U	1.06	0.266
Nitroglycerin	55-63	1-0		U	1.06	0.266
Surrogate	Recovery	Lower Limit	Upper Limit	Q		
4.0 Dt. 111	02.0	EO	150			

1,2-Dinitrobenzene Analyte was not detected. The concentration is below the reported LOD. U

Page 2 of 7

Lab Project #: 2773.087
Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080274-05

Client ID: 54TM01

Matrix: Water

Workgroup #: WG441341

Collect Date: 08/05/2013 10:40

Sample Tag: 01

PrePrep Method: N/A

Prep Method: METHOD

Analytical Method: 8330B

Analyst: JWR

Dilution: 1 Units: ug/L Instrument: HPLC5

Prep Date: 08/06/2013 09:01

Cal Date: 03/20/2013 17:01

Run Date: 08/15/2013 15:04

File ID: 5L010813.F

Analyte	CAS	# Res	ult	Qual	LOQ	LOD		
1,3-Dinitrobenzene	99-65	-0		U	1.05	0.263		
2,4-Dinitrotoluene	121-14	1-2		U	1.05	0.263		
2.6-Dinitrotoluene	606-20)-2		U	1.05	0.263		
2,4,6-Trinitrotoluene	118-96	118-96-7		U	1.05	0.263		
2-Amino-4,6-dinitrotoluene	35572-7	35572-78-2		U	1.05	0.263		
2-Nitrotoluene	88-72	88-72-2		U	1.05	0.263		
4-Nitrotoluene	99-99	-0		U	1.05	0.263		
4-Amino-2,6-dinitrotoluene	19406-	51-0		U	1.05	0.263		
RDX	121-83	2-4		U	1.05	0.263		
Nitroglycerin	55-63	-0		U	1.05	0.263		
Surrogate	Recovery	Lower Limit	Upper Limi	t Q				
1,2-Dinitrobenzene	94.0	50	150					
	Analyte was not detected. The concentration is below the reported LOD.							

Page 3 of 7

Lab Project #: 2773.087

150

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080274-07

PrePrep Method: N/A

Instrument: HPLC5

Client ID: 54MW04

Prep Method: METHOD

Prep Date: 08/06/2013 09:01

Matrix: Water

Analytical Method: 8330B

Cal Date: 03/20/2013 17:01

Workgroup #: WG441341

Analyst: JWR

Run Date: 08/15/2013 15:43

Collect Date: 08/05/2013 12:15

Dilution: 1

File ID: 5L010814.F

Sample Tag: 01

1,2-Dinitrobenzene

U

Units: ug/L

Analyte	CAS	# Res	sult Ç	ual	LOQ	LOD
1,3-Dinitrobenzene	99-65	i-0		U	1.19	0.298
2,4-Dinitrotoluene	121-1	4-2		U	1.19	0.298
2,6-Dinitrotoluene	606-2	0-2		U	1.19	0.298
2,4,6-Trinitrotoluene	118-9	6-7		U	1.19	0.298
2-Amino-4,6-dinitrotoluene	35572-	78-2		U	1.19	0.298
2-Nitrotoluene	88-72	!-2		U	1.19	0.298
4-Nitrotoluene	99-99	1-0		U	1.19	0.298
4-Amino-2,6-dinitrotoluene	19406-	51-0		U	1.19	0.298
RDX	121-83	2-4		U	1.19	0.298
Nitroglycerin	55-63	1-0		U	1.19	0.298
Surrogate	Recovery	Lower Limit	Upper Limit	Q		

50

97.7

Analyte was not detected. The concentration is below the reported LOD.

Page 4 of 7

Lab Report #: L13080274 Lab Project #: 2773.087

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080274-09

PrePrep Method: N/A

Instrument: HPLC5

Client ID: 54MW14

Prep Method: METHOD

Prep Date: 08/06/2013 09:01

Matrix: Water

Analytical Method: 8330B

Cal Date: 03/20/2013 17:01

Workgroup #: WG441341

Run Date: 08/15/2013 16:22

Analyst: JWR

Collect Date: 08/05/2013 13:35

Dilution: 1

File ID: 5L010815.F

Sample Tag: 01

Units: ug/L

Analyte	CAS#	Result	Qual	LOQ	LOD
1,3-Dinitrobenzene	99-65-0		U	1.18	0.294
2,4-Dinitrotoluene	121-14-2		U	1.18	0.294
2,6-Dinitrotoluene	606-20-2		U	1.18	0.294
2,4,6-Trinitrotoluene	118-96-7		U	1.18	0.294
2-Amino-4,6-dinitrotoluene	35572-78-2		U	1.18	0.294
2-Nitrotoluene	88-72-2		U	1.18	0.294
4-Nitrotoluene	99-99-0		U	1.18	0.294
4-Amino-2,6-dinitrotoluene	19406-51-0		U	1.18	0.294
RDX	121-82-4		U	1.18	0.294
Nitroglycerin	55-63-0		U	1.18	0.294

Surrogate	Recovery	Lower Limit	Upper Limit	Q
1,2-Dinitrobenzene	102	50	150	

U Analyte was not detected. The concentration is below the reported LOD.

Page 5 of 7

Microbac

Lab Project #: 2773.087
Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080274-11

3080274-11 PrePrep Method: N/A

Instrument: HPLC5

Client ID: 54TM14

Prep Method: METHOD

Matrix: Water

Analytical Method: 8330B

Prep Date: 08/06/2013 09:01

Workgroup #: WG441341

Analyst: JWR

Cal Date: 03/20/2013 17:01

Collect Date: 08/05/2013 13:35

Run Date: 08/15/2013 17:01

Sample Tage 01

Dilution: 1

File ID: 5L010816.F

			01											
													ts:	

Analyte	CAS	# Re	sult Ç	ual	LOQ	LOD
1,3-Dinitrobenzene	99-65	5-0		U	1.14	0.284
2,4-Dinitrotoluene	121-1	4-2		U	1.14	0.284
2,6-Dinitrotoluene	606-2	0-2		U	1.14	0.284
2,4,6-Trinitrotoluene	118-9	6-7		U	1.14	0.284
2-Amino-4,6-dinitrotoluene	35572-	78-2		υ	1.14	0.284
2-Nitrotoluene	88-72	2-2		U	1.14	0.284
4-Nitrotoluene	99-99	9-0		U	1.14	0.284
4-Amino-2,6-dinitrotoluene	19406-	51-0		U	1.14	0.284
RDX	121-8	2-4		U	1.14	0.284
Nitroglycerin	55-63	3-0		U	1.14	0.284
Surrogate	Recovery	Lower Limit	Upper Limit	Q		
1,2-Dinitrobenzene	101	50	150			
U Analyte was not detected. The	concentration is below the r	reported LOD.	,			

Page 6 of 7

CB&I Federal Services, LLC (CFS)
4696 Millennium Drive, Suite 320
Belcamp, Maryland 21017
Tel: +1 (410) 273-7100
Fax: +1 (410) 273-7103
Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CFS Radford Army Ammunition Plant (RFAAP) Project Manager

FROM:

Eric Malarek, CFS RFAAP Project Chemist

SUBJECT:

RFAAP Data Validation - Chloride, Nitrate, and Sulfate

Microbac Laboratories, Inc. L13080274

DATE:

December 18, 2013

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on August 5, 2013. Samples were analyzed for the anions chloride, nitrate, and sulfate using USEPA SW-846 9056. A total of seven aqueous samples were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
54MW13	L13080274-01	54MW04	L13080274-07DL
54MW01	L13080274-03	54MW14	L13080274-09
54TM01	L13080274-05	54TM14	L13080274-11
54MW04	L13080274-07		

Data were reviewed and validated using a combination of project QAPP, *DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010* (DoD, 2010), and method-specific criteria. The data qualifier scheme was consistent with the *Region III Modifications to the National Functional Guidelines for Inorganic Data Review* (April, 1993). Parameters evaluated are presented in **Table 1**. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qua	lified	Parameter
Yes	No	
	Х	Holding Times and Preservation
	Х	Initial and Continuing Calibration
	Х	Blank Analysis
	Х	Laboratory Control Sample
	Х	Laboratory Duplicate Sample
	Х	Matrix Spike and Spike Duplicate
	Х	Field Duplicate Sample
Х		Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications, except for the following. For sample 54MW04 (L13080274-07), sulfate exceeded calibration range. Sample 54MW04 (L13080274-07DL) should be used for this analyte. There were no impacts for data usability based on this outlier.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT ANIONS REVIEW SDG L13080274

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. Holding time criteria: Cool $4^{\circ}C\pm2^{\circ}C$ and 28 days for sulfate and chloride and Cool to $4^{\circ}C\pm2^{\circ}C$ with H_2SO_4 to pH<2 and 2 days for nitrate. The dates and times were compared between the sample collection and laboratory analysis (USEPA criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 08/05/13, the coolers were received on 08/06/13 by the primary laboratory (Microbac Laboratories, Inc.) at 3.0°C and 1.0°C. Even though one of the receipt temperatures was below criteria for the coolers; there were no impacts to the data quality and no qualifiers were applied based upon this outlier.
- <u>Holding Time Review</u>: Samples were collected on 08/05/13. The samples were prepped and analyzed on 08/06/13 for chloride, sulfate, and nitrate analysis. Sample collection dates may be found on the attached form 1s. All holding time criteria were met. No qualifiers were applied.

II-Initial and Continuing Calibration

Requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data. Initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of the analysis run, and continuing calibration verification documents that the initial calibration is still valid.

Anions: 1 – blank 5 – standards (r≥0.995 or r²≥0.99) ICV/CCV (90-110%) Method Reporting Limit (MRL) (75-125%)

• Chloride, sulfate, and nitrate analysis was calibrated on 05/01/13 using linear equation techniques. All coefficients of determinations were ≥0.99 for chloride, sulfate, and nitrate. All ICV/CCV/MRL criteria were met for all anions and runs. No qualifiers were applied. Samples 54MW13 (L13080274-01), 54MW01 (L13080274-03), 54TM01 (L13080274-05), 54MW04 (L13080274-07), 54MW04 (L13080274-07DL), 54MW14 (L13080274-09), and 54TM14 (L13080274-11) apply to these initial and continuing calibrations.

III-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. Calibration blanks were analyzed initially and at a 10% frequency thereafter for each batch. No contaminants should be detected in any of the associated blanks >MDL. The DoD QSM criteria specifies all concentrations should be less than $\frac{1}{2}$ MRL (<MRL for common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters) and <2MDL for the calibration blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is \leq 10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, 2-butanone, and phthalate esters, or 5 times (5x) the maximum amount for other target compounds. Table 2 summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB080713 (L13080428-09) applies to all samples in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	Analysis	QC Blank ID	Max Conc. mg/L	Action Level mg/L	B qualified samples (for this SDG)
08/06/13	Chloride	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
08/06/13	Sulfate	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
08/06/13	Nitrate	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
08/06/13	Chloride	WG440384-01	<1½MRL	NA	None
08/06/13	Sulfate	WG440384-01	<1½MRL	NA	None
08/06/13	Nitrate	WG440384-01	<1/2MRL	NA	None
08/09/13	Chloride	54RB080713	0.117	0.585	None
08/09/13	Sulfate	54RB080713	<1½MRL	NA	None
08/09/13	Nitrate	54RB080713	<1½MRL	NA	None

LOD = Limit of Detection

MRL = Method Reporting Limit

MDL = Method Detection Limit

NA = Not Applicable

IV-Laboratory Control Sample

The laboratory control sample (LCS) serve as a monitor of the overall performance of each step during the analysis, including the sample preparation. LCS are generated to determine long-term accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Per DoD QSM, all LCS results must fall within the specified control limits:

Anions: 90-110% (DOD QSM = 80-120%)

Sample WG440384-02 was used as the aqueous LCS for chloride, sulfate, and nitrate analysis on 08/06/13. All criteria were met. No qualifiers were applied. Samples 54MW13 (L13080274-01), 54MW01 (L13080274-03), 54TM01 (L13080274-05), 54MW04 (L13080274-07DL), 54MW14 (L13080274-09), and 54TM14 (L13080274-11) apply to this LCS.

V-Duplicate Sample Analysis

Duplicate sample determinations are used to demonstrate acceptable method precision by the laboratory at the time of analysis. Duplicate analysis is performed to generate data in order to determine the long-term precision of the analytical method on various matrices. Per DoD QSM, RPDs must be within established control limits (≤20%RPD).

• No site lab duplicate was performed with this SDG; therefore, was not evaluated.

VI-Matrix Spike and Matrix Spike Duplicate

Matrix spikes (MSs) and MSDs are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at

a frequency of one MS/MSD per 20 samples or preparatory batch of similar matrix. Per DoD QSM, MS/MSD recoveries and RPDs should be within the specified limits:

Anions: 90-110%; RPD≤20% (DOD QSM = 80-120%; RPD≤20%)

• No site sample was used as the aqueous MS/MSD for chloride, sulfate, and nitrate analysis on 08/06/13; therefore, was not evaluated.

VII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

- Field groundwater sample duplicate pair 54MW01 (L13080274-03) and 54TM01 (L13080274-05) was analyzed for chloride, sulfate, and nitrate analysis in this SDG. Chloride was detected at 1.64 mg/L in the parent sample and at 1.67 mg/L in the duplicate pair; resulting in a RPD of 1.8%. Sulfate was detected at 26.7 mg/L in the parent sample and at 27.0 mg/L in the duplicate pair; resulting in a RPD of 1.1%. Nitrate was non-detect for the duplicate pair. All criteria were met. No qualifiers were applied.
- Field groundwater sample duplicate pair 54MW14 (L13080274-09) and 54TM14 (L13080274-11) was analyzed for chloride, sulfate, and nitrate analysis in this SDG. Chloride was detected at 4.01 mg/L in the parent sample and at 4.05 mg/L in the duplicate pair; resulting in a RPD of 1.0%. Sulfate was detected at 28.2 mg/L in the parent sample and at 28.0 mg/L in the duplicate pair; resulting in a RPD of 0.7%. Nitrate was detected at 0.290J mg/L in the parent sample and at 0.343J mg/L in the duplicate pair; resulting in a RPD of 16.8%. All criteria were met. No qualifiers were applied.

VIII-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. The following calculations were performed for verification.

- Any sample value >MDL and <MRL or <3*MDL (whichever is greater) was qualified as estimated. "J."
- For sample 54MW04 (L13080274-07), sulfate exceeded calibration range. Sample 54MW04 (L13080274-07DL) should be used for this analyte. There were no impacts for data usability based on this outlier.

Sample: 54MW13 (L13080274-01), sulfate

Y = mX + b

Y = Sample Area m = slope of curve

X = Concentration (mg/L)

b = Y-intercept

DF = Dilution Factor

Given:

m = 0.1379

b = -0.0209

Y = Area = 3.188

DF = 1

X = 23.3 mg/L * DF = 23.3 mg/L * 1 = 23.3 mg/L

Reported concentration = 23.3 mg/L %D = 0.0%

Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the
	limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound
-	(using mass spectroscopy).
Q	One or more quality control criteria failed.
U	SEPA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample.
	Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in laboratory
	or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to
	confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution.
	Presumptively present at approximate quantity.
K	Analyte present. Reported value may be biased high. Actual value is
	expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is
	expected to be higher.
UL	Not detected, quantitation limit is probably higher.

The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993).

Microbac

Sample #: L13080274-01

Collect Date: 08/05/2013 09:10

Client ID: 54MW13

Matrix: Water

Workgroup #: WG440384

Sample Tag: 01

Form I Copy

Lab Report #: L13080274 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

PrePrep Method: N/A

Prep Method: 9056

Analytical Method: 9056

Analyst: KRB

Dilution: 1

Units: mg/L

Instrument: IC1

Prep Date: 08/06/2013 14:21

Cal Date: 05/01/2013 13:02

Run Date: 08/06/2013 15:32

File ID: 11_080613-07

-00-6 2.5	8	ĺ	0.200	0.100
-55-8 0.59	91 J	J	0.600	0.100
-79-8 23.	3		1.00	0.500
		-79-8 23.3	-79-8 23.3	79-8 23.3 1.00

Page 1 of 8

Lab Report #: L13080274 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080274-03

PrePrep Method: N/A

Instrument: IC1

Client ID: 54MW01

Prep Method: 9056

Prep Date: 08/06/2013 14:21

Matrix: Water

Analytical Method: 9056

Cal Date: 05/01/2013 13:02

Workgroup #: WG440384

Analyst: KRB

Dilution: 1

Run Date: 08/06/2013 15:50

Collect Date: 08/05/2013 10:40

File ID: I1_080613-08

Sample Tag: 01

Units: mg/L

	Analyte	CAS#	Result	Qual	LOQ	LOD
Chloride		16887-00-6	1.64		0.200	0.100
Nitrate		14797-55-8		U	0.600	0.100
Sulfate		14808-79-8	26.7		1.00	0.500
U	Analyte was not detected. The con	centration is below the reported L	.OD.			

Page 2 of 8

Lab Project #: L13080274
Lab Project #: 2773.087
Project Name: Padford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080274-05

Client ID: 54TM01

Matrix: Water

Workgroup #: WG440384
Collect Date: 08/05/2013 10:40

Sample Tag: 01

PrePrep Method: N/A

Prep Method: 9056

Analytical Method: 9056

Analyst: KRB

Dilution: 1

Units: mg/L

Instrument: IC1

Prep Date: 08/06/2013 14:21

Cal Date: 05/01/2013 13:02

Run Date: 08/06/2013 16:08

File ID: 11_080613-09

Analyte	CAS#	Result	Qual	LOQ	LOD
Chloride	16887-00-6	1.67		0.200	0.100
Nitrate	14797-55-8		U	0.600	0.100
Sulfate	14808-79-8	27.0		1.00	0.500
	The concentration is below the reported t	.OD.			

Page 3 of 8

Lab Report #: L13080274 Lab Project #: 2773.087

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080274-07

PrePrep Method: N/A

Instrument: IC1

Client ID: 54MW04

Prep Method: 9056

Prep Date: 08/06/2013 14:21

Matrix: Water

Analytical Method: 9056

Cal Date: 05/01/2013 13:02

Workgroup #: WG440384

Analyst: KRB

Run Date: 08/06/2013 16:27

Collect Date: 08/05/2013 12:15

Dilution: 1

File ID: 11_080613-10

Sample Tag: 01

Units: mg/L

	Analyte	CAS#	Result	Qual		LOQ	LOD
Chloride		16887-00-6	2.12			0.200	0.100
Nitrate		14797-55-8		U		0.600	0.100
Sulfate		14808-79-8	425	J	R	1.00	0.500
)	Estimated value ; the analyte conce	ntration was greater than the hig	hest standard				
U	Analyte was not detected. The cond	centration is below the reported l	.OD.				

Page 4 of 8

Lab Report #: L13080274 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080274-07

PrePrep Method: N/A

Instrument: IC1

Client ID: 54MW04 Matrix: Water

Prep Method: 9056 Analytical Method: 9056 Prep Date: 08/06/2013 14:21

Workgroup #: WG440384

Cal Date: 05/01/2013 13:02

Analyst: KRB

Run Date: 08/06/2013 23:30

Collect Date: 08/05/2013 12:15

Dilution: 5

Sample Tag: DL01

Units: mg/L

File ID: 11_080613-33

	Analyte	CAS#	Result	Qual	roð	LOD
Chloride		16887-00-6	1,66		1,00	0.500
Nitrate		14797-55-8		U	3.00	0.500
Sulfate		14808-79-8	322		5.00	2.50
U	Analyte was not detected. The concentration is below the reported LOD.					

Page 5 of 8

Lab Report #: L13080274 Lab Project #: 2773.087 Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080274-09

PrePrep Method: N/A

Instrument: IC1

Client ID: 54MW14

Prep Method: 9056

Prep Date: 08/06/2013 14:21

Matrix: Water

Analytical Method: 9056

Cal Date: 05/01/2013 13:02

Workgroup #: WG440384

Collect Date: 08/05/2013 13:35

Analyst: KRB

Run Date: 08/06/2013 17:04

Dilution: 1

File ID: 11_080613-12

Sample Tag: 01 Units: mg/L

	Analyte	CAS#	Result	Qual	LOQ	LOD
Chloride		16887-00-6	4.01		0.200	0.100
Nitrate		14797-55-8	0.290	ı ナ	0.600	0.100
Sulfate		14808-79-8	28.2		1.00	0.500
J	Estimated value ; the analyte conc	entration was less than the LOQ.				

Page 6 of 8

Project Name: Radford

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L13080274-11

PrePrep Method: N/A

Instrument: IC1

Client ID: 54TM14

Prep Method: 9056

Prep Date: 08/06/2013 14:21

Matrix: Water

Analytical Method: 9056

Workgroup #: WG440384

Cal Date: 05/01/2013 13:02

Analyst: KRB

Run Date: 08/06/2013 17:22

Collect Date: 08/05/2013 13:35

Dilution: 1

Sample Tag: 01

Units: mg/L

File ID: 11_080613-13

	Analyte	CAS#	Result	Qual	LOQ	LOD
Chloride		16887-00-6	4.05		0.200	0.100
Nitrate		14797-55-8	0.343	ュナ	0.600	0.100
Sulfate		14808-79-8	28.0		1.00	0.500
J	Estimated value; the analyte conce	entration was less than the LOQ.			·····	

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100 Fax: +1 (410) 273-7103 Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CB&I Federal Services, LLC (CB&I) Radford Army Ammunition Plant (RFAAP)

Project Manager

FROM:

Eric Malarek, CB&I Project Chemist

SUBJECT:

RFAAP Data Validation - Total and Dissolved Organic and Inorganic Carbon

Test America Laboratories, Inc., SDG 680-101795

DATE:

June 25, 2014

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on May 28, 2014. Samples were analyzed for Total Organic Carbon (TOC), Dissolved Organic Carbon (DOC), Total Inorganic Carbon (TIC), and Dissolved Inorganic Carbon (DIC) using USEPA 9060. A total of six aqueous samples (includes one rinse blank) were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
54MW01	680-101795-1	54MW13	680-101795-4
54MW10	680-101795-2	54TM12	680-101795-5
54MW12	680-101795-3	54RB052814	680-101795-6

Data were reviewed and validated using a combination of project QAPP, *DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010* (DoD, 2010), and method-specific criteria. The data qualifier scheme was consistent with the *Region III Modifications to the National Functional Guidelines for Inorganic Data Review* (April, 1993). Parameters evaluated are presented in **Table 1**. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualified Data		Parameter
Yes	No	
X Holding Times and Preservation		Holding Times and Preservation
	Х	Initial and Continuing Calibration
Х		Blank Analysis
	Х	Laboratory Control Sample and Laboratory Control Sample Duplicate
Х		Matrix Spike and Spike Duplicate
	Х	Laboratory Duplicate
	Х	Field Duplicate
Х		Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT TOC, TIC, DOC, & DIC REVIEW SDG 680-101795

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. Holding time criteria: Cool 4°C±2°C, HCl pH<2, 28 days for TOC, TIC, DOC, and DIC (USEPA criteria). The dates and times were compared between the sample collection and laboratory analysis.

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 05/28/14, the coolers were received on 05/29/14 by the primary laboratory (Test America Laboratories, Inc.) at 4.0°C, 3.8°C, and 11.4°C. The receipt temperature was slightly above criteria for one the coolers containing samples 54MW01 (680-101795-1) and 54MW10 680-101795-2); therefore, TOC, TIC, DOC, DIC were qualified "L" for detections and "UL" for non-detections for these samples based upon this outlier based upon professional judgment.
- <u>Holding Time Review</u>: The samples were collected on 05/28/14. The TOC, TIC, DOC, and DIC analysis were run on 06/09/14 and 06/10/14. Sample collection dates may be found on the attached form 1s. All criteria were met. No qualifier was applied.

II-Initial and Continuing Calibration

Bench and run summary sheets were reviewed to determine whether calibration was performed at the beginning of sample analysis using the following criteria. Percent recoveries for initial and continuing calibration (90-110%) must be within limits.

TOC, TIC, DOC, and DIC:

1 - blank

5 - standards (r≥0.995) ICV/CCV (90-110%)

• The TOC, TIC, DOC, and DIC analysis were run on 06/09/14 and 06/10/14. The initial calibration for TC was analyzed on 05/21/14 with a coefficient of determination of 0.9997. The ICV and CCVs were evaluated for where they bracketed reported samples. All ICV/CCVs that bracketed reported samples were within criteria. All criteria were met. No qualifiers were applied. Samples 54MW01 (680-101795-1), 54MW10 (680-101795-2), 54MW12 (680-101795-3), 54MW13 (680-101795-4), 54TM12 (680-101795-5), and 54RB052814 (680-101795-6) apply to these initial and continuing calibrations.

III-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. Calibration blanks were analyzed initially and at a 10% frequency thereafter for each batch. No contaminants should be detected in any of the associated blanks >MDL. The DoD QSM criteria specifies all concentrations should be less than ½ MRL (<MRL for common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters) and <LOD (i.e. <2MDL) for the calibration blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters, or 5 times (5x) the maximum amount for other target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB052814 (680-101795-6) applies to all of the total samples (TOC, TIC) and dissolved samples (DOC and DIC) in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	Analysis	QC Blank ID	Max Conc. mg/L	Action Level mg/L	B qualified samples (For this SDG)
06/09/14	TOC	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
06/09/14	DOC	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
06/10/14	DOC	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
06/09/14	TOC	MB 680-333274/43	<1/2MRL	NA	None
06/09/14	DOC	MB 680-333448/3-A	<1/2MRL	NA	None
06/09/14	TOC	54RB052814	<1/2MRL	NA	None
06/09/14	TIC	54RB052814	<1/2MRL	NA	None
06/09/14	DOC	54RB052814	<1/2MRL	NA	None
06/09/14	DIC	54RB052814	<1/2MRL	NA	None

LOD = Limit of Detection

MRL = Method Reporting Limit

MDL = Method Detection Limit

NA = Not Applicable

IV-Laboratory Control Sample and Laboratory Control Sample Duplicate

The laboratory control sample (LCS) and LCSD serve as a monitor of the overall performance of each step during the analysis, including the sample preparation. LCS/LCSD are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. All aqueous LCS/LCSD results must fall within the control limits (80-120%; RPD≤20%).

- Sample LCS 680-333274/42 was used as the aqueous LCS for TOC analysis on 06/09/14. All criteria were met. No qualifiers were applied. Samples 54MW01 (680-101795-1), 54MW10 (680-101795-2), 54MW12 (680-101795-3), 54MW13 (680-101795-4), 54TM12 (680-101795-5), and 54RB052814 (680-101795-6) apply to this LCS.
- Samples LCS 680-333448/1-A and LCSD 680-333448/2-A were used as the aqueous LCS/LCSD for DOC analysis on 06/09/14. All criteria were met. No qualifiers were applied. Samples 54MW01 (680-101795-1), 54MW10 (680-101795-2), 54MW12 (680-101795-3), 54MW13 (680-101795-4), 54TM12 (680-101795-5), and 54RB052814 (680-101795-6) apply to this LCS/LCSD.

V-Matrix Spike and Spike Duplicate

Matrix spikes (MSs) and matrix spike duplicates (MSDs) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at a frequency of one MS/MSD per 20 samples of similar matrix. The percent recoveries (%Rs or RPD) must be within the specified control limits (80-120%; RPD≤25%).

Sample 54MW01 (680-101795-1) was used as the aqueous MS/MSD for TOC and DOC analysis on 06/09/14. TOC (79%) and DOC (37%, 35%) were outside criteria. TOC and DOC were qualified "L" for detections and "UL" for non-detections for the spiked sample based upon the low recoveries. Samples 54MW01 (680-101795-1), 54MW10 (680-101795-2), 54MW12 (680-101795-3), 54MW13 (680-101795-4), 54TM12 (680-101795-5), and 54RB052814 (680-101795-6) apply to this MS/MSD.

VI-Laboratory Duplicate Sample Analysis

Duplicate sample determinations are used to demonstrate acceptable method precision by the laboratory at the time of analysis. Duplicate analysis is performed to generate data in order to determine the long-term precision of the analytical method on various matrices. RPDs must be within established control limits (≤30%RPD).

- No aqueous laboratory duplicate was analyzed for TIC, DOC, and DIC with this SDG; therefore, it
 was not evaluated. See Section IV for lab precision statements using LCS/LCSD.
- Sample 54MW01 (680-101795-1) was used as the aqueous laboratory duplicate for TOC analysis on 06/09/14. All criteria were met. No qualifiers were applied. Samples 54MW01 (680-101795-1), 54MW10 (680-101795-2), 54MW12 (680-101795-3), 54MW13 (680-101795-4), 54TM12 (680-101795-5), and 54RB052814 (680-101795-6) apply to this laboratory duplicate.

VII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

 Field groundwater sample duplicate pair 54MW12 (680-101795-3) and 54TM12 (680-101795-5) was analyzed for TOC, TIC, DOC, and DIC analysis in this SDG. All concentrations found in the sample and its duplicate pair and associated %RPD are noted in **Table 3**. All criteria were met. No qualifiers were applied.

Table 3 Field Precision Analysis Summary for TOC, TIC, DOC, and DIC for Duplicate Pair 54MW12 (680-101795-3) and 54TM12 (680-101795-5)

Compound	Original Sample (mg/L)	Duplicate Pair (mg/L)	%RPD
Total Inorganic Carbon	50	52	3.9
Dissolved Inorganic Carbon	50	46	8.3
Dissolved Organic Carbon	1.0U	1.0U	NA
Total Organic Carbon	0.50U	0.50U	NA

U = Not Detected as <LOD.

LOD = Limit of Detection

NA = Not Applicable

VIII-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. The following calculations were performed for verification.

- Any sample value >MDL and <MRL or <3*MDL (whichever is greater) was qualified as estimated, "J."
- The total and dissolved fractions were compared. The organic and inorganic carbon data results for samples 54MW01 (680-101795-1), 54MW10 (680-101795-2), 54MW12 (680-101795-3), 54MW13 (680-101795-4), 54TM12 (680-101795-5), and 54RB052814 (680-101795-6) are presented in **Table 3**. Data qualification was applied based upon professional judgment. Generally, if the concentrations are greater than the MRL and the dissolved concentration is greater than its total concentration by >10%D, then both results have been flagged as estimated with a "J." We are looking at the TOC/TIC to evaluate the immobilization potential of TNT and RDX. The DOC/DIC is a byproduct of organic compound oxidation and indicates the difference in microbial oxidation processes within and outside the plume area. If the samples exhibit continual microbial oxidation coupled with the time differences of sample preservation from sample collection (i.e. TOC in field and DOC at the lab), this might be the cause of total / dissolved imbalance here.

Table 3 Total/Dissolved Summary

Sample ID	Analyte	LOD (mg/L)	Total Fraction (mg/L)	Dissolved Fraction (mg/L)	%D	Qualifier
54MW10	TOC/DOC	0.50; 1.0	62	1.0U	NA	J, UJ
54MW10	TIC/DIC	1.0; 1.0	1.7	60	97.2	J
54MW13	TOC/DOC	0.50; 1.0	0.50U	1.1	NA	None
54MW13	TIC/DIC	1.0; 1.0	46	45	NA	None
54RB021914	TOC/DOC	0.50; 1.0	0.50U	1.0U	NA	None
54RB021914	TIC/DIC	1.0; 1.0	1.0U	1.0U	NA	None
54MW01	TOC/DOC	0.50; 1.0	51J	3.7J	NA	None
54MW01	TIC/DIC	1.0; 1.0	1.0U	52	NA	J, UJ
54MW12	TOC/DOC	0.50; 1.0	0.50U	1.0U	NA	None
54MW12	TIC/DIC	1.0; 1.0	50	50	0.0	None
54TM12	TOC/DOC	0.50; 1.0	0.50U	1.0U	NA	None
54TM12	TIC/DIC	1.0; 1.0	52	46	NA	None

Sample: 54MW01 (680-101795-1), TOC

TOC:
$$Y = m*X (mg/L) + b$$

m = 1.831

b = 1.012

Y = 94.14

DF = 1

$$X = (51 \text{ mg/L}) * 1 = 51 \text{ mg/L}$$

$$TOC (mg/L) = 51 mg/L$$

Reported Value = 51 mg/L % Difference = 0.0%

Values were within 10% difference.

J = Estimated value. U = Not Detected as <LOD.

LOD = Limit of Detection NA = Not Applicable

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the
	limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the
N	reporting limit in an associated blank.
IN .	Non-target analyte: The analyte is a tentatively identified compound (using mass spectroscopy).
Q	One or more quality control criteria failed.
	USEPA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample.
	Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in laboratory
J	or field blanks.
	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution.
	Presumptively present at approximate quantity.
K	Analyte present. Reported value may be biased high. Actual value is
	expected to be lower.
l L	Analyte present. Reported value may be biased low. Actual value is
	expected to be higher.
UL	Not detected, quantitation limit is probably higher.

The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993).

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54MW01

Lab Sample ID: 680-101795-1

Lab Name: TestAmerica Savannah

Job No.: 680-101795-1

SDG ID.: 680-101795-01

Matrix: Water

Reporting Basis: WET

Date Sampled: 05/28/2014 11:25

CAS No.	Analyte	Result	LOQ	DL	Units	С	Q	DIL	Method
7440-44-0	Total Organic Carbon	51	1.0	0.50	mg/L		JL	1	9060A

1B-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54MW01

Lab Sample ID: 680-101795-1

Lab Name: TestAmerica Savannah

Job No.: 680-101795-1

SDG ID.: 680-101795-01

Matrix: Water

Date Sampled: 05/28/2014 11:25

Reporting Basis: WET

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
	Total Inorganic Carbon	1.0	1.0	mg/L	υ	۷J	1	9060

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY - DISSOLVED

Client Sample ID: 54MW01 Lab Sample ID: 680-101795-1

Lab Name: TestAmerica Savannah Job No.: 680-101795-1

SDG ID.: 680-101795-01

Matrix: Water Date Sampled: 05/28/2014 11:25

Reporting Basis: WET Date Received: 05/29/2014 10:00

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
7440-44-0	Dissolved Organic Carbon	3.7	1.0	mg/L		JL	1	9060
7440-44-0	Dissolved Inorganic Carbon	52	1.0	mg/L		エ	1	9060

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54MW10

Lab Sample ID: 680-101795-2

Lab Name: TestAmerica Savannah

Job No.: 680-101795-1

SDG ID.: 680-101795-01

Matrix: Water

Date Sampled: 05/28/2014 09:40

Reporting Basis: WET

CAS No.	Analyte	Result	LOQ	DL	Units	С	Q	DIL	Method
7440-44-0	Total Organic Carbon	62	1.0	0.50	mg/L		5	1	9060A

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54MW10

Lab Sample ID: 680-101795-2

Lab Name: TestAmerica Savannah

Job No.: 680-101795-1

SDG ID.: 680-101795-01

Matrix: Water

Date Sampled: 05/28/2014 09:40

Reporting Basis: WET

CAS No.	Analyte	Result	LOQ	Un:	Q	DIL	Method
	Total Inorganic Carbon	1.7	1.0	mg/L	J	1	9060

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY - DISSOLVED

Client Sample ID: 54MW10

Lab Sample ID: 680-101795-2

Lab Name: TestAmerica Savannah

SDG ID.: 680-101795-01

Job No.: 680-101795-1

Matrix: Water

Date Sampled: 05/28/2014 09:40

Reporting Basis: WET

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
7440-44-0	Dissolved Organic Carbon	1.0	1.0	mg/L	U	VJ	1	9060
7440-44-0	Dissolved Inorganic Carbon	60	1.0	mg/L		ブ	1	9060

1B-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54MW12

Lab Sample ID: 680-101795-3

Lab Name: TestAmerica Savannah

Job No.: 680-101795-1

SDG ID.: 680-101795-01

Matrix: Water

Reporting Basis: WET

Date Sampled: 05/28/2014 13:15

CAS No.	Analyte	Result	LOQ	DI	Units	С	Q	DIL	Method
7440-44-0	Total Organic Carbon	0.50	1.0	0.50	mg/L	Ū		1	9060A

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54MW12

Lab Sample ID: 680-101795-3

Lab Name: TestAmerica Savannah

Job No.: 680-101795-1

SDG ID.: 680-101795-01

Date Sampled: 05/28/2014 13:15

Reporting Basis: WET

Matrix: Water

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
	Total Inorganic Carbon	50	1.0	mg/L			1	9060

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY - DISSOLVED

Client Sample ID: 54MW12

Lab Sample ID: 680-101795-3

Lab Name: TestAmerica Savannah

Job No.: 680-101795-1

SDG ID.: 680-101795-01

Matrix: Water

Reporting Basis: WET

Date Sampled: 05/28/2014 13:15

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
7440-44-0	Dissolved Organic Carbon	1.0	1.0	mg/L	Ū		1	9060
7440-44-0	Dissolved Inorganic Carbon	50	1.0	mg/L			. 1	9060

1B-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54MW13

Lab Sample ID: 680-101795-4

Lab Name: TestAmerica Savannah

Job No.: 680-101795-1

SDG ID.: 680-101795-01

Matrix: Water

Date Sampled: 05/28/2014 14:55

Reporting Basis: WET

CAS No.	Analyte	Result	LOQ	DL	Units	С	Q	DIL	Method
7440-44-0	Total Organic Carbon	0.50	1.0	0.50	mg/L	ט		1	9060A

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54MW13

Lab Sample ID: 680-101795-4

Lab Name: TestAmerica Savannah

Job No.: 680-101795-1

SDG ID.: 680-101795-01

Matrix: Water

Date Sampled: 05/28/2014 14:55

Reporting Basis: WET

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
	Total Inorganic Carbon	46	1.0	mg/L			1	9060

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY - DISSOLVED

Client Sample ID: 54MW13

Lab Sample ID: 680-101795-4

Lab Name: TestAmerica Savannah

Job No.: 680-101795-1

SDG ID.: 680-101795-01

Matrix: Water

Date Sampled: 05/28/2014 14:55

Reporting Basis: WET

CAS No.	Analyte	Result	TOÖ	Units	С	Q	DIL	Method
7440-44-0	Dissolved Organic Carbon	1.1	1.0	mg/L			1	9060
7440-44-0	Dissolved Inorganic Carbon	45	1.0	mg/L			1	9060

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54TM12

Lab Sample ID: 680-101795-5

Lab Name: TestAmerica Savannah

Job No.: 680-101795-1

SDG ID.: 680-101795-01

Matrix: Water

Date Sampled: 05/28/2014 13:15

Reporting Basis: WET

CAS No.	Analyte	Result	LOQ	DL	Units	С	Q	DIL	Method
7440-44-0	Total Organic Carbon	0.50	1.0	0.50	mg/L	Ū		1	9060A

1B-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54TM12 Lab Sample ID: 680-101795-5

Lab Name: TestAmerica Savannah Job No.: 680-101795-1

SDG ID.: 680-101795-01

Matrix: Water Date Sampled: 05/28/2014 13:15

Reporting Basis: WET Date Received: 05/29/2014 10:00

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
	Total Inorganic Carbon	52	1.0	mg/L				9060

1B-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY - DISSOLVED

Client Sample ID: 54TM12 Lab Sample ID: 680-101795-5

Lab Name: TestAmerica Savannah Job No.: 680-101795-1

SDG ID.: 680-101795-01

Matrix: Water Date Sampled: 05/28/2014 13:15

Reporting Basis: WET Date Received: 05/29/2014 10:00

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
7440-44-0	Dissolved Organic Carbon	1.0	1.0	mg/L	U		1	9060
7440-44-0	Dissolved Inorganic Carbon	46	1.0	mg/L			1	9060

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54RB052814

Lab Sample ID: 680-101795-6

Lab Name: TestAmerica Savannah

Job No.: 680-101795-1

SDG ID.: 680-101795-01

Matrix: Water

Date Sampled: 05/28/2014 12:25

Reporting Basis: WET

CAS No.	Analyte	Result	LOQ	DL	Units	С	Q	DIL	Method
7440-44-0	Total Organic Carbon	0.50	1.0	0.50	mg/L	U		1	9060A

1B-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54RB052814 Lab Sample ID: 680-101795-6

Lab Name: TestAmerica Savannah Job No.: 680-101795-1

SDG ID.: 680-101795-01

Matrix: Water Date Sampled: 05/28/2014 12:25

Reporting Basis: WET Date Received: 05/29/2014 10:00

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
	Total Inorganic Carbon	1.0	1.0	mg/L	Ū		1	9060

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY - DISSOLVED

Client Sample ID: 54RB052814

Lab Sample ID: 680-101795-6

Lab Name: TestAmerica Savannah

Job No.: 680-101795-1

SDG ID.: 680-101795-01

Matrix: Water

Reporting Basis: WET

Date Sampled: 05/28/2014 12:25

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
7440-44-0	Dissolved Organic Carbon	1.0	1.0	mg/L	Ū		1	9060
7440-44-0	Dissolved Inorganic Carbon	1.0	1.0	mg/L	U		1	9060

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100 Fax: +1 (410) 273-7103

Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CB&I Federal Services, LLC (CB&I) Radford Army Ammunition Plant (RFAAP)

Project Manager

FROM:

Eric Malarek, CB&I Project Chemist

SUBJECT:

RFAAP Data Validation - Perchlorate

Test America Laboratories, Inc., SDG 680-101795

DATE:

June 24, 2014

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on May 28, 2014. Aqueous samples were analyzed for perchlorate analysis using liquid chromatography mass spectroscopy (LC/MS) SW-846 method 6850 Modified by Test America Laboratories, Inc. A total of six aqueous samples (includes one rinse blank) were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
54MW01	680-101795-1	54MW13	680-101795-4
54MW10	680-101795-2	54TM12	680-101795-5
54MW12	680-101795-3	54RB052814	680-101795-6

Data were reviewed and validated by Eric Malarek using a combination of project QAPP, *DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010* (DoD, 2010), *DoD Perchlorate Handbook August, Rev1, Change 1, 2007* (DoD, 2007), method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the *Region III Modifications to the National Functional Guidelines for Inorganic Data Review* (April, 1993). Parameters evaluated are presented in **Table 1**. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualif	ied Data	Parameter					
Yes	No						
	Х	Holding Times and Preservation					
	Х	Instrument Performance Check					
	Х	Initial and Continuing Calibration					
	Х	Blank Analysis					
	X	Internal Standards					
	Х	Interference Check Sample					
	Х	Laboratory Control Sample (LCS)					
	Х	Matrix Spike (MS) and Spike Duplicate (MSD)					
	Х	Field Duplicate					
X		Quantitation Verification and Data Review					

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT PERCHLORATE REVIEW SDG 680-101795

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. For perchlorate analysis, aqueous samples are received and stored at cool @4°C±2°C with a maximum holding time of 28 days from collection (DoD Perchlorate Handbook criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 05/28/14, the coolers were received on 05/29/14 by the primary laboratory (Test America Laboratories, Inc.) at 4.0°C, 3.8°C, and 11.4°C. The receipt temperature was slightly above criteria for one the coolers containing samples 54MW01 (680-101795-1) and 54MW10 680-101795-2); however, based upon professional judgment did not impact data quality for perchlorate (i.e. non-aromatic). No qualifiers were applied based upon this outlier.
- <u>Holding Time Review</u>: The aqueous samples were collected on 05/28/14 for perchlorate analysis. The aqueous samples were prepped and analyzed on 06/02/14. Sample collection dates may be found on the attached form 1s. All holding time criteria were met. No qualifiers were applied.

II-Instrument Performance Check

LC/MS instrument performance checks are performed to ensure mass resolution, identification and, to some degree, sensitivity. The analysis of the instrument performance check solution must be performed at the beginning of each 12-hour period during which samples are analyzed.

 The instrument performance check, ¹⁸O-Perchlorate, met the mass calibration criteria. No qualification was applied.

III-Initial and Continuing Calibration

Requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data. Initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of the analysis run, and continuing calibration verification documents that the initial calibration is still valid.

Perchlorate:

1- blank (<1/2MRL DoD Perchlorate Handbook)

5 – standards (r≥0.995 or RSD≤20% DoD Perchlorate Handbook)

ICV (≤15%D DoD Perchlorate Handbook) CCV/ICS (≤15%D DoD Perchlorate Handbook) LODV (±30%D DoD Perchlorate Handbook)

• For aqueous perchlorate initial calibration performed on 12/30/13 on instrument LC3062, all criteria were met for all target compounds (RSD≤20%). All ICV/CCV/ICS/LODV standards were within criteria. No qualifiers were applied. Perchlorate was determined using linear regression method with coefficients of determination ≥0.99 for primary and confirmation columns. Samples 54MW10 (680-98791-1), 54MW13 (680-98791-2), 54RB021914 (680-98791-3), 54MW01 (680-98791-4), 54MW12 (680-98791-5), and 54TM12 (680-98791-6) apply to this initial calibration.

IV-Blanks

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. No contaminants should be detected in any of the associated blanks >MDL. The DoD Perchlorate Handbook criterion specifies all concentrations should be less than $\frac{1}{2}$ MRL for method blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤ 5 times (5x) the maximum amount for target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB052814 (680-101795-6) applies to all samples in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	QC Blank ID	Compound	Max Conc. μg/L	Action Level µg/L	B qualified samples (for this SDG)
06/02/14	ICB/CCBs	All perchlorate <1∕2MRL	NA	NA	None
06/02/14	MB 200-72897/4	Ail perchlorate <1∕₂MRL	NA	NA	None
06/02/14	54RB052814	All perchlorate <1/2MRL	NA	NA	None

MRL = Method Reporting Limit.

NA = Not Applicable.

V-Internal Standards

Internal standards performance criteria ensure that LC/MS sensitivity and response are stable during every analytical run. Internal standard area counts for samples and blanks must not vary by more than a factor of two (-50% to +100%) from the associated calibration standard. The DoD Handbook specifies retention times (RT) $1.0 \pm 2\%$ of last calibration standard and the ratio of RT of sample to standard should be 3.06 and fall between 2.3 and 3.8. The internal standard peak area responses should fall between 50% to 150% recoveries.

All criteria were met. No qualifiers were applied.

VI-Interference Check Sample (ICS)

The interference check sample (ICS) verifies inter-element and background correction factors. The ICS is performed at the beginning of each sample analysis run. Control limits are 70-130%.

All criteria were met for all other runs. No qualifiers were applied.

VII-Laboratory Control Sample

The laboratory control sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. DoD Perchlorate Handbook and laboratory aqueous limits are 80-120%.

Sample LCS 200-72897/5 was used as aqueous LCS for perchlorate analysis dated 06/02/14. All criteria were met. No qualifiers were applied. Samples 54MW01 (680-101795-1), 54MW10 (680-101795-2), 54MW12 (680-101795-3), 54MW13 (680-101795-4), 54TM12 (680-101795-5), and 54RB052814 (680-101795-6) apply to this LCS sample.

VIII-Matrix Spike (MS) and Spike Duplicate (MSD)

Matrix Spike (MS) and Spike Duplicate (MSD) are generated to determine long-term accuracy and precision of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at a frequency of one MS/MSD per 20 samples of similar matrix. MS/MSD recoveries and relative percent differences between MS recoveries should be within the specified limits. DoD Perchlorate Handbook limits are 80-120%; RPD≤15%. The laboratory limits are 80-120%; RPD≤15%.

Sample 54MW01 (680-101795-1) was used as aqueous MS/MSD for perchlorate analysis dated 06/02/14. All criteria were met. No qualifiers were applied. Samples 54MW01 (680-101795-1), 54MW10 (680-101795-2), 54MW12 (680-101795-3), 54MW13 (680-101795-4), 54TM12 (680-101795-5), and 54RB052814 (680-101795-6) apply to this MS/MSD sample.

IX-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

• Field groundwater sample duplicate pair 54MW12 (680-101795-3) and 54TM12 (680-101795-5) was analyzed for perchlorate analysis in this SDG. Perchlorate was detected at 1.7 μg/L in the parent sample and at 1.7 μg/L in the duplicate pair; resulting in a RPD of 0.0%. All criteria were met. No qualifiers were applied.

X-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. The following calculations were performed for verification.

 Any sample value >MDL and <MRL or <3*MDL (whichever was greater) was qualified as estimated, "J."

Sample: 54MW12 (680-101795-3), Perchlorate

```
Y = mX + b
```

Y = Response Ratio = Sample Area/Area Internal Standard O18LP m = slope of curve X = Amount Ratio = Conc. Analyte/Conc. Internal Std. b = Y-intercept

Given:

m = 1.0621 b = -0.001 Y = Area = 185696/101728 = 1.8254 X = 1.72 Conc. μ g/L = (Ax * Cis * DF)

where: Conc. = Sample concentration in μ g/L = Amount Ratio = Conc. Analyte/Conc. Internal Standard Cis = Conc. Of internal Standard (μ g/L)

DF = Dilution factor

Conc. $\mu g/L = (1.72 * 1 * 1) = 1.7 \mu g/L \text{ (Signal #1)}$

Reported Value = 1.7 μ g/L % Difference = 0.0%

Values were within 10% difference

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the
	limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the
	reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound
	(using mass spectroscopy).
Q	One or more quality control criteria failed.
	USEPA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample.
	Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in laboratory
	or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to
	confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution.
	Presumptively present at approximate quantity.
K	Analyte present. Reported value may be biased high. Actual value is
	expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is
	expected to be higher.
UL	Not detected, quantitation limit is probably higher.

¹The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: *DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2* (DoD, 2010).

²The USEPA data validation qualifiers are referenced from *Region III Modifications to the National Functional Guidelines for Inorganic Data Review* (April, 1993).

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Tes	tAmerica Burlington	Jol	No.: 680-1	01795-1							
SDG No.: 680-	101795-01										
Client Sample	ID: 54MW01	Lak	Lab Sample ID: 680-101795-1								
Matrix: Water		Lab	Lab File ID: P060214A06.d								
Analysis Metho	Analysis Method: 6850			Date Collected: 05/28/2014 11:25							
Extraction Method:			Date Extracted:								
Sample wt/vol:	5 (mL)	Dat	Date Analyzed: 06/02/2014 12:07								
Con. Extract V	ol.:	Dil	Dilution Factor: 1								
Injection Volu	me: 100(uL)	GC	GC Column: IC-Pak AnionH/R ID: 4.6(mm)								
% Moisture:		GPC	GPC Cleanup: (Y/N) N								
Analysis Batch No.: 72897			Units: ug/L								
CAS NO.	COMPOUND NAME		RESULT	Q	LOQ	DL					

14797-73-0

Perchlorate

0.20

0.019

0.029 JMJ

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Bu	Job No.: 680-101795-1					
SDG No.: 680-101795-01						
Client Sample ID: 54MW10) La	Lab Sample ID: 680-101795-2				
Matrix: Water		Lab File ID: P060214A09.d				
Analysis Method: 6850	Da	ate Collected:	05/28	/2014 09:40		
Extraction Method:		Date Extracted:				
Sample wt/vol: 5(mL)		Date Analyzed: 06/02/2014 12:53				
Con. Extract Vol.:		Dilution Factor: 1				
Injection Volume: 100(uL)		GC Column: IC-Pak AnionH/R ID: 4.6(mm)				
% Moisture:		GPC Cleanup: (Y/N) N				
Analysis Batch No.: 72897		Units: ug/L				
CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL	
14797-73-0 Perchlorate	14797-73-0 Perchlorate			0.20	0.019	

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington		Job	Job No.: 680-101795-1				
SDG No.: 680	-101795-01					-	
Client Sample ID: 54MW12		Lab	Lab Sample ID: 680-101795-3				
Matrix: Water		Lab	Lab File ID: P060214A10.d				
Analysis Method: 6850		Date	e Collected:	05/28	/2014 13:15	•	
Extraction Method:		Date	e Extracted:				
Sample wt/vol: 5(mL)		Date	Date Analyzed: 06/02/2014 13:08				
Con. Extract Vol.:		Dilı	Dilution Factor: 1				
Injection Volume: 100(uL)		GC (GC Column: IC-Pak AnionH/R ID: 4.6(mm)				
% Moisture:		GPC	GPC Cleanup:(Y/N) N				
Analysis Batch No.: 72897		Unit	Units: ug/L				
CAS NO.	COMPOUND NAME		RESULT	Q	LOQ	DL	
14797-73-0	Perchlorate		1.7		0.20	0.019	

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Tes	stAmerica Burlington	Job No.: 680-101795-1				
SDG No.: 680-	-101795-01					
Client Sample	ID: 54MW13	Lab Sample ID: 680-101795-4				
Matrix: Water		Lab File ID: P060214A11.d				
Analysis Metho	od: 6850	Date Collected: 05/28/2014 14:55				
Extraction Method:		Date Extracted:				
Sample wt/vol: 5(mL)		Date Analyzed: 06/02/2014 13:23				
Con. Extract Vol.:		Dilution Factor: 1				
Injection Volu	ume: 100(uL)	GC Column: IC-Pak AnionH/R ID: 4.6(mm)				
% Moisture:		GPC Cleanup:(Y/N) N				
Analysis Batch No.: 72897 Ur		Units: ug/L				
CAS NO.	COMPOUND NAME	RESULT Q LOQ DL				
14797-73-0	Perchlorate	0.37 0.20 0.019				

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-101795-1 SDG No.: 680-101795-01 Client Sample ID: 54TM12 Lab Sample ID: 680-101795-5 Matrix: Water Lab File ID: P060214A12.d Analysis Method: 6850 Date Collected: 05/28/2014 13:15 Extraction Method: Date Extracted: Sample wt/vol: 5(mL) Date Analyzed: 06/02/2014 13:39 Con. Extract Vol.: Dilution Factor: 1 Injection Volume: 100(uL) GC Column: IC-Pak AnionH/R ID: 4.6(mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 72897 Units: ug/L CAS NO. COMPOUND NAME RESULT Q LOQ DL14797-73-0 Perchlorate 1.7 0.20 0.019

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington			Job No.: 680-101795-1				
SDG No.: 680-103	1795-01						
Client Sample ID: 54RB052814			Lab Sample ID: 680-101795-6				
Matrix: Water		Lak	Lab File ID: P060214A13.d				
Analysis Method: 6850			Date Collected: 05/28/2014 12:25				
Extraction Method:			Date Extracted:				
Sample wt/vol: 5(mL)		Dat	Date Analyzed: 06/02/2014 13:54				
Con. Extract Vol.:		Dil	Dilution Factor: 1				
Injection Volume: 100(uL)		GC	GC Column: IC-Pak AnionH/R ID: 4.6(mm)				
% Moisture:		GPC	GPC Cleanup: (Y/N) N				
Analysis Batch No.: 72897		Uni	Units: ug/L				
CAS NO.	COMPOUND NAME		RESULT	Q	LOQ	DL	
1			1		1	1	

0.019 U

0.20

0.019

14797-73-0

Perchlorate

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100 Fax: +1 (410) 273-7103 Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CB&I Federal Services, LLC (CB&I) Radford Army Ammunition Plant (RFAAP)

Project Manager

FROM:

Eric Malarek, CB&I Project Chemist

SUBJECT:

RFAAP Data Validation - Explosives

Test America Laboratories, Inc., SDG 680-101795

DATE:

June 23, 2014

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on May 28, 2014. Samples were analyzed for select explosives using USEPA SW846 Method SW-846 8330B for aqueous matrices. A total of eleven aqueous samples (includes five confirmatory samples and a rinse blank) were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
54MW01	680-101795-1	54MW13	680-101795-4C
54MW10	680-101795-2	54TM12	680-101795-5
54MW10	680-101795-2C	54TM12	680-101795-5C
54MW12	680-101795-3	54RB052814	680-101795-6
54MW12	680-101795-3C	54RB052814	680-101795-6C
54MW13	680-101795-4		

Data were reviewed by Eric Malarek and validated using a combination of project QAPP, Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010) (DoD QSM), method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualifi	ed Data	Parameter			
Yes	No				
Х		Holding Times and Preservation			
Х		Blank Analysis			
	Х	Initial Calibration			
	Х	Continuing Calibration			
Х		System Monitoring Compounds			
	Х	Laboratory Control Sample			
	Х	Matrix Spike/Spike Duplicate			
Х		Field Duplicate			
Х		Quantitation Verification and Data Review			

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT EXPLOSIVES REVIEW SDG 680-101795

I-Holding Times and Preservation

The objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample extraction and analysis. Holding time criteria: For aqueous samples, explosive compounds are shipped cooled ($@4^{\circ}C \pm 2^{\circ}C$) with a maximum holding time of 7 days from sample collection to preparative extraction and 40 days from preparative extraction to determinative analysis (USEPA criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 05/28/14, the coolers were received on 05/29/14 by the primary laboratory (Test America Laboratories, Inc.) at 4.0°C, 3.8°C, and 11.4°C. The receipt temperature was slightly above criteria for one the coolers containing samples 54MW01 (680-101795-1) and 54MW10 680-101795-2); therefore, all target aromatic explosives were qualified "L" for detections and "UL" for non-detections for these samples based upon this outlier.
- <u>Holding Time Review</u>: The aqueous samples were collected on 05/28/14. The samples were extracted on 06/02/14 and were analyzed on 06/05/14 for explosives. Sample collection dates may be found on the attached form 1s. All criteria were met. No qualifiers were applied.

II-Blank Analysis

The purpose of laboratory or field blank analyses is to determine the existence and magnitude of contamination problems resulting from laboratory or field activities. One method blank per analytical batch must be run on each instrument used to analyze samples. No contaminants should be present in the blanks. The DoD QSM criterion specifies all concentrations should be less than one-half MRL. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤ 5 times (5x) the maximum amount for explosive target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB052814 (680-101795-6) applies to all samples in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	QC Blank ID	Compound	Max Conc. μg/L	Action Level μg/L	B qualified samples (For this SDG)
06/05/14	MB 200-72922/1-A	All target explosives <1/2MRL	NA	NA	None
06/05/14	54RB052814	Nitroglycerin	2.7J	13.5	54MW12, 54TM12

J = Estimated value <LOQ and >DL.

LOQ = Limit of Quantitation

MRL = Method Reporting Limit

DL = Detection Limit

NA = Not Applicable

III-Initial Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the target compounds. The initial 5-point calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run. The DoD QSM specifies that the correlation coefficient must be ≥ 0.995 , the coefficient of determination ≥ 0.99 , and/or the percent relative standard deviation (%RSD) must be $\leq 20\%$.

- For the explosives initial calibration performed on 05/06/14 on instrument CH1208, all criteria were met for target explosives compounds. All target compounds were determined using linear regression with coefficients of determination ≥0.99. No qualifiers were applied. Samples 54MW01 (680-101795-1), 54MW10 (680-101795-2), 54MW12 (680-101795-3), 54MW13 (680-101795-4), 54TM12 (680-101795-5), and 54RB052814 (680-101795-6) apply to this initial calibration.
- For the TNX, DNX, and MNX initial calibration performed on 05/14/14 on instrument CH1208, all criteria were met for target explosives compounds. All target compounds were determined using linear regression with coefficients of determination ≥0.99. No qualifiers were applied. Samples 54MW01 (680-101795-1), 54MW10 (680-101795-2), 54MW12 (680-101795-3), 54MW13 (680-101795-4), 54TM12 (680-101795-5), and 54RB052814 (680-101795-6) apply to this initial calibration.
- For the confirmatory explosives initial calibration performed on 05/09/14 on instrument CH1488, all criteria were met for target explosives compounds. All target compounds were determined using linear regression with coefficients of determination ≥0.99. No qualifiers were applied. Confirmatory samples 54MW10 (680-101795-2C), 54MW12 (680-101795-3C), 54MW13 (680-101795-4C), 54TM12 (680-101795-5C), and 54RB052814 (680-101795-6C) apply to this initial calibration.
- For the TNX, DNX, and MNX initial calibration performed on 05/14/14 on instrument CH1488, all criteria were met for target explosives compounds. All target compounds were determined using linear regression with coefficients of determination ≥0.99. No qualifiers were applied. Confirmatory samples 54MW10 (680-101795-2C), 54MW12 (680-101795-3C), 54MW13 (680-101795-4C), 54TM12 (680-101795-5C), and 54RB052814 (680-101795-6C) apply to this initial calibration.

IV-Continuing Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the target compounds. Continuing calibration standards are analyzed after every 10 injections, and at the end of the analysis sequence. The DoD QSM specifies that the percent difference (%D) from initial calibration should be no greater than $\pm 20\%$.

- For explosives initial calibration verification performed on 05/06/2014 @18:26 on instrument CH1208, all criteria were met for target compounds. No qualifiers were applied. No aqueous samples were reported using this initial verification calibration.
- For TNX, DNX, and MNX initial calibration verification performed on 05/14/2014 @14:55 on instrument CH1208, TNX (30.0%) was outside criteria. For all other target compounds, all criteria were met. No aqueous samples were reported using this initial verification calibration; therefore, no qualifiers were applied based upon this outlier.
- For explosives continuing calibration performed on 06/05/2014 @09:16 on instrument CH1208, all criteria were met. No qualifiers were applied. Samples 54MW01 (680-101795-1), 54MW10 (680-101795-2), 54MW12 (680-101795-3), 54MW13 (680-101795-4), 54TM12 (680-101795-5), and 54RB052814 (680-101795-6) were reported using this continuing calibration.

- For TNX, DNX, and MNX continuing calibration performed on 06/05/2014 @09:54 on instrument CH1208, all criteria were met. No qualifiers were applied. Samples 54MW01 (680-101795-1), 54MW10 (680-101795-2), 54MW12 (680-101795-3), 54MW13 (680-101795-4), 54TM12 (680-101795-5), and 54RB052814 (680-101795-6) were reported using this continuing calibration.
- For explosives continuing calibration performed on 06/05/2014 @17:23 on instrument CH1208, all criteria were met. No qualifiers were applied. No aqueous samples were reported using this continuing calibration.
- For TNX, DNX, and MNX continuing calibration performed on 06/05/2014 @18:01 on instrument CH1208, all criteria were met. No qualifiers were applied. No aqueous samples were reported using this continuing calibration.
- For confirmatory explosives initial calibration verification performed on 05/09/2014 @14:53 on instrument CH1488, all criteria were met for target compounds. No qualifiers were applied. No aqueous samples were reported using this initial verification calibration.
- For confirmatory TNX, DNX, and MNX initial calibration verification performed on 05/14/2014 @20:53
 on instrument CH1488, all criteria were met for target compounds. No qualifiers were applied. No
 aqueous samples were reported using this initial verification calibration.
- For confirmatory explosives continuing calibration performed on 06/05/2014 @11:22 on instrument CH1488, all criteria were met. No qualifiers were applied. Confirmatory samples 54MW10 (680-101795-2C), 54MW12 (680-101795-3C), 54MW13 (680-101795-4C), 54TM12 (680-101795-5C), and 54RB052814 (680-101795-6C) were reported using this continuing calibration.
- For confirmatory TNX, DNX, and MNX continuing calibration performed on 06/05/2014 @11:56 on instrument CH1488, all criteria were met. No qualifiers were applied. Confirmatory samples 54MW10 (680-101795-2C), 54MW12 (680-101795-3C), 54MW13 (680-101795-4C), 54TM12 (680-101795-5C), and 54RB052814 (680-101795-6C) were reported using this continuing calibration.
- For confirmatory explosives continuing calibration performed on 06/05/2014 @18:49 on instrument CH1488, all criteria were met. No qualifiers were applied. No aqueous samples were reported using this continuing calibration.
- For confirmatory TNX, DNX, and MNX continuing calibration performed on 06/05/2014 @19:23 on instrument CH1488, all criteria were met. No qualifiers were applied. No aqueous samples were reported using this continuing calibration.

V-System Monitoring Compound (Surrogates)

Laboratory performance on individual samples is established by means of spiking activities. The percent recovery (%R) for all samples and blanks must be within the laboratory control limits. DoD surrogate recovery limits are specified in Table G-3 of the DoD QSM (DoD, 2010). If the surrogate is not listed, then the laboratory criteria shall be used.

Aqueous Criteria:

1,2-dinitrobenzene (75-130%)

- For sample 54MW12 (680-101795-3C), surrogate 1,2-dinitrobenzene (157%) was outside criteria. All detections were qualified estimated bias high "K" and non-detections no qualifier based upon the high recovery.
- For sample 54TM12 (680-101795-5C), surrogate 1,2-dinitrobenzene (162%) was outside criteria. All
 detections were qualified estimated bias high "K" and non-detections no qualifier based upon the high
 recovery.

For all other samples, all criteria were met.

VI-Laboratory Control Sample

Laboratory control samples (LCS) are used to monitor long-term accuracy of the analytical method. The analysis is performed at a frequency of 1 per analytical batch. The percent recoveries (%Rs) must be within the laboratory control limits. DoD QSM aqueous LCS recovery limits are specified in Table G-12 of the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used.

- Sample LCS 200-72922/2-A was used as the aqueous LCS for the explosives analysis on 06/05/14. All criteria were met. No qualifiers were applied. Samples 54MW01 (680-101795-1), 54MW10 (680-101795-2C), 54MW12 (680-101795-3C), 54MW12 (680-101795-3C), 54MW13 (680-101795-4C), 54TM12 (680-101795-5C), 54TM12 (680-101795-6C) apply to this LCS.
- Sample LCS 200-72922/3-A was used as the aqueous LCS for the TNX, DNX, and MNX analysis on 06/05/14. All criteria were met. No qualifiers were applied. Samples 54MW01 (680-101795-1), 54MW10 (680-101795-2), 54MW10 (680-101795-2C), 54MW12 (680-101795-3), 54MW12 (680-101795-3C), 54MW13 (680-101795-4C), 54MW13 (680-101795-4C), 54TM12 (680-101795-5C), 54TM12 (680-101795-5C), 54RB052814 (680-101795-6C) apply to this LCS.

VII-Matrix Spike/Matrix Spike Duplicate

Data for matrix spike/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The percent recoveries (%Rs) and the relative percent difference (RPD) must be within the laboratory control limits. DoD QSM aqueous MS/MSD recovery limits follow the LCS criteria and are specified in Table G-12 of the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used. The DoD QSM aqueous precision limit for explosives is ≤20% RPD.

Sample 54MW01 (680-101795-1) was used as the aqueous MS/MSD for the explosives analysis on 06/05/14. Target compound TNX (551%, 544%) was outside criteria. All RPD criteria were met. The associated LCS was within criteria for all target compounds (Section VI). Target compound TNX was not detected in the spiked sample; therefore no qualification was required based upon the high recoveries. Samples 54MW01 (680-101795-1), 54MW10 (680-101795-2), 54MW10 (680-101795-2C), 54MW12 (680-101795-3), 54MW12 (680-101795-3C), 54MW13 (680-101795-4), 54MW13 (680-101795-6C), 54RB052814 (680-101795-6C) apply to this MS/MSD.

VIII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 50% RPD for the aqueous samples.

Field groundwater sample duplicate pair 54MW12 (680-101795-3) and 54TM12 (680-101795-5) was analyzed for explosives analysis in this SDG. All detected explosives found in the sample and its duplicate pair and associated %RPD are noted in **Table 3**. All other target analytes were non-detect for the duplicate pair. Target compounds 2,6-dinitrotoluene and 4-nitrotoluene were outside criteria and were qualified estimated "J" for the duplicate pair based upon the high RPDs. These outliers were probably due to the trace compound concentrations detected for the duplicate pair (i.e. <LOQ). For all other target explosives, all criteria were met.</p>

Table 3 Field Precision Analysis Summary for Explosives for Duplicate Pair 54MW12 (680-101795-3) and 54TM12 (680-101795-5)

Compound	Original Sample (µg/L)	Duplicate Pair (µg/L)	%RPD
1,3-Dinitrobenzene	2.3	2.2	4.4
2,4,6-Trinitrotoluene	10	11	9.5
2,4-Dinitrotoluene	0.20J	0.16J	22.2
2,6-Dinitrotoluene	0.73J	0.46J	45.4
2-Amino-4,6-dinitrotoluene	4.7	4.8	2.1
2-Nitrotoluene	0.12J	0.11J	8.7
4-Amino-2,6-dinitrotoluene	3.6	3.6	0.0
4-Nitrotoluene	0.14J	0.24J	52.6
DNX	0.051J	0.056J	9.4
MNX	0.19J	0.16J	17.1
Nitroglycerin	2.3J	1.7J	30.0
RDX	2.0	2.2	9.5
TNX	0.50J	0.57J	13.1

J = Estimated value <LOQ and >DL.

IX-Quantitation Verification and Data Review

The accuracy of analytical results was verified through the calculation of several parameters.

- All values >MDL and <MRL or <3*MDL (whichever was greater) were qualified as estimated "J" (if required).
- The absolute percent difference (%D) between the calculated and the reported value must be within 10% difference. The calculation was based calibration factors.
- All positive values must have less than or equal to 40% RPD between the primary and secondary columns.
- For sample 54MW10 (680-101795-2), TNX (76.4%), DNX (115%), MNX (95.0%), 1,3-dinitrobenzene (116%), 2,6-dinitrotoluene (154%), 2,4-dinitrotoluene (96.1%), and 4-nitrotoluene (198%) were outside confirmatory criteria; therefore, were qualified estimated "J" for the associated sample based upon these outliers.
- For sample 54MW12 (680-101795-3), TNX (89.6%), DNX (171%), MNX (119%), nitroglycerin (139%), 2,6-dinitrotoluene (115%), 2,4-dinitrotoluene (122%), 2-nitrotoluene (144%), and 4-nitrotoluene (199%) were outside confirmatory criteria; therefore, were qualified estimated "J" for the associated sample based upon these outliers.
- For sample 54MW13 (680-101795-4), DNX (67.3%), MNX (100%), RDX (55.3%), 1,3-dinitrobenzene (99.4%), 2,6-dinitrotoluene (179%), and 4-nitrotoluene (199%) were outside confirmatory criteria; therefore, were qualified estimated "J" for the associated sample based upon these outliers.
- For sample 54TM12 (680-101795-5), TNX (101%), DNX (169%), MNX (126%), nitroglycerin (151%), 2,6-dinitrotoluene (144%), 2-nitrotoluene (141%), and 4-nitrotoluene (199%) were outside confirmatory criteria; therefore, were qualified estimated "J" for the associated sample based upon these outliers.
- For sample 54RB052814 (680-101795-6), nitroglycerin (48.3%) was outside confirmatory criteria; therefore, was qualified estimated "J" for the associated sample based upon this outlier.

LOQ = Limit of Quantitation

DL = Detection Limit

Sample: 54MW10 (680-101795-2), 4-amino-2,6-dinitrotoluene

Y = mX + b

Y = Area of target compound for sample

m = slope of curve

X = Amount on column

b = Y-intercept

Given:

m = 65960.7852

b = -11738.943

Y = Area = 5492911

X = 83.45

Conc. μ g/L = (Ax * Vt * DF) / (Vs)

where: Conc. = Sample concentration in μ g/L

Ax = Amount of compound being measured (μg/L).
 Vt = Volume of total extract (mL) from bench sheet.

Vs = Volume of sample extracted (mL).

DF = Dilution factor

Conc. μ g/L = (83.45 * 10 * 1) / (500) = 1.7 μ g/L (Signal #1)

Reported Value = $1.7 \mu g/L$

% Difference = 0.0%

Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the
	limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the
	reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound
	(using mass spectroscopy).
Q	One or more quality control criteria failed.
U	SEPA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample.
	Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in
	laboratory or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to
	confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution.
	Presumptively present at approximate quantity.
K	Analyte present. Reported value may be biased high. Actual value is
	expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is
	expected to be higher.
UL	Not detected, quantitation limit is probably higher.

The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Organic

Data Review (September 1994).

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-101795-1

SDG No.: 680-101795-01

Client Sample ID: 54MW01 Lab Sample ID: 680-101795-1

Matrix: Water Lab File ID: 79020006.D

Analysis Method: 8330B Date Collected: 05/28/2014 11:25

Extraction Method: 8330-Prep Date Extracted: 06/02/2014 10:58

Sample wt/vol: 500 (mL) Date Analyzed: 06/05/2014 12:23

Con. Extract Vol.: 10000(uL) Dilution Factor: 1

Injection Volume: 150(uL) GC Column: C-18 ID: 4.6(mm)

% Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 73108 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
13980-04-6	TNX	0.031	UJUL	0.20	0.031
99-65-0	1,3-Dinitrobenzene	0.032	UVL	0.20	0.032
118-96-7	2,4,6-Trinitrotoluene	0.029	UMUL	0.20	0.029
80251-29-2	DNX	0.029	UVL	0.20	0.029
5755-27-1	MNX	0.018	UVL	0.20	0.018
121-14-2	2,4-Dinitrotoluene	0.026	UVL	0.20	0.026
606-20-2	2,6-Dinitrotoluene	0.042	U VL	0.20	0.042
35572-78-2	2-Amino-4,6-dinitrotoluene	0.016	UVL	0.20	0.016
19406-51-0	4-Amino-2,6-dinitrotoluene	0.017	UMVL	0.20	0.017
99-99-0	4-Nitrotoluene	0.053	UVL	0.20	0.053
88-72-2	2-Nitrotoluene	0.038	UVL	0.20	0.038
55-63-0	Nitroglycerin	1.3	U	4.0	1.3
121-82-4	RDX	0.026	UMVL	0.20	0.026

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	96		75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-101795-1

SDG No.: 680-101795-01

Client Sample ID: 54MW10 Lab Sample ID: 680-101795-2

Matrix: Water Lab File ID: 79020007.D

Analysis Method: 8330B Date Collected: 05/28/2014 09:40

Extraction Method: 8330-Prep Date Extracted: 06/02/2014 10:58

Sample wt/vol: 500(mL) Date Analyzed: 06/05/2014 13:01

Con. Extract Vol.: 10000(uL) Dilution Factor: 1

Injection Volume: 150(uL) GC Column: C-18 ID: 4.6(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 73108 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
13980-04-6	TNX	0.19	J J	0.20	0.031
99-65-0	1,3-Dinitrobenzene	0.96	JJ	0.20	0.032
118-96-7	2,4,6-Trinitrotoluene	11	Ĺ	0.20	0.029
80251-29-2	DNX	0.090	мјј	0.20	0.029
5755-27-1	MNX	0.12	MJJ	0.20	0.018
121-14-2	2,4-Dinitrotoluene	0.038	M J T	0.20	0.026
606-20-2	2,6-Dinitrotoluene	0.092	мјђ	0.20	0.042
35572-78-2	2-Amino-4,6-dinitrotoluene	1.6	M	0.20	0.016
19406-51-0	4-Amino-2,6-dinitrotoluene	1.7	L	0.20	0.017
99-99-0	4-Nitrotoluene	0.34	MJJ	0.20	0.053
88-72-2	2-Nitrotoluene	0.038	UVL	0.20	0.038
55-63-0	Nitroglycerin	1.3	Ū	4.0	1.3
121-82-4	RDX	8.7	М	0.20	0.026

CAS NO	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	112		75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-101795-1

SDG No.: 680-101795-01

Client Sample ID: 54MW10 Lab Sample ID: 680-101795-2

Matrix: Water Lab File ID: 7884A042.D

Analysis Method: 8330B Date Collected: 05/28/2014 09:40

Extraction Method: 8330-Prep Date Extracted: 06/02/2014 10:58

Sample wt/vol: 500(mL) Date Analyzed: 06/05/2014 14:48

Con. Extract Vol.: 10000(uL) Dilution Factor: 1

Injection Volume: 450(uL) GC Column: Biphenyl ID: 4.6(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 73109 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
13980-04-6	TNX	0.083	JMJ	0.20	0.031
99-65-0	1,3-Dinitrobenzene	0.26	J J	0.20	0.032
118-96-7	2,4,6-Trinitrotoluene	10	L	0.20	0.029
80251-29-2	DNX .	0.34	JMJ	0.20	0.029
5755-27-1	MNX	0.34	JMJ	0.20	0.018
121-14-2	2,4-Dinitrotoluene	0.11	JM'T	0.20	0.026
606-20-2	2,6-Dinitrotoluene	0.70	JMJ	0.20	0.042
35572-78-2	2-Amino-4,6-dinitrotoluene	1.4	L	0.20	0.016
19406-51-0	4-Amino-2,6-dinitrotoluene	1.6	L	0.20	0.017
99-99-0	4-Nitrotoluene	58	JMJ	0.20	0.053
121-82-4	RDX	7.5	L	0.20	0.026

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	113		75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-101795-1

SDG No.: 680-101795-01

Client Sample ID: 54MW12 Lab Sample ID: 680-101795-3

Matrix: Water Lab File ID: 79020008.D

Analysis Method: 8330B Date Collected: 05/28/2014 13:15

Extraction Method: 8330-Prep Date Extracted: 06/02/2014 10:58

Sample wt/vol: 500(mL) Date Analyzed: 06/05/2014 13:38

Con. Extract Vol.: 10000(uL) Dilution Factor: 1

Injection Volume: 150(uL) GC Column: C-18 ID: 4.6(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 73108 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
13980-04-6	TNX	0.50	J	0.20	0.031
99-65-0	1,3-Dinitrobenzene	2.3	M	0.20	0.032
118-96-7	2,4,6-Trinitrotoluene	10	M	0.20	0.029
80251-29-2	DNX	0.051	мјј	0.20	0.029
5755-27-1	MNX	0.19	J ブ	0.20	0.018
121-14-2	2,4-Dinitrotoluene	0.20	мјЈ	0.20	0.026
606-20-2	2,6-Dinitrotoluene	0.73	мју	0.20	0.042
35572-78-2	2-Amino-4,6-dinitrotoluene	4.7	М	0.20	0.016
19406-51-0	4-Amino-2,6-dinitrotoluene	3.6	М	0.20	0.017
99-99-0	4-Nitrotoluene	0.14	JJ	0.20	0.053
88-72-2	2-Nitrotoluene	0.12	муу	0.20	0.038
55-63-0	Nitroglycerin	2.3	млВ	4.0	1.3
121-82-4	RDX	2.0		0.20	0.026

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene		М	75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Job No.: 680-101795-1 Lab Name: TestAmerica Burlington

SDG No.: 680-101795-01

Client Sample ID: 54MW12 Lab Sample ID: 680-101795-3

Matrix: Water

Lab File ID: 7884A043.D

Analysis Method: 8330B Date Collected: 05/28/2014 13:15

Extraction Method: 8330-Prep Date Extracted: 06/02/2014 10:58 Sample wt/vol: 500(mL) Date Analyzed: 06/05/2014 15:22

Con. Extract Vol.: 10000(uL) Dilution Factor: 1

Injection Volume: 450(uL) GC Column: Biphenyl ID: 4.6(mm)

GPC Cleanup: (Y/N) N % Moisture:

Analysis Batch No.: 73109 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	\mathtt{DL}
13980-04-6	TNX	0.19	JMJ	0.20	0.031
99-65-0	1,3-Dinitrobenzene	1.9	K	0.20	0.032
118-96-7	2,4,6-Trinitrotoluene	8.0	K	0.20	0.029
80251-29-2	DNX	0.65	J 5	0.20	0.029
5755-27-1	MNX	0.75	JM J	0.20	0.018
121-14-2	2,4-Dinitrotoluene	0.048	JM J	0.20	0.026
606-20-2	2,6-Dinitrotoluene	2.7	JMJ	0.20	0.042
35572-78-2	2-Amino-4,6-dinitrotoluene	4.4	K	0.20	0.016
19406-51-0	4-Amino-2,6-dinitrotoluene	2.8	R	0.20	0.017
99-99-0	4-Nitrotoluene	77	JMJ	0.20	0.053
88-72-2	2-Nitrotoluene	0.75	JMJ	0.20	0.038
55-63-0	Nitroglycerin	13	JM B	4.0	1.3
121-82-4	RDX	1.9	k	0.20	0.026

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	157	Q	75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-101795-1 SDG No.: 680-101795-01 Client Sample ID: 54MW13 Lab Sample ID: 680-101795-4 Matrix: Water Lab File ID: 79020009.D Analysis Method: 8330B Date Collected: 05/28/2014 14:55 Extraction Method: 8330-Prep Date Extracted: 06/02/2014 10:58 Sample wt/vol: 500(mL) Date Analyzed: 06/05/2014 14:16 Con. Extract Vol.: 10000(uL) Dilution Factor: 1 GC Column: C-18 ID: 4.6(mm) Injection Volume: 150(uL)

% Moisture: GPC Cleanup: (Y/N) N
Analysis Batch No.: 73108 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
13980-04-6	TNX	0.11	јм Ј	0.20	0.031
99-65-0	1,3-Dinitrobenzene	0.66	ュゴ	0.20	0.032
118-96-7	2,4,6-Trinitrotoluene	5.8		0.20	0.029
80251-29-2	DNX	0.14	CLM	0.20	0.029
5755-27-1	MNX	0.083	MJT	0.20	0.018
121-14-2	2,4-Dinitrotoluene	0.056	JMJ	0.20	0.026
606-20-2	2,6-Dinitrotoluene	0.043	мју	0.20	0.042
35572-78-2	2-Amino-4,6-dinitrotoluene	0.86	M	0.20	0.016
19406-51-0	4-Amino-2,6-dinitrotoluene	0.79		0.20	0.017
99-99-0	4-Nitrotoluene	0.15	J	0.20	0.053
88-72-2	2-Nitrotoluene	0.038	UM	0.20	0.038
55-63-0	Nitroglycerin	1.3	UM	4.0	1.3
121-82-4	RDX	2.5	M J "5"	0.20	0.026

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	119		75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-101795-1

SDG No.: 680-101795-01

Client Sample ID: 54MW13 Lab Sample ID: 680-101795-4

Matrix: Water Lab File ID: 7884A044.D

Analysis Method: 8330B Date Collected: 05/28/2014 14:55

Extraction Method: 8330-Prep Date Extracted: 06/02/2014 10:58

Sample wt/vol: 500(mL) Date Analyzed: 06/05/2014 15:57

Con. Extract Vol.: 10000(uL) Dilution Factor: 1

Injection Volume: 450(uL) GC Column: Biphenyl ID: 4.6(mm)

% Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 73109 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
13980-04-6	TNX	0.080	JMJ	0.20	0.031
99-65-0	1,3-Dinitrobenzene	0.22	J J	0.20	0.032
118-96-7	2,4,6-Trinitrotoluene	5.3	М	0.20	0.029
80251-29-2	DNX	0.28	JMJ	0.20	0.029
5755-27-1	MNX	0.25	JMJ	0.20	0.018
121-14-2	2,4-Dinitrotoluene	0.075	JMJ	0.20	0.026
606-20-2	2,6-Dinitrotoluene	0.78	JMT	0.20	0.042
35572-78-2	2-Amino-4,6-dinitrotoluene	0.85		0.20	0.016
19406-51-0	4-Amino-2,6-dinitrotoluene	0.76		0.20	0.017
99-99-0	4-Nitrotoluene	55	JM J	0.20	0.053
121-82-4	RDX	1.4	J .T	0.20	0.026

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene			75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-101795-1

SDG No.: 680-101795-01

Client Sample ID: 54TM12 Lab Sample ID: 680-101795-5

Matrix: Water Lab File ID: 79020010.D

Analysis Method: 8330B Date Collected: 05/28/2014 13:15

Extraction Method: 8330-Prep Date Extracted: 06/02/2014 10:58

Sample wt/vol: 500(mL) Date Analyzed: 06/05/2014 14:53

Con. Extract Vol.: 10000(uL) Dilution Factor: 1

Injection Volume: 150(uL) GC Column: C-18 ID: 4.6(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 73108 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LÓQ	DL
13980-04-6	TNX	0.57	мј" ј	0.20	0.031
99-65-0	1,3-Dinitrobenzene	2.2	M	0.20	0.032
118-96-7	2,4,6-Trinitrotoluene	11		0.20	0.029
80251-29-2	DNX	0.056	мј	0.20	0.029
5755-27-1	MNX	0.16	J	0.20	0.018
121-14-2	2,4-Dinitrotoluene	0.16	JM	0.20	0.026
606-20-2	2,6-Dinitrotoluene	0.46	MJJ	0.20	0.042
35572-78-2	2-Amino-4,6-dinitrotoluene	4.8	M	0.20	0.016
19406-51-0	4-Amino-2,6-dinitrotoluene	3.6		0.20	0.017
99-99-0	4-Nitrotoluene	0.24	J	0.20	0.053
88-72-2	2-Nitrotoluene	0.11	MJ	0.20	0.038
55-63-0	Nitroglycerin	1.7	мј В	4.0	1.3
121-82-4	RDX	2.2		0.20	0.026

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	129	М	75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-101795-1

SDG No.: 680-101795-01

Client Sample ID: 54TM12 Lab Sample ID: 680-101795-5

Matrix: Water Lab File ID: 7884A045.D

Analysis Method: 8330B Date Collected: 05/28/2014 13:15

Extraction Method: 8330-Prep Date Extracted: 06/02/2014 10:58

Sample wt/vol: 500(mL) Date Analyzed: 06/05/2014 16:31

Con. Extract Vol.: 10000(uL) Dilution Factor: 1

Injection Volume: 450(uL) GC Column: Biphenyl ID: 4.6(mm)

% Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 73109 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
13980-04-6	TNX	0.19	JMJ	0.20	0.031
99-65-0	1,3-Dinitrobenzene	1.7	M	0.20	0.032
118-96-7	2,4,6-Trinitrotoluene	8.4	K	0.20	0.029
80251-29-2	DNX	0.67	J	0.20	0.029
5755-27-1	MNX	0.72	JM T	0.20	0.018
121-14-2	2,4-Dinitrotoluene	0.21	MK	0.20	0.026
606-20-2	2,6-Dinitrotoluene	2.8	JM T	0.20	0.042
35572-78-2	2-Amino-4,6-dinitrotoluene	4.3	K	0.20	0.016
19406-51-0	4-Amino-2,6-dinitrotoluene	2.7	K	0.20	0.017
99-99-0	4-Nitrotoluene	75	JMT	0.20	0.053
88-72-2	2-Nitrotoluene	0.65	JJ	0.20	0.038
55-63-0	Nitroglycerin	12	J M 13	4.0	1.3
121-82-4	RDX	2.0	K	0.20	0.026

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	162	Q	75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-101795-1

SDG No.: 680-101795-01

Client Sample ID: 54RB052814 Lab Sample ID: 680-101795-6

Matrix: Water Lab File ID: 79020011.D

Analysis Method: 8330B Date Collected: 05/28/2014 12:25

Extraction Method: 8330-Prep Date Extracted: 06/02/2014 10:58

Sample wt/vol: 500(mL) Date Analyzed: 06/05/2014 15:31

Con. Extract Vol.: 10000(uL) Dilution Factor: 1

Injection Volume: 150(uL) GC Column: C-18 ID: 4.6(mm)

% Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 73108 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	\mathtt{DL}
13980-04-6	TNX	0.031	U	0.20	0.031
99-65-0	1,3-Dinitrobenzene	0.032	U	0.20	0.032
118-96-7	2,4,6-Trinitrotoluene	0.029	UM	0.20	0.029
80251-29-2	DNX	0.029	U	0.20	0.029
5755-27-1	MNX	0.018	UM	0.20	0.018
121-14-2	2,4-Dinitrotoluene	0.026	U	0.20	0.026
606-20-2	2,6-Dinitrotoluene	0.042	U	0.20	0.042
35572-78-2	2-Amino-4,6-dinitrotoluene	0.016	υ	0.20	0.016
19406-51-0	4-Amino-2,6-dinitrotoluene	0.017	UM	0.20	0.017
99-99-0	4-Nitrotoluene	0.053	UM	0.20	0.053
88-72-2	2-Nitrotoluene	0.038	U	0.20	0.038
55-63-0	Nitroglycerin	2.7	JMJ	4.0	1.3
121-82-4	RDX	0.026	U	0.20	0.026

CAS NO.	SURROGATE	%REC	Q	LIMITS
	1,2-Dinitrobenzene	102	М	75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-101795-1 SDG No.: 680-101795-01 Client Sample ID: 54RB052814 Lab Sample ID: 680-101795-6 Matrix: Water Lab File ID: 7884A046.D Analysis Method: 8330B Date Collected: 05/28/2014 12:25 Extraction Method: 8330-Prep Date Extracted: 06/02/2014 10:58 Date Analyzed: 06/05/2014 17:06 Sample wt/vol: 500 (mL) Con. Extract Vol.: 10000(uL) Dilution Factor: 1 Injection Volume: 450(uL) GC Column: Biphenyl ID: 4.6(mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 73109 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
55-63-0	Nitroglycerin		JMJ	4.0	1.3

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	112		75-130

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100 Fax: +1 (410) 273-7103 Eric.malarek@CBIfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CB&I Federal Services, LLC (CB&I) Radford Army Ammunition Plant (RFAAP)

Project Manager

FROM:

Eric Malarek, CB&I Project Chemist

SUBJECT:

RFAAP Data Validation - Chloride, Chlorate, Chlorite, Nitrate, and Sulfate

Test America Laboratories, Inc., SDG 680-101795

DATE:

June 23, 2014

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on May 28, 2014. Samples were analyzed for chlorite and chlorate using USEPA Method 300.1 and for chloride, nitrate, and sulfate using USEPA Method 300.0. A total of six aqueous samples (includes one rinse blank) were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
54MW01	680-101795-1	54MW13	680-101795-4
54MW10	680-101795-2	54TM12	680-101795-5
54MW12	680-101795-3	54RB052814	680-101795-6

Data were reviewed and validated using a combination of project QAPP, *DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010* (DoD, 2010), and method-specific criteria. The data qualifier scheme was consistent with the *Region III Modifications to the National Functional Guidelines for Inorganic Data Review* (April, 1993). Parameters evaluated are presented in **Table 1**. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualified Data		Parameter
Yes	No	
Х		Holding Times and Preservation
Х		Initial and Continuing Calibration
Х		Blank Analysis
Х		System Monitoring Compounds
Х		Laboratory Control Sample
	Х	Laboratory Duplicate Sample
	Х	Matrix Spike and Spike Duplicate
	Х	Field Duplicate Sample
Х		Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT ANIONS REVIEW SDG 680-101795

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. Holding time criteria: Cool $4^{\circ}C\pm2^{\circ}C$ and 28 days for sulfate, chloride, and chlorate; Cool $4^{\circ}C\pm2^{\circ}C$ and 14 days for chlorite; and Cool to $4^{\circ}C\pm2^{\circ}C$ with H_2SO_4 to pH<2 and 2 days for nitrate. The dates and times were compared between the sample collection and laboratory analysis (USEPA criteria).

- Temperature Review: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 05/28/14, the coolers were received on 05/29/14 by the primary laboratory (Test America Laboratories, Inc.) at 4.0°C, 3.8°C, and 11.4°C. The receipt temperature was slightly above criteria for one the coolers containing samples 54MW01 (680-101795-1) and 54MW10 680-101795-2); therefore, nitrate (short holding time anion) was qualified "L" for detections and "UL" for non-detections for these samples based upon this outlier. The other anions are more stable based upon professional judgment.
- Holding Time Review: Samples were collected on 05/28/14. The samples were analyzed on 05/30/14 for nitrate analysis; on 06/06/14 for chloride and sulfate analysis; on 06/05/14, 06/07/14, and 06/10/14 for chlorite analysis; and on 06/03/14 and 06/06/14 for chlorate analysis, respectively. Sample collection dates may be found on the attached form 1s. All criteria were met. No qualifiers were applied.

II-Initial and Continuing Calibration

Requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data. Initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of the analysis run, and continuing calibration verification documents that the initial calibration is still valid.

Chloride, nitrate, and sulfate: 1 – blank

5 – standards (r≥0.995 or r^2 ≥0.99)

ICV/CCV (90-110%)

Method Reporting Limit (MRL) (75-125%)

Chlorite and chlorate: 1 – blank

 $5 - \text{standards} \ (r > 0.995 \ \text{or} \ r^2 \ge 0.99; \ RSD \le 15\%)$

ICV/CCV (≤15%D)

• Chloride and sulfate analysis was calibrated on 05/21/14 using linear equation techniques to calculate final calculations. Nitrate analysis was calibrated on 05/23/14 using linear equation techniques to calculate final calculations. Chlorite analysis was calibrated on 06/02/14 using linear regression with final concentrations determined using external calibration factor techniques. Chlorate analysis was calibrated on 06/03/14 and 06/05/14 using linear regression with final concentrations determined using external calibration factor techniques. All coefficients of determinations were r²≥0.99 for chloride, chlorate, sulfate, and nitrate for all runs. All ICV/CCV/MRL criteria were met for all anions and runs. No qualifiers were applied. Samples 54MW01 (680-101795-1), 54MW10 (680-101795-2), 54MW12 (680-101795-3), 54MW13 (680-101795-4), 54TM12 (680-101795-5), and 54RB052814 (680-101795-6) apply to these initial and continuing calibrations.

III-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. Calibration blanks were analyzed initially and at a 10% frequency thereafter for each batch. No contaminants should be detected in any of the associated blanks >MDL. The DoD QSM criteria specifies all concentrations should be less than $\frac{1}{2}$ MRL (<MRL for common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters) and <2MDL for the calibration blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is \leq 10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, 2-butanone, and phthalate esters, or 5 times (5X) the maximum amount for other target compounds. Table 2 summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB052814 (680-101795-6) applies to all samples in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis	Analysis	QC Blank ID	Max Conc.	Action Level	B qualified samples
Date			mg/L	mg/L	(for this SDG)
06/06/14	Chloride	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
06/06/14	Sulfate	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
05/30/14	Nitrate	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
06/06/14	Chloride	MB 680-332771/29	<1/2MRL	NA	None
06/06/14	Sulfate	MB 680-332771/29	<1/2MRL	NA	None
05/30/14	Nitrate	MB 680-331461/5	<1/2MRL	NA	None
05/30/14	Nitrate	MB 680-331570/30	<1/2MRL	NA	None
06/06/14	Chloride	54RB052814	<1/2MRL	NA	None
06/06/14	Sulfate	54RB052814	0.40J	2.00	None
05/30/14	Nitrate	54RB052814	0.032J	0.16	54MW01
Analysis	Analysis	QC Blank ID	Max Conc.	Action Level	B qualified samples
Date			μg/L	μg/L	(for this SDG)
06/05/14	Chlorite	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
06/07/14	Chlorite	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
06/10/14	Chlorite	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
06/03/14	Chlorate	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
06/06/14	Chlorate	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
06/04/14	Chlorite	MB 680-332427/3	<1/2MRL	NA	None
06/07/14	Chlorite	MB 680-332958/5	<1/2MRL	NA	None
06/10/14	Chlorite	MB 680-333328/2	<1/2MRL	NA	None
06/03/14	Chlorate	MB 680-331936/7	<1/2MRL	NA	None
06/05/14	Chlorate	MB 680-332566/11	<½MRL	NA	None
			4 (3 45)	ALA	NI.
06/05/14	Chlorite	54RB052814	<1/2MRL	NA	None

LOD = Limit of Detection

MRL = Method Reporting Limit

MDL = Method Detection Limit

NA = Not Applicable

IV-System Monitoring Compound (Surrogates)

Laboratory performance on individual samples is established by means of spiking activities. Surrogates were performed for chlorite analysis. The percent recovery (%R) for all samples and blanks must be within the laboratory control limits. DoD surrogate recovery limits are specified in Table G-3 of the DoD QSM (DoD, 2010). If the surrogate is not listed, then the laboratory criteria shall be used.

Chlorite and chlorate: Dichloroacetic acid (DCAA) (90-115%)

All criteria were met for all reported samples. No qualifiers were applied.

V-Laboratory Control Sample and Laboratory Control Sample Duplicate

The laboratory control sample (LCS) and LCSD serve as a monitor of the overall performance of each step during the analysis, including the sample preparation. LCS and LCSD are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Per DoD QSM, all LCS/LCSD results must fall within the specified control limits:

Chloride, nitrate, and sulfate: 90-110%; RPD≤30% (DOD QSM = 80-120%; RPD≤20%) Chlorite and chlorate: 85-115%; RPD≤10% (DOD QSM = None Listed)

Samples LCS 680-332771/30 and LCSD 680-332771/31 were used as the aqueous LCS/LCSD for chloride and sulfate analysis on 06/06/14. All criteria were met. No qualifiers were applied. Samples 54MW01 (680-101795-1), 54MW10 (680-101795-2), 54MW12 (680-101795-3), 54MW13 (680-101795-4), 54TM12 (680-101795-5), and 54RB052814 (680-101795-6) apply to this LCS/LCSD for chloride and sulfate.

- Samples LCS 680-316449/6 and LCSD 680-316449/7 were used as the aqueous LCS/LCSD for nitrate analysis on 05/30/14. All criteria were met. No qualifiers were applied. Samples 54MW12 (680-101795-3), 54MW13 (680-101795-4), 54TM12 (680-101795-5), and 54RB052814 (680-101795-6) apply to this LCS/LCSD.
- Samples LCS 680-331570/31 and LCSD 680-331570/32 were used as the aqueous LCS/LCSD for nitrate analysis on 05/30/14. All criteria were met. No qualifiers were applied. Samples 54MW01 (680-101795-1) and 54MW10 (680-101795-2) apply to this LCS/LCSD.
- Samples LCS 680-332427/5 and LCSD 680-332427/6 were used as the aqueous LCS/LCSD for chlorite analysis on 06/04/14. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-101795-2), 54MW12 (680-101795-3), 54TM12 (680-101795-5), and 54RB052814 (680-101795-6) apply to this LCS/LCSD.
- Samples LCS 680-332958/7 and LCSD 680-332958/8 were used as the aqueous LCS/LCSD for chlorite analysis on 06/07/14. All criteria were met. No qualifiers were applied. Sample 54MW13 (680-101795-4) applies to this LCS/LCSD.
- Samples LCS 680-333328/4 and LCSD 680-333328/5 were used as the aqueous LCS/LCSD for chlorite analysis on 06/10/14. All criteria were met. No qualifiers were applied. Sample 54MW01 (680-101795-1) applies to this LCS/LCSD.
- Samples LCS 680-331936/9 and LCSD 680-331936/10 were used as the aqueous LCS/LCSD for chlorate analysis on 06/03/14. All criteria were met. No qualifiers were applied. Samples 54MW01 (680-101795-1), 54MW10 (680-101795-2), 54MW12 (680-101795-3), 54TM12 (680-101795-5), and 54RB052814 (680-101795-6) apply to this LCS/LCSD.
- Samples LCS 680-332566/13 and LCSD 680-332566/14 were used as the aqueous LCS/LCSD for chlorate analysis on 06/06/14. All criteria were met. No qualifiers were applied. Sample 54MW13 (680-101795-4) applies to this LCS/LCSD.

VI-Duplicate Sample Analysis

Duplicate sample determinations are used to demonstrate acceptable method precision by the laboratory at the time of analysis. Duplicate analysis is performed to generate data in order to determine the long-term precision of the analytical method on various matrices. Per DoD QSM, RPDs must be within established control limits (≤20%RPD).

• No site lab duplicate was performed with this SDG; therefore, was not evaluated.

VII-Matrix Spike and Matrix Spike Duplicate

Matrix spikes (MSs) and MSDs are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at a frequency of one MS/MSD per 20 samples or preparatory batch of similar matrix. Per DoD QSM, MS/MSD recoveries and RPDs should be within the specified limits:

Chloride, nitrate, and sulfate:

90-110%; RPD≤30% (DOD QSM = 80-120%; RPD≤20%)

Chlorite and chlorate:

75-125%; RPD≤10% (DOD QSM = None Listed)

- Sample 54MW01 (680-101795-1) was used as the aqueous MS/MSD for chloride and sulfate analysis on 06/06/14. All criteria were met. No qualifiers were applied. Samples 54MW01 (680-101795-1), 54MW10 (680-101795-2), 54MW12 (680-101795-3), 54MW13 (680-101795-4), 54TM12 (680-101795-5), and 54RB052814 (680-101795-6) apply to this MS/MSD.
- Sample 54MW01 (680-101795-1) was used as the aqueous MS/MSD for nitrate analysis on 05/30/14.
 All criteria were met. No qualifiers were applied. Samples 54MW01 (680-101795-1), 54MW10 (680-101795-2), 54MW12 (680-101795-3), 54MW13 (680-101795-4), 54TM12 (680-101795-5), and 54RB052814 (680-101795-6) apply to this MS/MSD.
- Sample 54MW01 (680-101795-1) was used as the aqueous MS/MSD for chlorite analysis on 06/10/14. All criteria were met. No qualifiers were applied. Samples 54MW01 (680-101795-1), 54MW10 (680-101795-2), 54MW12 (680-101795-3), 54MW13 (680-101795-4), 54TM12 (680-101795-5), and 54RB052814 (680-101795-6) apply to this MS/MSD.
- Sample 54MW01 (680-101795-1) was used as the aqueous MS/MSD for chlorate analysis on 06/03/14. All criteria were met. No qualifiers were applied. Samples 54MW01 (680-101795-1), 54MW10 (680-101795-2), 54MW12 (680-101795-3), 54TM12 (680-101795-5), and 54RB052814 (680-101795-6) apply to this MS/MSD.
- Sample 54MW13 (680-101795-4) was used as the aqueous MS/MSD for chlorate analysis on 06/06/14. All criteria were met. No qualifiers were applied. Sample 54MW13 (680-101795-4) applies to this MS/MSD.

VIII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the agueous samples.

 Field groundwater sample duplicate pair 54MW12 (680-101795-3) and 54TM12 (680-101795-5) was analyzed for anion analysis in this SDG. All detected anions found in the sample and its duplicate pair and associated %RPD are noted in **Table 3**. All other target anions were non-detect for the duplicate pair. All criteria were met. No qualifiers were applied.

Table 3 Field Precision Analysis Hits Summary for Anions for Duplicate Pair 54MW12 (680-101795-3) and 54TM12 (680-101795-5)

Compound	Original Sample (mg/L)	Duplicate Pair (mg/L)	%RPD
Chloride	4.7	4.7	0.0
Nitrate as N	1.6	1.6	0.0
Sulfate	31	31	0.0

IX-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The following calculations were performed for verification.

- The percent difference (%D) between the calculated and the reported values should be within 10%.
- Any sample value >MDL and <MRL or <3*MDL (whichever is greater) was qualified as estimated, "J."

Sample: 54MW01 (680-101795-1), sulfate

%D = 0.0%

Values were within 10% difference.

```
Y = mX + b
Y = Sample Area
m = slope of curve
X = Concentration (mg/L)
b = Y-intercept
DF = Dilution Factor
Given:
m = 13671897.9
b = -2187344.4
Y = Area = 397288645
DF = 1
X = 29.22 \text{ mg/L} * DF = 29.22 \text{ mg/L} * 1 = 29 \text{ mg/L}
Reported concentration = 29 mg/L
\%D = 0.0\%
Values were within 10% difference.
Sample: LCS 680-332427/5, chlorite
Conc. \mug/L = (Amt * DF * Vt) / (CF * Vo)
        where: Amt
                          = the response on column (ng/mL) of the sample
                 CF
                          = Calibration Factor (from initial calibration)
                 Vt 
                          = volume of final extract (mL)
                 DF
                          = dilution factor
                          = volume of the sample extracted (mL)
                 Vo
Conc. \mu g/L = (5397011 \text{ ng/mL} * 1 * 5 \text{ mL}) / (54463.4998 * 5 \text{ mL})
           = 99.1 \text{ ng/mL} = 99.1 \mu\text{g/L}
Reported concentration = 99.1 µg/L
```

Sample: LCS 680-331936/9, chlorate

Conc. μ g/L = (Amt * DF * Vt) / (CF * Vo)

where: Amt = the response on column (ng/mL) of the sample

CF = Calibration Factor (from initial calibration)

Vt = volume of final extract (mL)

DF = dilution factor

Vo = volume of the sample extracted (mL)

Conc. μ g/L = (2205377 ng/mL * 1 * 5 mL) / (45621.3311 * 5 mL) = 48.3 ng/mL = 48.3 μ g/L

Reported concentration = $48.3 \mu g/L$

%D = 0.0%

Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition	
	Laboratory Qualifiers ¹	
No Code	Confirmed identification.	
U	Undetected at the limit of detection: The associated data value is the	
	limit of detection, adjusted by any dilution factor used in the analysis.	
J	Estimated: The analyte was positively identified; the quantitation is estimation.	
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.	
N	Non-target analyte: The analyte is a tentatively identified compound	
	(using mass spectroscopy).	
Q	One or more quality control criteria failed.	
U	SEPA Region III Data Validation Qualifiers ²	
R	Unreliable result. Analyte may or may not be present in the sample.	
Supporting data necessary to confirm result.		
В	Not detected substantially above the level of the reported in laboratory or field blanks.	
J	Analyte present. Reported value may not be accurate or precise.	
UJ	Not detected, quantitation limit may be inaccurate or imprecise.	
N	Tentative Identification. Consider present. Special methods may be to confirm its presence or absence in future sampling efforts.	
NJ	Qualitative identification questionable due to poor resolution. Presumptively present at approximate quantity.	
К	Analyte present. Reported value may be biased high. Actual value is expected to be lower.	
L	Analyte present. Reported value may be biased low. Actual value is expected to be higher.	
UL	Not detected, quantitation limit is probably higher.	

¹The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: *DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2* (DoD, 2010).

²The USEPA data validation qualifiers are referenced from *Region III Modifications to the National Functional Guidelines for Inorganic Data Review* (April, 1993).

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah	Job No.: 680-101795-1			
SDG No.: 680-101795-01				
Client Sample ID: 54MW01	Lab Sample ID: 680-101795-1			
Matrix: Water	Lab File ID: 0606141946-37.d			
Analysis Method: 300.0	Date Collected: 05/28/2014 11:25			
Extraction Method:	Date Extracted:			
Sample wt/vol: 1(mL)	Date Analyzed: 06/06/2014 19:46			
Con. Extract Vol.: 1(mL)	Dilution Factor: 1			
Injection Volume: 25(uL)	GC Column: Dionex AS18 ID: 4 (mm)			
% Moisture:	GPC Cleanup: (Y/N) N			
Analysis Batch No.: 332771	Units: mg/L			

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
14808-79-8	Sulfate	29		0.50	0.25
16887-00-6	Chloride	1.4		0.50	0.25

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: Test	America Savannah	Job No.: 680-101795-1				
SDG No.: 680-1	.01795-01					
Client Sample	ID: 54MW01	Lab Sample ID: 680-101795-1				
Matrix: Water		Lab File ID: 0530141929-33.d				
Analysis Method	d: 300.0	Date Collected: 05/28/2014 11:25				
Extraction Meth	nod:	Date Extracted:				
Sample wt/vol:	5 (mL)	Date Analyzed: 05/30/2014 19:29				
Con. Extract Vo	ol.: 5(mL)	Dilution Factor: 1				
Injection Volum	ne: 25(uL)	GC Column: AS18 ID: 4 (mm)				
% Moisture:		GPC Cleanup: (Y/N) N				
Analysis Batch	No.: 331570	Units: mg/L				
CAS NO.	COMPOUND NAME	RESULT Q LOQ DL				

0.031 Ј Н В

0.050

0.025

14797-55-8

Nitrate as N

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah			Job No.: 680-101795-1				
SDG No.: 680-	101795-01						
Client Sample	ID: 54MW01	Lab	Sample ID:	680-10	1795-1		
Matrix: Water		Lab	File ID: 0	61014105	56-48.d		
Analysis Metho	od: 300.1B	Dat	e Collected:	05/28,	/2014 11:2	5	
Extraction Method:			e Extracted:				
Sample wt/vol: 5(mL)		Dat	Date Analyzed: 06/10/2014 10:56				
Con. Extract Vol.: 5(mL)		Dil	Dilution Factor: 1				
Injection Volu	me: 50(uL)	GC	GC Column: Dionex AS9-HC ID: 2(mm)				
% Moisture:		GPC	GPC Cleanup: (Y/N) N				
Analysis Batch	No.: 333328	Units: ug/L					
				_			
CAS NO.	COMPOUND NAME		RESULT	Q	LOQ	DL	
14998-27-7	Chlorite		3.7	Ū	20	3.7	
CAS NO.	SURROGATE			%REC	Q	LIMITS	

98

90-115

79-43-6

Dichloroacetic acid(Surr)

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah	Job No.: 680-101795-1			
SDG No.: 680-101795-01				
Client Sample ID: 54MW01	Lab Sample ID: 680-101795-1			
Matrix: Water	Lab File ID: 0603141633-50.d			
Analysis Method: 300.1B	Date Collected: 05/28/2014 11:25			
Extraction Method:	Date Extracted:			
Sample wt/vol: 5(mL)	Date Analyzed: 06/03/2014 16:33			
Con. Extract Vol.: 5(mL)	Dilution Factor: 1			
Injection Volume: 50(uL)	GC Column: Dionex AS9-HC ID: 2 (mm)			
% Moisture:	GPC Cleanup:(Y/N) N			
Analysis Batch No.: 331936	Units: ug/L			
CAS NO. COMPOUND NAME	E RESULT O LOO DL			

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
14866-68-3	Chlorate		U	10	2.1

CAS NO.	SURROGATE		Q	LIMITS
79-43-6 Dichloroacetic acid(Surr)		106		90-115

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannal	n	Job No.: 680-101795-1			
SDG No.: 680-101795-01					
Client Sample ID: 54MW10		Lab Sample	ID: <u>680-1</u>	.01795-2	
Matrix: Water		Lab File ID	: 0606142	048-41.d	
Analysis Method: 300.0		Date Collec	ted: <u>05/2</u>	28/2014 09:4	0
Extraction Method:		Date Extract	ted:		
Sample wt/vol: 1(mL)		Date Analyze	ed: <u>06/06</u>	5/2014 20:48	
Con. Extract Vol.: 1(mL)		Dilution Fac	ctor: 1		
Injection Volume: 25(uL)		GC Column:	Dionex AS	18 ID:	4 (mm)
% Moisture:		GPC Cleanup	: (Y/N) <u>N</u>		
Analysis Batch No.: 332771		Units: mg/L	I		
CAS NO. COMP	OUND NAME	RESULT	r Q	LOQ	DL

3.9

16887-00-6

Chloride

0.25

0.50

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah	Job No.: 680-101795-1
SDG No.: 680-101795-01	
Client Sample ID: 54MW10	Lab Sample ID: 680-101795-2
Matrix: Water	Lab File ID: 0606142032-40.d
Analysis Method: 300.0	Date Collected: 05/28/2014 09:40
Extraction Method:	Date Extracted:
Sample wt/vol: 1(mL)	Date Analyzed: 06/06/2014 20:32
Con. Extract Vol.: 1(mL)	Dilution Factor: 2
Injection Volume: 25(uL)	GC Column: Dionex AS18 ID: 4 (mm)
% Moisture:	GPC Cleanup: (Y/N) N
Analysis Batch No.: 332771	Units: mg/L
CAS NO. COMPOU	D NAME RESULT Q LOQ DL

58

1.0

0.50

14808-79-8

Sulfate

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica	Savannah	Job No.: 680-101795-1				
SDG No.: 680-101795-0	1					
Client Sample ID: 54	MW10	Lab	Sample ID:	680-10	1795-2	
Matrix: Water		Lab	File ID: 0	5301420	15-36.d	
Analysis Method: 300	.0	Dat	e Collected:	05/28	/2014 09:4	0
Extraction Method:		Dat	e Extracted:			
Sample wt/vol: 5(mL)		Dat	e Analyzed:	05/30/	2014 20:15	
Con. Extract Vol.: 5	(mL)	Dil	ution Factor	: 1		
Injection Volume: 25	(uL)	GC	Column: AS1	8	ID:	4 (mm)
% Moisture:		GPC	Cleanup: (Y/	N) N		
Analysis Batch No.:	331570	Uni	ts: mg/L			
CAS NO.	COMPOUND NAME		RESULT	Q	LOQ	DL

0.33 Н

0.050

0.025

14797-55-8

Nitrate as N

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: Tes	tAmerica Savannah	Job No.: 680-101795-1					
SDG No.: 680-	101795-01						
Client Sample	ID: 54MW10	Lab Sample ID: 680-101795-2					
Matrix: Water		Lab	File ID: 0	6051400	44-25.d		
Analysis Metho	od: 300.1B	Dat	e Collected:	05/28	/2014 09:40		
Extraction Met	chod:	Date Extracted:					
Sample wt/vol:	5 (mL)	Date Analyzed: 06/05/2014 00:44					
Con. Extract V	701.: 5(mL)	Dilution Factor: 1					
Injection Volume: 50(uL) GC		GC	GC Column: Dionex AS9-HC ID: 2(mm)				
% Moisture: GPC		GPC	GPC Cleanup: (Y/N) N				
Analysis Batch No.: 332427 Un		Units: ug/L					
CAS NO.	COMPOUND NAME		RESULT	Q	LOQ	DL	
14998-27-7	Chlorite		3.7	Ū	20	3.7	

CAS NO.	SURROGATE	%REC	Q	LIMITS
		108		90-115
79-43-6	Dichloroacetic acid(Surr)	I TOB		90-112

HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah	Job No.: 680-101795-1
SDG No.: 680-101795-01	
Client Sample ID: 54MW10	Lab Sample ID: 680-101795-2
Matrix: Water	Lab File ID: 0603141816-53.d
Analysis Method: 300.1B	Date Collected: 05/28/2014 09:40
Extraction Method:	Date Extracted:
Sample wt/vol: 5(mL)	Date Analyzed: 06/03/2014 18:16
Con. Extract Vol.: 5(mL)	Dilution Factor: 1
Injection Volume: 50(uL)	GC Column: Dionex AS9-HC ID: 2(mm)
% Moisture:	GPC Cleanup: (Y/N) N
Analysis Batch No.: 331936	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
14866-68-3	Chlorate	2.1	U	10	2.1

CAS NO.	SURROGATE	%REC	Q	LIMITS
79-43-6	Dichloroacetic acid(Surr)	101		90-115

HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah	Job No.: 680-101795-1
SDG No.: 680-101795-01	
Client Sample ID: 54MW12	Lab Sample ID: 680-101795-3
Matrix: Water	Lab File ID: 0606142103-42.d
Analysis Method: 300.0	Date Collected: 05/28/2014 13:15
Extraction Method:	Date Extracted:
Sample wt/vol: 1(mL)	Date Analyzed: 06/06/2014 21:03
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 25(uL)	GC Column: Dionex AS18 ID: 4(mm)
% Moisture:	GPC Cleanup: (Y/N) N
Analysis Batch No.: 332771	Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
14808-79-8	Sulfate	31		0.50	0.25
16887-00-6	Chloride	4.7		0.50	0.25

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah	Job No.: 680-101795-1
SDG No.: 680-101795-01	
Client Sample ID: 54MW12	Lab Sample ID: 680-101795-3
Matrix: Water	Lab File ID: 0530141151-12.d
Analysis Method: 300.0	Date Collected: 05/28/2014 13:15
Extraction Method:	Date Extracted:
Sample wt/vol: 5(mL)	Date Analyzed: 05/30/2014 11:51
Con. Extract Vol.: 5(mL)	Dilution Factor: 1
Injection Volume: 25(uL)	GC Column: AS18 ID: 4(mm)
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 331461	Units: mg/L

RESULT

1.6

Q

LOQ

0.050

DL

0.025

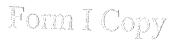
COMPOUND NAME

Nitrate as N

CAS NO.

14797-55-8

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET


Lab Name: TestAmerica Savannah	Job No.: 680-101795-1				
SDG No.: 680-101795-01					
Client Sample ID: 54MW12	Lab Sample ID: 680-101795-3				
Matrix: Water	Lab File ID: 0605140119-26.d				
Analysis Method: 300.1B	Date Collected: 05/28/2014 13:15				
Extraction Method:	Date Extracted:				
Sample wt/vol: 5(mL)	Date Analyzed: 06/05/2014 01:19				
Con. Extract Vol.: 5(mL)	Dilution Factor: 1				
Injection Volume: 50(uL)	GC Column: Dionex AS9-HC ID: 2(mm)				
% Moisture:	GPC Cleanup: (Y/N) N				
Analysis Batch No.: 332427	Units: ug/L				
CAS NO. COMPOUND NAME	RESULT Q LOQ DL				

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
14998-27-7	Chlorite	3.7	U	20	3.7

CAS NO.	SURROGATE	%REC	Q	LIMITS
79-43-6	Dichloroacetic acid(Surr)	110		90-115

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: Te	stAmerica Savannah Job No.: 680-101795-1							
SDG No.: 680)-101795-01							
Client Sample	e ID: 54MW12	Lab Sample ID:	680-10	1795-3				
Matrix: Wate	r	Lab File ID: 0603141850-54.d						
Analysis Meth	nod: 300.1B	Date Collected: 05/28/2014 13:15						
Extraction Me	ethod:	Date Extracted:						
Sample wt/vol	L: 5(mL)	Date Analyzed: 06/03/2014 18:50						
Con. Extract	Vol.: 5(mL)	Dilution Factor: 1						
Injection Vol	lume: 50(uL)	GC Column: Dionex AS9-HC ID: 2(mm)						
% Moisture:		GPC Cleanup: (Y/	'N) <u>N</u>					
Analysis Bato	ch No.: 331936	Units: ug/L						
CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL			
14866-68-3	Chlorate	2.1	ט	10	2.1			
CAS NO.	SURROGATE		%REC	C Q	LIMITS			
79-43-6	Dichloroacetic acid(Surr)		1	101	90-115			

HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah	Job No.: 680-101795-1
SDG No.: 680-101795-01	
Client Sample ID: 54MW13	Lab Sample ID: 680-101795-4
Matrix: Water	Lab File ID: 0606142118-43.d
Analysis Method: 300.0	Date Collected: 05/28/2014 14:55
Extraction Method:	Date Extracted:
Sample wt/vol: 1(mL)	Date Analyzed: 06/06/2014 21:18
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 25(uL)	GC Column: Dionex AS18 ID: 4 (mm)
% Moisture:	GPC Cleanup: (Y/N) N
Analysis Batch No.: 332771	Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
14808-79-8	Sulfate	27		0.50	0.25
16887-00-6	Chloride	2.2		0.50	0.25

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: Te	stAmerica Savannah	Job No.: 680-101795-1				
SDG No.: 680-	-101795-01					
Client Sample	ID: 54MW13	Lab Sample ID: 680-101795-4				
Matrix: Water	c	Lab File ID: 0530141136-11.d				
Analysis Meth	od: 300.0	Date Collected: 05/28/2014 14:55				
Extraction Me	thod:	Date Extracted:				
Sample wt/vol	: 5 (mL)	Date Analyzed: 05/30/2014 11:36				
Con. Extract	Vol.: 5(mL)	Dilution Factor: 1				
Injection Vol	ume: 25(uL)	GC Column: AS18 ID: 4 (mm)				
% Moisture:		GPC Cleanup: (Y/N) N				
Analysis Batc	h No.: 331461	Units: mg/L				
CAS NO.	COMPOUND NAME	RESULT Q LOQ DL				
14797-55-8	Nitrate as N	0.41 0.050 0.025				

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestA	merica Savannah	Job No.: 680-101795-1					
SDG No.: 680-10	1795-01						
Client Sample II	9: 54MW13	Lab Sample ID: 680-101795-4					
Matrix: Water		Lab File ID: 0607141810-9.d					
Analysis Method:	300.1B	Date Collected: 05/28/2014 14:55					
Extraction Metho	d:	Date Extracted:					
Sample wt/vol:	5 (mL)	Date Analyzed: 06/07/2014 18:10					
Con. Extract Vol	.: 5 (mL)	Dilution Factor: 1					
Injection Volume	: 50(uL)	GC Column: Dionex AS9-HC ID: 2(mm)					
% Moisture:		GPC Cleanup:(Y/N) N					
Analysis Batch N	0.: 332958	Units: ug/L					
CAS NO.	COMPOUND NAME	RESULT Q LOQ DL					

14998-27-7	Chlorite		3.7	U	20	3.
CAS NO.		SURROGATE		%REC	Q	LIMITS
70-43-6	Dighlerezgetic agic	1 (())		112		00-11E

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmer:	ica Savannah	h Job No.: 680-101795-1					
SDG No.: 680-10179	5-01						
Client Sample ID:	54MW13	Lab Sample	ID:	680-10	1795-4		
Matrix: Water		Lab File II	D: <u>0</u>	6061406	13-33.d		
Analysis Method: 3	00.1B	Date Collec	cted:	05/28	/2014 14:5	5	
Extraction Method:		Date Extracted:					
Sample wt/vol: 5(m	L)	Date Analyzed: 06/06/2014 06:13					
Con. Extract Vol.:	5 (mL)	Dilution Fa	actor	: 1			
Injection Volume:	5 (mL)	GC Column:	Dior	nex AS9	-HC ID: 2	2 (mm)	
% Moisture:		GPC Cleanup	o:(Y/1	N) N			
Analysis Batch No.:	332566	Units: ug/	L				
CAS NO.	COMPOUND NAME	RESUI	LT	Q	LOQ	DL	

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
14866-68-3	Chlorate	2.1	Ū	10	2.1

	CAS NO.	SURROGATE	%REC	Q	LIMITS
79	9-43-6	Dichloroacetic acid(Surr)	100		90-115

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah	Job No.: 680-101795-1
SDG No.: 680-101795-01	
Client Sample ID: 54TM12	Lab Sample ID: 680-101795-5
Matrix: Water	Lab File ID: 0606142134-44.d
Analysis Method: 300.0	Date Collected: 05/28/2014 13:15
Extraction Method:	Date Extracted:
Sample wt/vol: 1(mL)	Date Analyzed: 06/06/2014 21:34
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 25(uL)	GC Column: Dionex AS18 ID: 4(mm)
% Moisture:	GPC Cleanup: (Y/N) N
Analysis Batch No.: 332771	Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
14808-79-8	Sulfate	31		0.50	0.25
16887-00-6	Chloride	4.7		0.50	0.25

Trand Cony

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah Job No.: 680-101795-1 SDG No.: 680-101795-01 Client Sample ID: 54TM12 Lab Sample ID: 680-101795-5 Lab File ID: 0530141121-10.d Matrix: Water Analysis Method: 300.0 Date Collected: 05/28/2014 13:15 Extraction Method: Date Extracted: Sample wt/vol: 5(mL) Date Analyzed: 05/30/2014 11:21 Con. Extract Vol.: 5(mL) Dilution Factor: 1 Injection Volume: 25(uL) GC Column: AS18 ID: 4 (mm) GPC Cleanup: (Y/N) N % Moisture: Analysis Batch No.: 331461 Units: mg/L CAS NO. RESULT COMPOUND NAME Q LOQ DL

1.6

0.050

0.025

14797-55-8

Nitrate as N

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah		Jok	Job No.: 680-101795-1					
SDG No.: 680-	101795-01							
Client Sample	ID: 54TM12	Lab	Sample ID:	680-10	1795-5			
Matrix: Water		Lab	File ID: 0	6051402	27-28.d			
Analysis Metho	od: 300.1B	Dat	e Collected:	05/28	/2014 13:15	<u>, </u>		
Extraction Method:			Date Extracted:					
Sample wt/vol:	5 (mL)	Dat	Date Analyzed: 06/05/2014 02:27					
Con. Extract V	7ol.: 5(mL)	Dil	Dilution Factor: 1					
Injection Volu	me: 50(uL)	GC	GC Column: Dionex AS9-HC ID: 2(mm)					
% Moisture:		GPC Cleanup: (Y/N) N						
Analysis Batch	No.: 332427	Uni	ts: ug/L					
CAS NO.	COMPOUND NAME		RESULT	Q	LOQ	DL		

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
14998-27-7	Chlorite	3.7	U		3.7

CAS NO.	SURROGATE	%REC	Q	LIMITS
79-43-6	Dichloroacetic acid(Surr)			90-115

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah Job No.: 680-101795-1 SDG No.: 680-101795-01 Lab Sample ID: 680-101795-5 Client Sample ID: 54TM12 Lab File ID: 0603141959-56.d Matrix: Water Analysis Method: 300.1B Date Collected: 05/28/2014 13:15 Extraction Method: Date Extracted: Sample wt/vol: 5(mL) Date Analyzed: 06/03/2014 19:59 Con. Extract Vol.: 5(mL) Dilution Factor: 1 Injection Volume: 50(uL) GC Column: Dionex AS9-HC ID: 2(mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 331936 Units: ug/L CTA CL. NICO

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
14866-68-3	Chlorate	2.1	U	10	2.1

CAS NO.	SURROGATE	%REC	Q	LIMITS
79-43-6				90-115

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Job No.: 680-101795-1 Lab Name: TestAmerica Savannah SDG No.: 680-101795-01 Client Sample ID: 54RB052814 Lab Sample ID: 680-101795-6 Matrix: Water Lab File ID: 0606142149-45.d Analysis Method: 300.0 Date Collected: 05/28/2014 12:25 Extraction Method: Date Extracted: Date Analyzed: 06/06/2014 21:49 Sample wt/vol: 1(mL) Dilution Factor: 1 Con. Extract Vol.: 1(mL) GC Column: Dionex AS18 ID: 4 (mm) Injection Volume: 25(uL) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 332771 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
14808-79-8	Sulfate	0.40	J 7	0.50	0.25
16887-00-6	Chloride	0.25	U	0.50	0.25

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah			Job No.: 680-101795-1				
SDG No.: 680-	-101795-01				19.1.21		
Client Sample	ID: 54RB052814	Lab	Sample ID:	680-10	1795-6		
Matrix: Water		Lab	File ID: 0	5301411	05-9.d		
Analysis Metho	od: 300.0	Dat	e Collected:	05/28	/2014 12:25		
Extraction Met	thod:	Dat	e Extracted:				
Sample wt/vol: 5(mL)		Dat	Date Analyzed: 05/30/2014 11:05				
Con. Extract \	/ol.: 5(mL)	Dil	Dilution Factor: 1				
Injection Volu	me: 25(uL)	GC	GC Column: AS18 ID: 4 (mm)				
% Moisture:		GPC	GPC Cleanup: (Y/N) N				
Analysis Batch	n No.: 331461	Units: mg/L					
r				,			
CAS NO.	COMPOUND NAME		RESULT	Q	LOQ	DL	
14797-55-8	Nitrate as N		0.032	JJ	0.050	0.025	

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah Job No.: 680-101795-1 SDG No.: 680-101795-01 Client Sample ID: 54RB052814 Lab Sample ID: 680-101795-6 Matrix: Water Lab File ID: 0605140302-29.d Analysis Method: 300.1B Date Collected: 05/28/2014 12:25 Extraction Method: Date Extracted: Sample wt/vol: 5(mL) Date Analyzed: 06/05/2014 03:02 Con. Extract Vol.: 5(mL) Dilution Factor: 1 Injection Volume: 50(uL) GC Column: Dionex AS9-HC ID: 2(mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 332427 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
14998-27-7	Chlorite	3.7	ט	20	3.7

CAS NO.	SURROGATE	%REC	Q	LIMITS
79-43-6	Dichloroacetic acid(Surr)	95		90-115

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah		Job No.: 680-101795-1					
SDG No.: 680-10	1795-01						
Client Sample II	D: 54RB052814	Lab Sample ID: 680-101795-6					
Matrix: Water		Lab File ID: 0603142034-57.d					
Analysis Method:	300.1B	Date Collected: 05/28/2014 12:25					
Extraction Method:		Date Extracted:					
Sample wt/vol: 5(mL)		Date Analyzed: 06/03/2014 20:34					
Con. Extract Vol	.: 5 (mL)	Dilution Factor: 1					
Injection Volume	9: 50(uL)	GC Column: Dionex AS9-HC ID: 2(mm)					
% Moisture:		GPC Cleanup: (Y/N) N					
Analysis Batch N	Jo.: 331936	Units: ug/L					
CAS NO.	COMPOUND NAME	RESULT Q LOQ DL					

CAS NO.	SURROGATE	%REC	Q	LIMITS
79-43-6	Dichloroacetic acid(Surr)	100		90-115

2.1 U

10

14866-68-3

Chlorate

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100 Fax: +1 (410) 273-7103 Eric.malarek@CBIfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CB&I Federal Services, LLC (CB&I) Radford Army Ammunition Plant (RFAAP)

Project Manager

FROM:

Eric Malarek, CB&I Project Chemist

SUBJECT:

RFAAP Data Validation - Total and Dissolved Organic and Inorganic Carbon

Test America Laboratories, Inc., SDG 680-98791

DATE:

June 18, 2014

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on February 19, 2014. Samples were analyzed for Total Organic Carbon (TOC), Dissolved Organic Carbon (DOC), Total Inorganic Carbon (TIC), and Dissolved Inorganic Carbon (DIC) using USEPA 9060. A total of six aqueous samples (includes one rinse blank) were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
54MW10	680-98791-1	54MW01	680-98791-4
54MW13	680-98791-2	54MW12	680-98791-5
54RB021914	680-98791-3	54TM12	680-98791-6

Data were reviewed and validated using a combination of project QAPP, *DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010* (DoD, 2010), and method-specific criteria. The data qualifier scheme was consistent with the *Region III Modifications to the National Functional Guidelines for Inorganic Data Review* (April, 1993). Parameters evaluated are presented in **Table 1**. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualific	ed Data	Parameter
Yes	No	
	Х	Holding Times and Preservation
	Х	Initial and Continuing Calibration
	Х	Blank Analysis
	Χ	Laboratory Control Sample
	Х	Matrix Spike and Spike Duplicate
	Х	Laboratory Duplicate
	Х	Field Duplicate
X		Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT TOC, TIC, DOC, & DIC REVIEW SDG 680-98791

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. Holding time criteria: Cool 4°C±2°C, HCl pH<2, 28 days for TOC, TIC, DOC, and DIC (USEPA criteria). The dates and times were compared between the sample collection and laboratory analysis.

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 02/19/14, the coolers were received on 02/20/14 by the primary laboratory (Test America Laboratories, Inc.) at 3.4°C, 2.4°C, and 5.8°C. All criteria were met. No qualifiers were applied.
- <u>Holding Time Review</u>: The samples were collected on 02/19/14. The TOC, TIC, DOC, and DIC analysis were run on 02/24/14, 02/25/14, and 02/26/14. Sample collection dates may be found on the attached form 1s. All criteria were met. No qualifier was applied.

II-Initial and Continuing Calibration

Bench and run summary sheets were reviewed to determine whether calibration was performed at the beginning of sample analysis using the following criteria. Percent recoveries for initial and continuing calibration (90-110%) must be within limits.

TOC, TIC, DOC, and DIC:

1 - blank

5 - standards (r≥0.995) ICV/CCV (90-110%)

• The TOC, TIC, DOC, and DIC analysis were run on 02/24/14, 02/25/14, and 02/26/14. The initial calibration for TC was analyzed on 10/03/13 with a coefficient of determination of 0.9998. The ICV and CCVs were evaluated for where they bracketed reported samples. All ICV/CCVs that bracketed reported samples were within criteria. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-98791-1), 54MW13 (680-98791-2), 54RB021914 (680-98791-3), 54MW01 (680-98791-4), 54MW12 (680-98791-5), and 54TM12 (680-98791-6) apply to these initial and continuing calibrations.

III-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. Calibration blanks were analyzed initially and at a 10% frequency thereafter for each batch. No contaminants should be detected in any of the associated blanks >MDL. The DoD QSM criteria specifies all concentrations should be less than ½ MRL (<MRL for common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters) and <LOD (i.e. <2MDL) for the calibration blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters, or 5 times (5x) the maximum amount for other target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB11513 (680-95852-2) applies to all of the total samples (TOC, TIC) and dissolved samples (DOC and DIC) in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	Analysis	QC Blank ID	Max Conc. mg/L	Action Level mg/L	B qualified samples (For this SDG)
02/24/14	TOC	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
02/25/14	DOC	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
02/24/14	TOC	MB 680-317193/2	<1/2MRL	NA	None
02/25/14	DOC	MB 680-317201/2-A	<1/2MRL	NA	None
02/24/14	TOC	54RB11513	<1/2MRL	NA	None
02/25/14	TIC	54RB11513	<1/2MRL	NA	None
02/25/14	DOC	54RB11513	<1/2MRL	NA	None
02/25/14	DIC	54RB11513	<1/2MRL	NA	None

LOD = Limit of Detection

MRL = Method Reporting Limit

MDL = Method Detection Limit

NA = Not Applicable

IV-Laboratory Control Sample

The laboratory control sample (LCS) serve as a monitor of the overall performance of each step during the analysis, including the sample preparation. LCS are generated to determine long-term accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. All aqueous LCS results must fall within the control limits (80-120%).

- Sample LCS 680-317193/5 was used as the aqueous LCS for TOC analysis on 02/24/14. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-98791-1), 54MW13 (680-98791-2), 54RB021914 (680-98791-3), 54MW01 (680-98791-4), 54MW12 (680-98791-5), and 54TM12 (680-98791-6) apply to this LCS.
- Sample LCS 680-317201/1-A was used as the aqueous LCS for DOC analysis on 02/25/14. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-98791-1), 54MW13 (680-98791-2), 54RB021914 (680-98791-3), 54MW01 (680-98791-4), 54MW12 (680-98791-5), and 54TM12 (680-98791-6) apply to this LCS.

V-Matrix Spike and Spike Duplicate

Matrix spikes (MSs) and matrix spike duplicates (MSDs) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at a frequency of one MS/MSD per 20 samples of similar matrix. The percent recoveries (%Rs or RPD) must be within the specified control limits (80-120%; RPD≤25%).

Sample 54MW01 (680-98791-4) was used as the aqueous MS/MSD for TOC and DOC analysis on 02/24/14 and 02/25/14, respectively. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-98791-1), 54MW13 (680-98791-2), 54RB021914 (680-98791-3), 54MW01 (680-98791-4), 54MW12 (680-98791-5), and 54TM12 (680-98791-6) apply to this MS/MSD.

VI-Laboratory Duplicate Sample Analysis

Duplicate sample determinations are used to demonstrate acceptable method precision by the laboratory at the time of analysis. Duplicate analysis is performed to generate data in order to determine the long-term precision of the analytical method on various matrices. RPDs must be within established control limits (≤30%RPD).

- No aqueous laboratory duplicate was analyzed for TOC, TIC, and DIC with this SDG; therefore, it was not evaluated. See Section IV for lab precision statements using LCS/LCSD.
- Sample 54MW10 (680-98791-1) was used as the aqueous laboratory duplicate for DOC analysis on 02/25/14. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-98791-1), 54MW13 (680-98791-2), 54RB021914 (680-98791-3), 54MW01 (680-98791-4), 54MW12 (680-98791-5), and 54TM12 (680-98791-6) apply to this laboratory duplicate.

VII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

 Field groundwater sample duplicate pair 54MW12 (680-98791-5) and 54TM12 (680-98791-6) was analyzed for TOC, TIC, DOC, and DIC analysis in this SDG. All concentrations found in the sample and its duplicate pair and associated %RPD are noted in **Table 3**. All criteria were met. No qualifiers were applied.

Table 3 Field Precision Analysis Hits Summary for TOC, TIC, DOC, and DIC for Duplicate Pair 54MW12 (680-98791-5) and 54TM12 (680-98791-6)

Compound	Original Sample (mg/L)	Duplicate Pair (mg/L)	%RPD
Dissolved Inorganic Carbon	70	70	0.0
Dissolved Organic Carbon	1.0U	1.0	NA
Total Inorganic Carbon	81	72	11.8
Total Organic Carbon	1.0	0.50U	NA

J = Estimated value.

VIII-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. The following calculations were performed for verification.

- Any sample value >MDL and <MRL or <3*MDL (whichever is greater) was qualified as estimated, "J."
- The total and dissolved fractions were compared. The organic and inorganic carbon data results for samples 54MW10 (680-98791-1), 54MW13 (680-98791-2), 54RB021914 (680-98791-3), 54MW01 (680-98791-4), 54MW12 (680-98791-5), and 54TM12 (680-98791-6) are presented in **Table 3**. Data qualification was applied based upon professional judgment. Generally, if the concentrations are greater than the MRL and the dissolved concentration is greater than its total concentration by >10%D, then both results have been flagged as estimated with a "J." We are looking at the TOC/TIC to evaluate the immobilization potential of TNT and RDX. The DOC/DIC is a byproduct of organic compound oxidation and indicates the difference in microbial oxidation processes within and outside the plume area. If the samples exhibit continual microbial oxidation coupled with the time differences of sample preservation from sample collection (i.e. TOC in field and DOC at the lab), this might be the cause of total / dissolved imbalance here.

U = Not Detected as <LOD.

LOD = Limit of Detection

NA = Not Applicable

Table 3 Total/Dissolved Summary

Sample ID	Analyte	LOD (mg/L)	Total Fraction (mg/L)	Dissolved Fraction (mg/L)	%D	Qualifier
54MW10	TOC/DOC	0.50; 1.0	0.53J	1.0U	NA	None
54MW10	TIC/DIC	1.0; 1.0	91	85	NA	None
54MW13	TOC/DOC	0.50; 1.0	0.50U	1.0U	NA	None
54MW13	TIC/DIC	1.0; 1.0	68	68	NA	None
54RB021914	TOC/DOC	0.50; 1.0	0.50U	1.0U	NA	None
54RB021914	TIC/DIC	1.0; 1.0	1.0U	1.0U	NA	None
54MW01	TOC/DOC	0.50; 1.0	1.0	1.0U	NA	None
54MW01	TIC/DIC	1.0; 1.0	59	59	NA	None
54MW12	TOC/DOC	0.50; 1.0	0.50U	1.0	NA	None
54MW12	TIC/DIC	1.0; 1.0	72	70	NA	None
54TM12	TOC/DOC	0.50; 1.0	0.50U	1.0	NA	None
54TM12	TIC/DIC	1.0; 1.0	72	70	NA	None

Sample: 54MW10 (680-98791-1), TOC

TOC:
$$Y = m*X (mg/L) + b$$

m = 1.761

b = 0.7001

Y = 1.628

DF = 1

$$X = (0.53 \text{ mg/L}) * 1 = 0.53 \text{ mg/L}$$

$$TOC (mg/L) = 0.53 mg/L$$

Reported Value = 0.53 mg/L % Difference = 0.0%

Values were within 10% difference.

J = Estimated value. U = Not Detected as <LOD.

LOD = Limit of Detection NA = Not Applicable

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the
	limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound
	(using mass spectroscopy).
Q	One or more quality control criteria failed.
U	SEPA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample.
	Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in laboratory
	or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to
	confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution.
	Presumptively present at approximate quantity.
K	Analyte present. Reported value may be biased high. Actual value is expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is
	expected to be higher.
UL	Not detected, quantitation limit is probably higher.

¹The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: *DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2* (DoD, 2010).

²The USEPA data validation qualifiers are referenced from *Region III Modifications to the National Functional Guidelines for Inorganic Data Review* (April, 1993).

Date Sampled: 02/19/2014 10:40

1B-IN INORGĀNIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54MW10 Lab Sample ID: 680-98791-1

Lab Name: TestAmerica Savannah Job No.: 680-98791-1

SDG ID.: 680-98791-1

Reporting Basis: WET Date Received: 02/20/2014 10:19

CAS No.	Analyte	Result	LOQ	DL	Units	С	Q	DIL	Method
7440-44-0	Total Organic Carbon	0.53	1.0	0.50	mg/L	J	ブ	1	9060

Matrix: Water

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54MW10

Lab Sample ID: 680-98791-1

Lab Name: TestAmerica Savannah

Job No.: 680-98791-1

SDG ID.: 680-98791-1

Matrix: Water

Date Sampled: 02/19/2014 10:40

Reporting Basis: WET

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
	Total Inorganic Carbon	91	1.0	mg/L			1	9060

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY - DISSOLVED

Client Sample ID: 54MW10

Lab Sample ID: 680-98791-1

Lab Name: TestAmerica Savannah

Job No.: 680-98791-1

SDG ID.: 680-98791-1

Matrix: Water

Date Sampled: 02/19/2014 10:40

Reporting Basis: WET

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
7440-44-0	Dissolved Organic Carbon	1.0	1.0	mg/L	Ū		1	9060
7440-44-0	Dissolved Inorganic Carbon	85	1.0	mg/L			1	9060

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54MW13

Lab Sample ID: 680-98791-2

Lab Name: TestAmerica Savannah

Job No.: 680-98791-1

SDG ID.: 680-98791-1

Matrix: Water

Date Sampled: 02/19/2014 09:30

Reporting Basis: WET

CAS No.	Analyte	Result	LOQ	DL	Units	С	Q	DIL	Method
7440-44-0	Total Organic Carbon	0.50	1.0	0.50	mg/L	Ŭ		1	9060

1B-IN

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54MW13 Lab Sample ID: 680-98791-2

Lab Name: TestAmerica Savannah Job No.: 680-98791-1

SDG ID.: 680-98791-1

Matrix: Water Date Sampled: 02/19/2014 09:30

Reporting Basis: WET Date Received: 02/20/2014 10:19

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
	Total Inorganic Carbon	68	1.0	mg/L			.1	9060

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY - DISSOLVED

Client Sample ID: 54MW13

Lab Sample ID: 680-98791-2

Lab Name: TestAmerica Savannah

Job No.: 680-98791-1

SDG ID.: 680-98791-1

Matrix: Water

Date Sampled: 02/19/2014 09:30

Reporting Basis: WET

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
7440-44-0	Dissolved Organic Carbon	1.0	1.0	mg/L	U		1.	9060
7440-44-0	Dissolved Inorganic Carbon	68	1.0	mg/L			1	9060

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54RB021914

Lab Sample ID: 680-98791-3

Lab Name: TestAmerica Savannah

Job No.: 680-98791-1

SDG ID.: 680-98791-1

Matrix: Water

Date Sampled: 02/19/2014 09:45

Reporting Basis: WET

CAS No.	Analyte	Result	roõ	DL	Units	С	Q	DIL	Method
7440-44-0	Total Organic Carbon	0.50	1.0	0.50	mg/L	Ū		1	9060

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54RB021914

Lab Sample ID: 680-98791-3

Lab Name: TestAmerica Savannah

Job No.: 680-98791-1

SDG ID.: 680-98791-1

Matrix: Water

Date Sampled: 02/19/2014 09:45

Reporting Basis: WET

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
	Total Inorganic Carbon	1.0	1.0	mg/L	U		1	

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY - DISSOLVED

Client Sample ID: 54RB021914

Lab Sample ID: 680-98791-3

Lab Name: TestAmerica Savannah

Job No.: 680-98791-1

SDG ID.: 680-98791-1

Matrix: Water

Date Sampled: 02/19/2014 09:45

Reporting Basis: WET

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
7440-44-0	Dissolved Organic Carbon	1.0	1.0	mg/L	U		1	9060
7440-44-0	Dissolved Inorganic Carbon	1.0	1.0	mg/L	Ū		1	9060

INORGANIC ANALYSIS DATA SHEET

GENERAL CHEMISTRY

Client Sample ID: 54MW01

Lab Sample ID: 680-98791-4

Lab Name: TestAmerica Savannah

Job No.: 680-98791-1

SDG ID.: 680-98791-1

Matrix: Water

Date Sampled: 02/19/2014 12:00

Reporting Basis: WET

CAS No.	Analyte	Result	LOQ	DL	Units	С	Q	DIL	Method
7440-44-0	Total Organic Carbon	1.0	1.0	0.50	mg/L			1	9060

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54MW01

Lab Sample ID: 680-98791-4

Lab Name: TestAmerica Savannah

Job No.: 680-98791-1

SDG ID.: 680-98791-1

Matrix: Water

Date Sampled: 02/19/2014 12:00

Reporting Basis: WET

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
	Total Inorganic Carbon	59	1.0	mg/L			1	9060

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY - DISSOLVED

Client Sample ID: 54MW01

Lab Sample ID: 680-98791-4

Lab Name: TestAmerica Savannah

Job No.: 680-98791-1

SDG ID.: 680-98791-1

Reporting Basis: WET

Matrix: Water

Date Received: 02/20/2014 10:19

Date Sampled: 02/19/2014 12:00

CAS No.	Analyte	Result	LOQ	Units	С	Ω	DIL	Method
7440-44-0	Dissolved Organic Carbon	1.0	1.0	mg/L	U		1	9060
7440-44-0	Dissolved Inorganic Carbon	59	1.0	mg/L			1	9060

INORGANIC ANALYSIS DATA SHEET

GENERAL CHEMISTRY

Client Sample ID: 54MW12

Lab Sample ID: 680-98791-5

Lab Name: TestAmerica Savannah

Job No.: 680-98791-1

SDG ID.: 680-98791-1

Matrix: Water

Date Sampled: 02/19/2014 13:30

Reporting Basis: WET

CAS No.	Analyte	Result	LOQ	DL	Units	С	Q	DIL	Method
7440-44-0	Total Organic Carbon	1.0	1.0	0.50	mg/L			1	9060

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54MW12

Lab Sample ID: 680-98791-5

Lab Name: TestAmerica Savannah

Job No.: 680-98791-1

SDG ID.: 680-98791-1

Matrix: Water

Date Sampled: 02/19/2014 13:30

Reporting Basis: WET

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
	Total Inorganic Carbon	81	1.0	mg/L			1	9060

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY - DISSOLVED

Client Sample ID: 54MW12

Lab Sample ID: 680-98791-5

Lab Name: TestAmerica Savannah

Job No.: 680-98791-1

SDG ID.: 680-98791-1

Matrix: Water

Date Sampled: 02/19/2014 13:30

Reporting Basis: WET

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
7440-44-0	Dissolved Organic Carbon	1.0	1.0	mg/L	U		1	9060
7440-44-0	Dissolved Inorganic Carbon	70	1.0	mg/L			1	9060

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54TM12

Lab Sample ID: 680-98791-6

Lab Name: TestAmerica Savannah

Job No.: 680-98791-1

SDG ID.: 680-98791-1

Matrix: Water

Date Sampled: 02/19/2014 13:30

Reporting Basis: WET

Date Received: 02/20/2014 10:19

CAS No.	Analyte	Result	LOQ	DL	Units	С	Q	DIL	Method
7440-44-0	Total Organic Carbon	0.50	1.0	0.50	mg/L	Ū		1	9060

1B-IN

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54TM12 Lab Sample ID: 680-98791-6

Lab Name: TestAmerica Savannah Job No.: 680-98791-1

SDG ID.: 680-98791-1

Matrix: Water Date Sampled: 02/19/2014 13:30

Reporting Basis: WET Date Received: 02/20/2014 10:19

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
	Total Inorganic Carbon	72	1.0	mg/L				9060

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY - DISSOLVED

Client Sample ID: 54TM12

Lab Sample ID: 680-98791-6

Lab Name: TestAmerica Savannah

Job No.: 680-98791-1

SDG ID.: 680-98791-1

Matrix: Water

Date Sampled: 02/19/2014 13:30

Reporting Basis: WET

Date Received: 02/20/2014 10:19

CAS No.	Analyte	Result	LOQ		Units	С	Q	DIL	Method
7440-44-0	Dissolved Organic Carbon	1.0	1.0	mg	g/L			1	9060
7440-44-0	Dissolved Inorganic Carbon	70	1.0	mg	g/L			1	9060

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100 Fax: +1 (410) 273-7103 Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CB&I Federal Services, LLC (CB&I) Radford Army Ammunition Plant (RFAAP)

Project Manager

FROM:

Eric Malarek, CB&I Project Chemist

SUBJECT:

RFAAP Data Validation - Perchlorate

Test America Laboratories, Inc., SDG 680-98791

DATE:

June 17, 2014

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on February 19, 2014. Aqueous samples were analyzed for perchlorate analysis using liquid chromatography mass spectroscopy (LC/MS) SW-846 method 6850 Modified by Test America Laboratories, Inc. A total of six aqueous samples (includes one rinse blank) were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
54MW10	680-98791-1	54MW01	680-98791-4
54MW13	680-98791-2	54MW12	680-98791-5
54RB021914	680-98791-3	54TM12	680-98791-6

Data were reviewed and validated by Eric Malarek using a combination of project QAPP, *DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010* (DoD, 2010), *DoD Perchlorate Handbook August, Rev1, Change 1, 2007* (DoD, 2007), method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the *Region III Modifications to the National Functional Guidelines for Inorganic Data Review* (April, 1993). Parameters evaluated are presented in **Table 1**. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualific	ed Data	Parameter
Yes	No	
	Χ	Holding Times and Preservation
	Х	Instrument Performance Check
	Χ	Initial and Continuing Calibration
	Х	Blank Analysis
	Х	Internal Standards
	Х	Interference Check Sample
	Χ	Laboratory Control Sample (LCS)
	Х	Matrix Spike (MS) and Spike Duplicate (MSD)
	Х	Field Duplicate
	Х	Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT PERCHLORATE REVIEW SDG 680-98791

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. For perchlorate analysis, aqueous samples are received and stored at cool @4°C±2°C with a maximum holding time of 28 days from collection (DoD Perchlorate Handbook criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 02/19/14, the coolers were received on 02/20/14 by the primary laboratory (Test America Laboratories, Inc.) at 3.4°C, 2.4°C, and 5.8°C. All criteria were met. No qualifiers were applied.
- <u>Holding Time Review</u>: The aqueous samples were collected on 02/19/14 for perchlorate analysis. The aqueous samples were prepped and analyzed on 02/26/14. Sample collection dates may be found on the attached form 1s. All holding time criteria were met. No qualifiers were applied.

II-Instrument Performance Check

LC/MS instrument performance checks are performed to ensure mass resolution, identification and, to some degree, sensitivity. The analysis of the instrument performance check solution must be performed at the beginning of each 12-hour period during which samples are analyzed.

• The instrument performance check, ¹⁸O-Perchlorate, met the mass calibration criteria. No qualification was applied.

III-Initial and Continuing Calibration

Requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data. Initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of the analysis run, and continuing calibration verification documents that the initial calibration is still valid.

Perchlorate:

1- blank (<1/2MRL DoD Perchlorate Handbook) 5 – standards (r>0.995 or RSD≤20% DoD Perchlorate Handbook)

ICV (≤15%D DoD Perchlorate Handbook) CCV/ICS (≤15%D DoD Perchlorate Handbook) LODV (±30%D DoD Perchlorate Handbook)

• For aqueous perchlorate initial calibration performed on 12/30/13 on instrument LC3062, all criteria were met for all target compounds (RSD≤20%). All ICV/CCV/ICS/LODV standards were within criteria. No qualifiers were applied. Perchlorate was determined using linear regression method with coefficients of determination ≥0.99 for primary and confirmation columns. Samples 54MW10 (680-98791-1), 54MW13 (680-98791-2), 54RB021914 (680-98791-3), 54MW01 (680-98791-4), 54MW12 (680-98791-5), and 54TM12 (680-98791-6) apply to this initial calibration.

IV-Blanks

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. No contaminants should be detected in any of the associated blanks >MDL. The DoD Perchlorate Handbook criterion specifies all concentrations should be less than $\frac{1}{2}$ MRL for method blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤ 5 times (5x) the maximum amount for target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB021914 (680-98791-3) applies to all samples in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	QC Blank ID	Compound	Max Conc. μg/L	Action Level µg/L	B qualified samples (for this SDG)
02/26/14	ICB/CCBs	All perchlorate <1/2MRL	NA	NA	None
02/26/14	MB 200-68871/4	All perchlorate <1/2MRL	NA	NA	None
02/26/14	54RB021914	All perchlorate <1/2MRL	NA	NA	None

MRL = Method Reporting Limit.

NA = Not Applicable.

V-Internal Standards

Internal standards performance criteria ensure that LC/MS sensitivity and response are stable during every analytical run. Internal standard area counts for samples and blanks must not vary by more than a factor of two (-50% to +100%) from the associated calibration standard. The DoD Handbook specifies retention times (RT) $1.0 \pm 2\%$ of last calibration standard and the ratio of RT of sample to standard should be 3.06 and fall between 2.3 and 3.8. The internal standard peak area responses should fall between 50% to 150% recoveries.

All criteria were met. No qualifiers were applied.

VI-Interference Check Sample (ICS)

The interference check sample (ICS) verifies inter-element and background correction factors. The ICS is performed at the beginning of each sample analysis run. Control limits are 70-130%.

• All criteria were met for all other runs. No qualifiers were applied.

VII-Laboratory Control Sample

The laboratory control sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. DoD Perchlorate Handbook and laboratory aqueous limits are 80-120%.

Sample LCS 200-68871/5 was used as aqueous LCS for perchlorate analysis dated 02/26/14. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-98791-1), 54MW13 (680-98791-2), 54RB021914 (680-98791-3), 54MW01 (680-98791-4), 54MW12 (680-98791-5), and 54TM12 (680-98791-6) apply to this LCS sample.

VIII-Matrix Spike (MS) and Spike Duplicate (MSD)

Matrix Spike (MS) and Spike Duplicate (MSD) are generated to determine long-term accuracy and precision of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at a frequency of one MS/MSD per 20 samples of similar matrix. MS/MSD recoveries and relative percent differences between MS recoveries should be within the specified limits. DoD Perchlorate Handbook limits are 80-120%; RPD≤15%. The laboratory limits are 80-120%; RPD≤15%.

Sample 54MW01 (680-98791-4) was used as aqueous MS/MSD for perchlorate analysis dated 02/26/14. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-98791-1), 54MW13 (680-98791-2), 54RB021914 (680-98791-3), 54MW01 (680-98791-4), 54MW12 (680-98791-5), and 54TM12 (680-98791-6) apply to this MS/MSD sample.

IX-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

• Field groundwater sample duplicate pair 54MW12 (680-98791-5) and 54TM12 (680-98791-6) was analyzed for perchlorate analysis in this SDG. Perchlorate was detected at 4.0 μg/L in the parent sample and at 4.3 μg/L in the duplicate pair; resulting in a RPD of 7.2%. All criteria were met. No qualifiers were applied.

X-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. The following calculations were performed for verification.

 Any sample value >MDL and <MRL or <3*MDL (whichever was greater) was qualified as estimated, "J."

Sample: 54MW10 (680-98791-1), Perchlorate

```
Y = mX + b
```

Y = Response Ratio = Sample Area/Area Internal Standard O18LP m = slope of curve X = Amount Ratio = Conc. Analyte/Conc. Internal Std. b = Y-intercept

Given:

m = 1.0621 b = -0.001 Y = Area = 36122/81387 = 0.4438 X = 0.42 Conc. μ g/L = (Ax * Cis * DF)

where: Conc. = Sample concentration in μg/L
Ax = Amount Ratio = Conc. Analyte/Conc. Internal Standard

= Conc. Of internal Standard (µg/L) Cis

= Dilution factor DF

Conc. μ g/L = (0.42 * 1 * 1) = 0.42 μ g/L (Signal #1)

Reported Value = 0.42 μ g/L % Difference = 0.0%

Values were within 10% difference

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the
	limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the
	reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound
	(using mass spectroscopy).
Q	One or more quality control criteria failed.
L	SEPA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample.
	Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in laboratory
	or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to
	confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution.
	Presumptively present at approximate quantity.
K	Analyte present. Reported value may be biased high. Actual value is
	expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is
	expected to be higher.
UL	Not detected, quantitation limit is probably higher.

¹The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: *DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2* (DoD, 2010).

²The USEPA data validation qualifiers are referenced from *Region III Modifications to the National Functional Guidelines for Inorganic Data Review* (April, 1993).

Lab Name: Tes	stAmerica Burlington	Job No.: 680-98791-1							
SDG No.: 680-	-98791-1								
Client Sample	ID: 54MW10	Lab	Sample ID:	680-98	791-1				
Matrix: Water		Lab	File ID: P	022614A	06.d				
Analysis Method: 6850 Date Collected: 02/19/2014 10:					/2014 10:40	l			
Extraction Method:			Date Extracted:						
Sample wt/vol: 5(mL)			Date Analyzed: 02/26/2014 14:09						
Con. Extract	Vol.:	Dil	Dilution Factor: 1						
Injection Volu	ume: 100(uL)	GC	GC Column: IC-Pak AnionH/R ID: 4.6(mm)						
% Moisture:		GPC	GPC Cleanup: (Y/N) N						
Analysis Batch	n No.: 68871	Units: ug/L							
CAS NO.	COMPOUND NAME		RESULT	Q	LOQ	DL			
14797-73-0	Perchlorate		0.42		0.20	0.019			

Lab Name: TestAmerica Burlington Job No.: 680-98791-1									
SDG No.: 680-	98791-1								
Client Sample	ID: 54MW13	Lab	Sample ID:	680-98	791-2				
Matrix: Water		Lab	File ID: P	022614A	07.d				
Analysis Method: 6850			ce Collected:	02/19	/2014 09:30				
Extraction Method:			Date Extracted:						
Sample wt/vol: 5(mL)			Date Analyzed: 02/26/2014 14:24						
Con. Extract \	7ol.:	Dil	Dilution Factor: 1						
Injection Volu	me: 100(uL)	GC	GC Column: IC-Pak AnionH/R ID: 4.6(mm)						
% Moisture:		GPC	GPC Cleanup: (Y/N) N						
Analysis Batch No.: 68871			Units: ug/L						
CAS NO.	COMPOUND NAME		RESULT	Q	LOQ	DL			
14797-73-0	Perchlorate		0.32		0.20	0.019			

Lab Name: TestAmerica Burlington Job No.: 680									
SDG No.: 680-987	91-1								
Client Sample ID	Lab	Sample ID:	680-98	791-3					
Matrix: Water			File ID:	022614A	08.d				
Analysis Method: 6850			e Collected:	02/19	/2014 09:45				
Extraction Method:			Date Extracted:						
Sample wt/vol: 5(mL)			Date Analyzed: 02/26/2014 14:39						
Con. Extract Vol.	.:	Dil	Dilution Factor: 1						
Injection Volume	100 (uL)	GC Column: IC-Pak AnionH/R ID: 4.6(mm)							
% Moisture:		GPC Cleanup: (Y/N) N							
Analysis Batch No.: 68871			Units: ug/L						
CAS NO. COMPOUND NAME			RESULT	Q	LOQ	DL			
14797-73-0 Pe	rchlorate		0.019	Ū	0.20	0.019			

Lab Name: Te	stAmerica Burlington	Job No.: 680-98791-1						
SDG No.: 680	-98791-1							
Client Sample	ID: 54MW01	Lab Sample ID: 680-98791-4						
Matrix: Water	c	Lab File ID: P022614A09.d						
Analysis Meth	od: 6850	Date Collected: 02/19/2014 12:00						
Extraction Me	thod:	Date Extracted:						
Sample wt/vol	: 5 (mL)	Date Analyzed: 02/26/2014 14:55						
Con. Extract	Vol.:	Dilution Factor: 1						
Injection Vol	ume: 100(uL)	GC Column: IC-Pak AnionH/R ID: 4.6(mm)						
% Moisture:		GPC Cleanup: (Y/N) N						
Analysis Batc	h No.: 68871	Units: ug/L						
CAS NO.	COMPOUND NAME	RESULT Q LOQ DL						
14797-73-0	Perchlorate	0.019 U M 0.20 0.019						

Lab Name: Tes	Lab Name: TestAmerica Burlington Job No.: 680-98791-1							
SDG No.: 680-	98791-1					****		
Client Sample	ID: 54MW12	Lab	Sample ID:	680-98	791-5			
Matrix: Water			File ID: P	022614A	10.d			
Analysis Method: 6850 D			e Collected:	02/19	/2014 13:30			
Extraction Method:			Date Extracted:					
Sample wt/vol: 5(mL)			Date Analyzed: 02/26/2014 15:10					
Con. Extract V	/ol.:	Dil	Dilution Factor: 1					
Injection Volu	me: 100(uL)	GC	GC Column: IC-Pak AnionH/R ID: 4.6(mm)					
% Moisture:		GPC	GPC Cleanup:(Y/N) N					
Analysis Batch	No.: 68871	Uni	Units: ug/L					
CAS NO.	COMPOUND NAME		RESULT	Q	LOQ	DF		
14797-73-0	Perchlorate		4.0		0.20	0.019		

Lab Name: Te	stAmerica Burlington	Joh	No.: 680-98	3791-1		
SDG No.: 680-	-98791-1					
Client Sample	ID: 54TM12	Lak	Sample ID:	680-98	791-6	
Matrix: Water		Lab File ID: P022614A11.d				
Analysis Meth	od: 6850	Dat	Date Collected: 02/19/2014 13:30			
Extraction Me	thod:	Date Extracted:				
Sample wt/vol	: 5(mL)	Dat	Date Analyzed: 02/26/2014 15:25			
Con. Extract	Vol.:	Dil	Dilution Factor: 1			
Injection Volu	ume: 100(uL)	GC	Column: IC-F	ak Anio	onH/R ID: 4.	6 (mm)
% Moisture:		GPC	Cleanup: (Y/N	N) N		
Analysis Batch	n No.: 68871	Units: ug/L				-
CAS NO.	COMPOUND NAME	-	RESULT	Q	LOQ	DL
14797-73-0	Perchlorate		4.3		0.20	0.019

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100 Fax: +1 (410) 273-7103

Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CB&I Federal Services, LLC (CB&I) Radford Army Ammunition Plant (RFAAP)

Project Manager

FROM:

Eric Malarek, CB&I Project Chemist

SUBJECT:

RFAAP Data Validation – Explosives

Test America Laboratories, Inc., SDG 680-98791

DATE:

June 17, 2014

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on February 19, 2014. Samples were analyzed for select explosives using USEPA SW846 Method SW-846 8330B for aqueous matrices. A total of fifteen aqueous samples (includes four dilution samples, five confirmatory samples, and a rinse blank) were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
54MW10	680-98791-1	54MW12	680-98791-5DL
54MW10	680-98791 - 1C	54MW12	680-98791-5C
54MW13	680-98791-2	54MW12	680-98791-5CDL
54MW13	680-98791-2C	54TM12	680-98791-6
54RB021914	680-98791-3	54TM12	680-98791-6DL
54RB021914	680-98791-3C	54TM12	680-98791-6C
54MW01	680-98791-4	54TM12	680-98791-6CDL
54MW12	680-98791-5		

Data were reviewed by Eric Malarek and validated using a combination of project QAPP, Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010) (DoD QSM), method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualifi	ed Data	Parameter
Yes	No	
	Х	Holding Times and Preservation
Χ		Blank Analysis
	Χ	Initial Calibration
	Х	Continuing Calibration
Χ		System Monitoring Compounds
	Χ	Laboratory Control Sample
	Χ	Matrix Spike/Spike Duplicate
	Х	Field Duplicate
Χ		Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT EXPLOSIVES REVIEW SDG 680-98791

I-Holding Times and Preservation

The objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample extraction and analysis. Holding time criteria: For aqueous samples, explosive compounds are shipped cooled ($@4^{\circ}C \pm 2^{\circ}C$) with a maximum holding time of 7 days from sample collection to preparative extraction and 40 days from preparative extraction to determinative analysis (USEPA criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 02/19/14, the coolers were received on 02/20/14 by the primary laboratory (Test America Laboratories, Inc.) at 3.4°C, 2.4°C, and 5.8°C. All criteria were met. No qualifiers were applied.
- Holding Time Review: The aqueous samples were collected on 02/19/14. The samples were extracted on 02/25/14 and were analyzed on 02/25/14, 02/26/14, and 02/27/14 for explosives. Sample collection dates may be found on the attached form 1s. All criteria were met. No qualifiers were applied.

II-Blank Analysis

The purpose of laboratory or field blank analyses is to determine the existence and magnitude of contamination problems resulting from laboratory or field activities. One method blank per analytical batch must be run on each instrument used to analyze samples. No contaminants should be present in the blanks. The DoD QSM criterion specifies all concentrations should be less than one-half MRL. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤5 times (5x) the maximum amount for explosive target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB021914 (680-98791-3) applies to all samples in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	QC Blank ID	Compound	Max Conc. μg/L	Action Level μg/L	B qualified samples (For this SDG)
02/25/14	MB 200-68794/1-A	All target explosives <1/2MRL	NA	NA	None
02/25/14	54RB021914	2,4,6-Trinitrotoluene	0.060J	0.30	None
02/25/14	54RB021914	2,4-Dinitrotoluene	0.28	1.40	54MW10, 54MW12, 54TM12
02/25/14	54RB021914	2,6-Dinitrotoluene	0.19J	0.95	None
02/25/14	54RB021914	4-Amino-2,6-dinitrotoluene	0.36J	1.80	54MW13
02/25/14	54RB021914	MNX	0.74J	3.70	54MW10, 54MW12, 54TM12

J = Estimated value <LOQ and >DL.

LOQ = Limit of Quantitation

MRL = Method Reporting Limit

DL = Detection Limit

NA = Not Applicable

III-Initial Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the target compounds. The initial 5-point calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run. The DoD QSM specifies that the correlation coefficient must be ≥ 0.995 , the coefficient of determination ≥ 0.99 , and/or the percent relative standard deviation (%RSD) must be $\leq 20\%$.

- For the explosives initial calibration performed on 01/25/14 on instrument CH1208, all criteria were met for target explosives compounds. All target compounds were determined using linear regression with coefficients of determination ≥0.99. No qualifiers were applied. Samples 54MW10 (680-98791-1), 54MW13 (680-98791-2), 54RB021914 (680-98791-3), 54MW01 (680-98791-4), 54MW12 (680-98791-5), 54MW12 (680-98791-6DL) apply to this initial calibration.
- For the TNX, DNX, and MNX initial calibration performed on 01/26/14 on instrument CH1208, all criteria were met for target explosives compounds. All target compounds were determined using linear regression with coefficients of determination ≥0.99. No qualifiers were applied. Samples 54MW10 (680-98791-1), 54MW13 (680-98791-2), 54RB021914 (680-98791-3), 54MW01 (680-98791-4), 54MW12 (680-98791-5), and 54TM12 (680-98791-6) apply to this initial calibration.
- For the confirmatory explosives initial calibration performed on 01/23/14 on instrument CH1488, all criteria were met for target explosives compounds. All target compounds were determined using linear regression with coefficients of determination ≥0.99. No qualifiers were applied. Confirmations for samples 54MW10 (680-98791-1C), 54MW13 (680-98791-2C), 54RB021914 (680-98791-3C), 54MW12 (680-98791-5CDL), 54TM12 (680-98791-6C), and 54TM12 (680-98791-6CDL) apply to this initial calibration.
- For the TNX, DNX, and MNX initial calibration performed on 01/24/14 on instrument CH1488, all criteria were met for target explosives compounds. All target compounds were determined using linear regression with coefficients of determination ≥0.99. No qualifiers were applied. Confirmations for samples 54MW10 (680-98791-1C), 54MW13 (680-98791-2C), 54RB021914 (680-98791-3C), 54MW12 (680-98791-5C), and 54TM12 (680-98791-6C) apply to this initial calibration.

IV-Continuing Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the target compounds. Continuing calibration standards are analyzed after every 10 injections, and at the end of the analysis sequence. The DoD QSM specifies that the percent difference (%D) from initial calibration should be no greater than $\pm 20\%$.

- For explosives initial calibration verification performed on 01/26/14 @16:38 on instrument CH1208, all
 criteria were met for target compounds. No qualifiers were applied. No aqueous samples were
 reported using this initial verification calibration.
- For TNX, DNX, and MNX initial calibration verification performed on 01/26/14 @02:48 on instrument CH1208, TNX (33.9%) was outside criteria. For all other target compounds, all criteria were met. No aqueous samples were reported using this initial verification calibration; therefore, no qualifiers were applied based upon this outlier.
- For explosives continuing calibration performed on 02/25/14 @11:59 on instrument CH1208, all criteria were met. No qualifiers were applied. Samples 54MW10 (680-98791-1), 54MW13 (680-98791-2), 54RB021914 (680-98791-3), 54MW01 (680-98791-4), 54MW12 (680-98791-5), and 54TM12 (680-98791-6) were reported using this continuing calibration.

- For TNX, DNX, and MNX continuing calibration performed on 02/25/14 @12:36 on instrument CH1208, all criteria were met. No qualifiers were applied. Samples 54MW10 (680-98791-1), 54MW13 (680-98791-2), 54RB021914 (680-98791-3), 54MW01 (680-98791-4), 54MW12 (680-98791-5), and 54TM12 (680-98791-6) were reported using this continuing calibration.
- For explosives continuing calibration performed on 02/25/14 @20:42 on instrument CH1208, all
 criteria were met. No qualifiers were applied. No aqueous samples were reported using this
 continuing calibration.
- For TNX, DNX, and MNX continuing calibration performed on 02/25/14 @21:19 on instrument CH1208, all criteria were met. No qualifiers were applied. No aqueous samples were reported using this continuing calibration.
- For explosives continuing calibration performed on 02/27/14 @13:26 on instrument CH1208, all criteria were met. No qualifiers were applied. Samples 54MW12 (680-98791-5DL) and 54TM12 (680-98791-6DL) were reported using this continuing calibration.
- For TNX, DNX, and MNX continuing calibration performed on 02/27/14 @14:03 on instrument CH1208, all criteria were met. No qualifiers were applied. Samples 54MW12 (680-98791-5DL) and 54TM12 (680-98791-6DL) were reported using this continuing calibration.
- For explosives continuing calibration performed on 02/27/14 @23:23 on instrument CH1208, all
 criteria were met. No qualifiers were applied. No aqueous samples were reported using this
 continuing calibration.
- For TNX, DNX, and MNX continuing calibration performed on 02/28/14 @00:01 on instrument CH1208, all criteria were met. No qualifiers were applied. No aqueous samples were reported using this continuing calibration.
- For confirmatory explosives initial calibration verification performed on 01/23/14 @22:12 on instrument CH1488, all criteria were met for target compounds. No qualifiers were applied. No aqueous samples were reported using this initial verification calibration.
- For confirmatory TNX, DNX, and MNX initial calibration verification performed on 01/24/14 @02:11 on instrument CH1488, all criteria were met for target compounds. No qualifiers were applied. No aqueous samples were reported using this initial verification calibration.
- For confirmatory explosives continuing calibration performed on 02/25/14 @12:52 on instrument CH1488, all criteria were met. No qualifiers were applied. No aqueous samples were reported using this continuing calibration.
- For confirmatory explosives continuing calibration performed on 02/25/14 @18:34 on instrument CH1488, all criteria were met. No qualifiers were applied. Samples 54MW10 (680-98791-1C), 54MW13 (680-98791-2C), 54RB021914 (680-98791-3C), 54MW12 (680-98791-5C), and 54TM12 (680-98791-6C) were reported using this continuing calibration.
- For confirmatory TNX, DNX, and MNX continuing calibration performed on 02/25/14 @19:08 on instrument CH1488, all criteria were met. No qualifiers were applied. Samples 54MW10 (680-98791-1C), 54MW13 (680-98791-2C), 54RB021914 (680-98791-3C), 54MW12 (680-98791-5C), and 54TM12 (680-98791-6C) were reported using this continuing calibration.
- For confirmatory explosives continuing calibration performed on 02/26/14 @02:33 on instrument CH1488, all criteria were met. No qualifiers were applied. No aqueous samples were reported using this continuing calibration.

- For confirmatory TNX, DNX, and MNX continuing calibration performed on 02/26/14 @03:07 on instrument CH1488, all criteria were met. No qualifiers were applied. No aqueous samples were reported using this continuing calibration.
- For confirmatory explosives continuing calibration performed on 02/27/14 @12:06 on instrument CH1488, all criteria were met. No qualifiers were applied. Samples 54MW12 (680-98791-5CDL) and 54TM12 (680-98791-6CDL) were reported using this continuing calibration.
- For confirmatory TNX, DNX, and MNX continuing calibration performed on 02/27/14 @12:41 on instrument CH1488, all criteria were met. No qualifiers were applied. Samples 54MW12 (680-98791-5CDL) and 54TM12 (680-98791-6CDL) were reported using this continuing calibration.
- For confirmatory explosives continuing calibration performed on 02/27/14 @21:14 on instrument CH1488, all criteria were met. No qualifiers were applied. No aqueous samples were reported using this continuing calibration.
- For confirmatory TNX, DNX, and MNX continuing calibration performed on 02/27/14 @21:48 on instrument CH1488, all criteria were met. No qualifiers were applied. No aqueous samples were reported using this continuing calibration.

V-System Monitoring Compound (Surrogates)

Laboratory performance on individual samples is established by means of spiking activities. The percent recovery (%R) for all samples and blanks must be within the laboratory control limits. DoD surrogate recovery limits are specified in Table G-3 of the DoD QSM (DoD, 2010). If the surrogate is not listed, then the laboratory criteria shall be used.

Aqueous Criteria:

1,2-dinitrobenzene (75-130%)

- For sample 54MW12 (680-98791-5), surrogate 1,2-dinitrobenzene (135%) was outside criteria. All detections were qualified estimated bias high "K" and non-detections no qualifier based upon the high recovery.
- For sample 54MW12 (680-98791-5C), surrogate 1,2-dinitrobenzene (206%) was outside criteria. All
 detections were qualified estimated bias high "K" and non-detections no qualifier based upon the high
 recovery.
- For sample 54MW12 (680-98791-5DL), surrogate 1,2-dinitrobenzene (138%) was outside criteria. The surrogate was diluted out; therefore, no qualification was applied based upon the high recovery.
- For sample 54MW12 (680-98791-5CDL), surrogate 1,2-dinitrobenzene (199%) was outside criteria. The surrogate was diluted out; therefore, no qualification was applied based upon the high recovery.
- For sample 54TM12 (680-98791-6), surrogate 1,2-dinitrobenzene (136%) was outside criteria. All
 detections were qualified estimated bias high "K" and non-detections no qualifier based upon the high
 recovery.
- For sample 54TM12 (680-98791-6C), surrogate 1,2-dinitrobenzene (204%) was outside criteria. All detections were qualified estimated bias high "K" and non-detections no qualifier based upon the high recovery.
- For sample 54TM12 (680-98791-6DL), surrogate 1,2-dinitrobenzene (139%) was outside criteria. The surrogate was diluted out; therefore, no qualification was applied based upon the high recovery.
- For sample 54TM12 (680-98791-6CDL), surrogate 1,2-dinitrobenzene (203%) was outside criteria. The surrogate was diluted out; therefore, no qualification was applied based upon the high recovery.

• For all other samples, all criteria were met.

VI-Laboratory Control Sample

Laboratory control samples (LCS) are used to monitor long-term accuracy of the analytical method. The analysis is performed at a frequency of 1 per analytical batch. The percent recoveries (%Rs) must be within the laboratory control limits. DoD QSM aqueous LCS recovery limits are specified in Table G-12 of the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used.

- Sample LCS 200-68794/2-A was used as the aqueous LCS for the explosives analysis on 02/25/14. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-98791-1), 54MW10 (680-98791-1C), 54MW13 (680-98791-2), 54MW13 (680-98791-2C), 54RB021914 (680-98791-3), 54RB021914 (680-98791-3C), 54MW01 (680-98791-4), 54MW12 (680-98791-5), 54MW12 (680-98791-5CDL), 54TM12 (680-98791-6C), 54TM12 (680-98791-6CDL) apply to this LCS.
- Sample LCS 200-68794/3-A was used as the aqueous LCS for the TNX, DNX, and MNX analysis on 02/25/14. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-98791-1), 54MW10 (680-98791-1C), 54MW13 (680-98791-2), 54MW13 (680-98791-2C), 54RB021914 (680-98791-3C), 54MW01 (680-98791-4), 54MW12 (680-98791-5), 54MW12 (680-98791-5DL), 54MW12 (680-98791-5C), 54MW12 (680-98791-6CDL), 54TM12 (680-98791-6CDL) apply to this LCS.

VII-Matrix Spike/Matrix Spike Duplicate

Data for matrix spike/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The percent recoveries (%Rs) and the relative percent difference (RPD) must be within the laboratory control limits. DoD QSM aqueous MS/MSD recovery limits follow the LCS criteria and are specified in Table G-12 of the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used. The DoD QSM aqueous precision limit for explosives is ≤20% RPD.

Sample 54MW01 (680-98791-4) was used as the aqueous MS/MSD for the explosives analysis on 02/26/14. Target compound TNX (517%, 526%) was outside criteria. All RPD criteria were met. The associated LCS was within criteria for all target compounds (Section VI). Target compound TNX was not detected in the spiked sample; therefore no qualification was required based upon the high recoveries. Samples 54MW10 (680-98791-1), 54MW10 (680-98791-1C), 54MW13 (680-98791-2C), 54RB021914 (680-98791-3), 54RB021914 (680-98791-3C), 54MW01 (680-98791-4), 54MW12 (680-98791-5DL), 54MW12 (680-98791-5CDL), 54TM12 (680-98791-6DL), 54TM12 (680-98791-6DL), 54TM12 (680-98791-6DL), 54TM12 (680-98791-6CDL) apply to this MS/MSD.

VIII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 50% RPD for the aqueous samples.

Field groundwater sample duplicate pair 54MW12 (680-98791-5) and 54TM12 (680-98791-6) was analyzed for explosives analysis in this SDG. If required, the diluted samples were used in the field duplicate analysis. All detected explosives found in the sample and its duplicate pair and associated %RPD are noted in Table 3. All other target analytes were non-detect for the duplicate pair. All criteria were met. No qualifiers were applied.

Table 3 Field Precision Analysis Summary for Explosives for Duplicate Pair 54MW12 (680-98791-5) and 54TM12 (680-98791-6)

Compound	Original Sample (μg/L)	Duplicate Pair (µg/L)	%RPD
1,3-Dinitrobenzene	5.3	5.5J	3.7
2,4,6-Trinitrotoluene	29	28	3.5
2,4-Dinitrotoluene	0.31J	0.30J	3.3
2-Amino-4,6-dinitrotoluene	6.4	6.3	1.6
2-Nitrotoluene	3.1J	3.0J	3.3
4-Amino-2,6-dinitrotoluene	3.8	3.8	0.0
DNX	0.36J	0.35J	2.8
MNX	0.31	0.32	3.2
Nitroglycerin	47J	46J	2.2
RDX	8.7	8.6	1.2
TNX	0.47J	0.47J	0.0

J = Estimated value <LOQ and >DL.

IX-Quantitation Verification and Data Review

The accuracy of analytical results was verified through the calculation of several parameters.

- All values >MDL and <MRL or <3*MDL (whichever was greater) were qualified as estimated "J" (if required).
- The absolute percent difference (%D) between the calculated and the reported value must be within 10% difference. The calculation was based calibration factors.
- All positive values must have less than or equal to 40% RPD between the primary and secondary columns.
- For sample 54MW10 (680-98791-1), DNX (126%), MNX (57.4%), 1,3-dinitrobenzene (92.2%), and 2-nitrotoluene (147%) were outside confirmatory criteria; therefore, were qualified estimated "J" for the associated sample based upon these outliers.
- For sample 54MW13 (680-98791-2), DNX (121%), RDX (56.6%), and 1,3-dinitrobenzene (96.8%) were outside confirmatory criteria; therefore, were qualified estimated "J" for the associated sample based upon these outliers.
- For sample 54RB021914 (680-98791-3), MNX (123%), 4-amino-2,6-dinitrotoluene (145%), and 2,6-dinitrotoluene (64.0%) were outside confirmatory criteria; therefore, were qualified estimated "J" for the associated sample based upon these outliers.
- For sample 54MW12 (680-98791-5), TNX (48.1%), DNX (104%), nitroglycerin (94.3%), 2,4-dinitrotoluene (130%), and 2-nitrotoluene (135%) were outside confirmatory criteria; therefore, were qualified estimated "J" for the associated sample based upon these outliers.
- For sample 54TM12 (680-98791-6), TNX (48.1%), DNX (106%), 1,3-dinitrobenzene (41.2%), nitroglycerin (83.2%), 2,4-dinitrotoluene (130%), and 2-nitrotoluene (135%) were outside confirmatory criteria; therefore, were qualified estimated "J" for the associated sample based upon these outliers.

LOQ = Limit of Quantitation

DL = Detection Limit

Sample: 54MW10 (680-98791-1), 4-amino-2,6-dinitrotoluene

Y = mX + b

Y = Area of target compound for sample

m = slope of curve

X = Amount on column

b = Y-intercept

Given:

m = 70134.4826

b = -21012.017

Y = Area = 8034773

X = 114.86

Conc. μ g/L = (Ax * Vt * DF) / (Vs)

where: Conc. = Sample concentration in μ g/L

Ax = Amount of compound being measured (µg/L).
Vt = Volume of total extract (mL) from bench sheet.

Vs = Volume of sample extracted (mL).

DF = Dilution factor

Conc. μ g/L = (114.86 * 10 * 1) / (500) = 2.3 μ g/L (Signal #1)

Reported Value = 2.3 μg/L

% Difference = 0.0%

Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the
	limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound
	(using mass spectroscopy).
Q	One or more quality control criteria failed.
US	EPA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample.
	Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in
	laboratory or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to
	confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution.
	Presumptively present at approximate quantity.
К	Analyte present. Reported value may be biased high. Actual value is
	expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is
	expected to be higher.
UL	Not detected, quantitation limit is probably higher.

The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

2 The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994).

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-98791-1

SDG No.: 680-98791-1

Client Sample ID: 54MW10 Lab Sample ID: 680-98791-1

Matrix: Water Lab File ID: 63150006.D

Analysis Method: 8330B Date Collected: 02/19/2014 10:40

Extraction Method: 8330-Prep Date Extracted: 02/25/2014 08:49

Sample wt/vol: 500(mL) Date Analyzed: 02/25/2014 15:06

Con. Extract Vol.: 10000(uL) Dilution Factor: 1

Injection Volume: 150(uL) GC Column: C-18 ID: 4.6(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 68808 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
13980-04-6	TNX	0.22		0.20	0.031
99-65-0	1,3-Dinitrobenzene	1.4	JMJ	0.20	0,028
118-96-7	2,4,6-Trinitrotoluene	13	M	0.20	0.023
80251-29-2	DNX	0.13	JM	0.20	0.029
5755-27-1	MNX	0.13	JB	0.20	0.018
121-14-2	2,4-Dinitrotoluene	0.068	JM B	0.20	0.046
606-20-2	2,6-Dinitrotoluene	0.039	UM	0.20	0.039
35572-78-2	2-Amino-4,6-dinitrotoluene	2.6	M	0.20	0.021
19406-51-0	4-Amino-2,6-dinitrotoluene	2.3	М	0.20	0.022
99-99-0	4-Nitrotoluene	0.058	U	0.20	0.058
88-72-2	2-Nitrotoluene	1.3	јм Т	0.20	0.032
55-63-0	Nitroglycerin	2.4	JMJ	4.0	1.4
121-82-4	RDX	5.3		0.20	0.044

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	110	М	75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-98791-1

SDG No.: 680-98791-1

Client Sample ID: 54MW10 Lab Sample ID: 680-98791-1

Matrix: Water Lab File ID: 63200017.D

Analysis Method: 8330B Date Collected: 02/19/2014 10:40

Extraction Method: 8330-Prep Date Extracted: 02/25/2014 08:49

Sample wt/vol: 500(mL) Date Analyzed: 02/25/2014 21:25

Con. Extract Vol.: 10000(uL) Dilution Factor: 1

Injection Volume: 450(uL) GC Column: Biphenyl ID: 4.6(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 68817 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
13980-04-6	TNX	0.29	М	0.20	0.031
99-65-0	1,3-Dinitrobenzene	0.52	J " J	0.20	0.028
118-96-7	2,4,6-Trinitrotoluene	12		0.20	0.023
80251-29-2	DNX	0.58	JMJ	0.20	0.029
5755-27-1	MNX	0.23	JM B.	0.20	0.018
121-14-2	2,4-Dinitrotoluene	0.096	JM B	0.20	0.046
35572-78-2	2-Amino-4,6-dinitrotoluene	2.5		0.20	0.021
19406-51-0	4-Amino-2,6-dinitrotoluene	2.1		0.20	0.022
88-72-2	2-Nitrotoluene	0.19	JM J	0.20	0.032
55-63-0	Nitroglycerin	2.1	JMJ	4.0	1.4
121-82-4	RDX	4.0		0.20	0.044

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	124		75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-98791-1

SDG No.: 680-98791-1

Client Sample ID: 54MW13 Lab Sample ID: 680-98791-2

Matrix: Water Lab File ID: 63150008.D

Analysis Method: 8330B Date Collected: 02/19/2014 09:30

Extraction Method: 8330-Prep Date Extracted: 02/25/2014 08:49

Sample wt/vol: 500(mL) Date Analyzed: 02/25/2014 16:20

Con. Extract Vol.: 10000(uL) Dilution Factor: 1

Injection Volume: 150 (uL) GC Column: C-18 ID: 4.6 (mm)

% Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 68808 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	\mathtt{DL}
13980-04-6	TNX	0.097	JMJ	0.20	0.031
99-65-0	1,3-Dinitrobenzene	0.55	J	0.20	0.028
118-96-7	2,4,6-Trinitrotoluene	2.8	M	0.20	0.023
80251-29-2	DNX	0.059	JMJ	0.20	0.029
5755-27-1	MNX	0.018	UM	0.20	0.018
121-14-2	2,4-Dinitrotoluene	0.046	UM	0.20	0.046
606-20-2	2,6-Dinitrotoluene	0.039	UM	0.20	0.039
35572-78-2	2-Amino-4,6-dinitrotoluene	0.67	М	0.20	0.021
19406-51-0	4-Amino-2,6-dinitrotoluene	0.59	мВ	0.20	0.022
99-99-0	4-Nitrotoluene	0.058	U	0.20	0.058
88-72-2	2-Nitrotoluene	0.032	U M	0.20	0.032
55-63-0	Nitroglycerin	1.4	U M	4.0	1.4
121-82-4	RDX	1.6	J '7	0.20	0.044

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	94		75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-98791-1

SDG No.: 680-98791-1

Client Sample ID: 54MW13 Lab Sample ID: 680-98791-2

Matrix: Water Lab File ID: 63200019.D

Analysis Method: 8330B Date Collected: 02/19/2014 09:30

Extraction Method: 8330-Prep Date Extracted: 02/25/2014 08:49

Sample wt/vol: 500(mL) Date Analyzed: 02/25/2014 22:34

Con. Extract Vol.: 10000(uL) Dilution Factor: 1

Injection Volume: 450(uL) GC Column: Biphenyl ID: 4.6(mm)

% Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 68817 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
13980-04-6	TNX	0.14	JM J	0.20	0.031
99-65-0	1,3-Dinitrobenzene	0.19	JM T	0.20	0.028
118-96-7	2,4,6-Trinitrotoluene	2.5		0.20	0.023
80251-29-2	DNX	0.24	JMJ	0.20	0.029
35572-78-2	2-Amino-4,6-dinitrotoluene	0.65		0.20	0.021
19406-51-0	4-Amino-2,6-dinitrotoluene	0.52	ß	0.20	0.022
121-82-4	RDX	0.88	J M :	0.20	0.044

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	101		75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-98791-1

SDG No.: 680-98791-1

Client Sample ID: 54RB021914 Lab Sample ID: 680-98791-3

Matrix: Water Lab File ID: 63150009.D

Analysis Method: 8330B Date Collected: 02/19/2014 09:45

Extraction Method: 8330-Prep Date Extracted: 02/25/2014 08:49

Sample wt/vol: 500(mL) Date Analyzed: 02/25/2014 16:58

Con. Extract Vol.: 10000(uL) Dilution Factor: 1

Injection Volume: 150(uL) GC Column: C-18 ID: 4.6(mm)

% Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 68808 Units: ug/L

99-65-0 1,3-Dinitrobenzene 0.028 U M 0.20 118-96-7 2,4,6-Trinitrotoluene 0.058 J M J 0.20 80251-29-2 DNX 0.029 U 0.20 5755-27-1 MNX 3.1 J J 0.20 121-14-2 2,4-Dinitrotoluene 0.20 M 0.20 606-20-2 2,6-Dinitrotoluene 0.36 J M J 0.20 35572-78-2 2-Amino-4,6-dinitrotoluene 0.021 U M 0.20 19406-51-0 4-Amino-2,6-dinitrotoluene 0.058 J M J 0.20 99-99-0 4-Nitrotoluene 0.058 U M 0.20 88-72-2 2-Nitrotoluene 0.032 U 0.20	CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
118-96-7 2,4,6-Trinitrotoluene 0.058 J M J 0.20 80251-29-2 DNX 0.029 U 0.20 5755-27-1 MNX 3.1 J J 0.20 121-14-2 2,4-Dinitrotoluene 0.20 M 0.20 606-20-2 2,6-Dinitrotoluene 0.36 J M J 0.20 35572-78-2 2-Amino-4,6-dinitrotoluene 0.021 U M 0.20 19406-51-0 4-Amino-2,6-dinitrotoluene 0.058 J M J 0.20 99-99-0 4-Nitrotoluene 0.058 U M 0.20 88-72-2 2-Nitrotoluene 0.032 U 0.20	13980-04-6	TNX	0.031	U	0.20	0.031
80251-29-2 DNX 0.029 U 0.20 5755-27-1 MNX 3.1 J 0.20 121-14-2 2,4-Dinitrotoluene 0.20 M 0.20 606-20-2 2,6-Dinitrotoluene 0.36 J M 0.20 35572-78-2 2-Amino-4,6-dinitrotoluene 0.021 U M 0.20 19406-51-0 4-Amino-2,6-dinitrotoluene 0.058 J M 0.20 99-99-0 4-Nitrotoluene 0.058 U M 0.20 88-72-2 2-Nitrotoluene 0.032 U 0.20	99-65-0	1,3-Dinitrobenzene	0.028	UM	0.20	0.028
5755-27-1 MNX 3.1 J 0.20 121-14-2 2,4-Dinitrotoluene 0.20 M 0.20 606-20-2 2,6-Dinitrotoluene 0.36 J M J 0.20 35572-78-2 2-Amino-4,6-dinitrotoluene 0.021 U M 0.20 19406-51-0 4-Amino-2,6-dinitrotoluene 0.058 J M J 0.20 99-99-0 4-Nitrotoluene 0.058 U M 0.20 88-72-2 2-Nitrotoluene 0.032 U 0.20	118-96-7	2,4,6-Trinitrotoluene	0.058	JM ")	0.20	0.023
121-14-2 2,4-Dinitrotoluene 0.20 M 0.20 606-20-2 2,6-Dinitrotoluene 0.36 J M J 0.20 35572-78-2 2-Amino-4,6-dinitrotoluene 0.021 U M 0.20 19406-51-0 4-Amino-2,6-dinitrotoluene 0.058 J M J 0.20 99-99-0 4-Nitrotoluene 0.058 U M 0.20 88-72-2 2-Nitrotoluene 0.032 U 0.20	80251-29-2	DNX	0.029	ט	0.20	0.029
606-20-2 2,6-Dinitrotoluene 0.36 J M J 0.20 35572-78-2 2-Amino-4,6-dinitrotoluene 0.021 U M 0.20 19406-51-0 4-Amino-2,6-dinitrotoluene 0.058 J M J 0.20 99-99-0 4-Nitrotoluene 0.058 U M 0.20 88-72-2 2-Nitrotoluene 0.032 U 0.20	5755-27-1	MNX	3.1	JJ	0.20	0.018
35572-78-2 2-Amino-4,6-dinitrotoluene 0.021 U M 0.20 19406-51-0 4-Amino-2,6-dinitrotoluene 0.058 J M J 0.20 99-99-0 4-Nitrotoluene 0.058 U M 0.20 88-72-2 2-Nitrotoluene 0.032 U 0.20	121-14-2	2,4-Dinitrotoluene	0.20	M	0.20	0.046
19406-51-0 4-Amino-2,6-dinitrotoluene 0.058 J M J 0.20 99-99-0 4-Nitrotoluene 0.058 U M 0.20 88-72-2 2-Nitrotoluene 0.032 U 0.20	606-20-2	2,6-Dinitrotoluene	0.36	JMJ	0.20	0.039
99-99-0 4-Nitrotoluene 0.058 U M 0.20 88-72-2 2-Nitrotoluene 0.032 U 0.20	35572-78-2	2-Amino-4,6-dinitrotoluene	0.021	UM	0.20	0.021
88-72-2 2-Nitrotoluene 0.032 U 0.20	19406-51-0	4-Amino-2,6-dinitrotoluene	0.058	JM J	0.20	0.022
	99-99-0	4-Nitrotoluene	0.058	UM	0.20	0.058
55-63-0 Nitroglycerin 1.4 U M 4.0	38-72-2	2-Nitrotoluene	0.032	Ū	0.20	0.032
	55-63-0	Nitroglycerin	1.4	UM	4.0	1.4
121-82-4 RDX 0.044 U 0.20	21-82-4	RDX	0.044	Ū	0.20	0.044

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	98	М	75-130

L'orm I Copy

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-98791-1

SDG No.: 680-98791-1

Client Sample ID: 54RB021914 Lab Sample ID: 680-98791-3

Matrix: Water Lab File ID: 63200020.D

Analysis Method: 8330B Date Collected: 02/19/2014 09:45

Extraction Method: 8330-Prep Date Extracted: 02/25/2014 08:49

Sample wt/vol: 500(mL) Date Analyzed: 02/25/2014 23:08

Con. Extract Vol.: 10000(uL) Dilution Factor: 1

Injection Volume: 450(uL) GC Column: Biphenyl ID: 4.6(mm)

% Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 68817 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
118-96-7	2,4,6-Trinitrotoluene	0.060	JM T	0.20	0.023
5755-27-1	MNX	0.74	JM J	0.20	0.018
121-14-2	2,4-Dinitrotoluene	0.28	М	0.20	0.046
606-20-2	2,6-Dinitrotoluene	0.19	JM J	0.20	0.039
19406-51-0	4-Amino-2,6-dinitrotoluene	0.36	J 7	0.20	0.022

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	111		75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-98791-1

SDG No.: 680-98791-1

Client Sample ID: 54MW01 Lab Sample ID: 680-98791-4

Matrix: Water Lab File ID: 63150010.D

Analysis Method: 8330B Date Collected: 02/19/2014 12:00

Extraction Method: 8330-Prep Date Extracted: 02/25/2014 08:49

Sample wt/vol: 500(mL) Date Analyzed: 02/25/2014 17:35

Con. Extract Vol.: 10000(uL) Dilution Factor: 1

Injection Volume: 150(uL) GC Column: C-18 ID: 4.6(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 68808 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	\mathtt{DL}
13980-04-6	TNX	0.031	UJ	0.20	0.031
99-65-0	1,3-Dinitrobenzene	0.028	U	0.20	0.028
118-96-7	2,4,6-Trinitrotoluene	0.023	Ü	0.20	0.023
80251-29-2	DNX	0.029	U	0.20	0.029
5755-27-1	MNX	0.018	Ū	0.20	0.018
121-14-2	2,4-Dinitrotoluene	0.046	Ū	0.20	0.046
606-20-2	2,6-Dinitrotoluene	0.039	U	0.20	0.039
35572-78-2	2-Amino-4,6-dinitrotoluene	0.021	U	0.20	0.021
19406-51-0	4-Amino-2,6-dinitrotoluene	0.022	U	0.20	0.022
99-99-0	4-Nitrotoluene	0.058	Ū	0.20	0.058
88-72-2	2-Nitrotoluene	0.032	U	0.20	0.032
55-63-0	Nitroglycerin	1.4	Ū	4.0	1.4
121-82-4	RDX	0.044	U	0.20	0.044

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	99		75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-98791-1 SDG No.: 680-98791-1 Client Sample ID: 54MW12 Lab Sample ID: 680-98791-5 Matrix: Water Lab File ID: 63150011.D Analysis Method: 8330B Date Collected: 02/19/2014 13:30 Extraction Method: 8330-Prep 02/25/2014 08:49 Date Extracted: Sample wt/vol: 500(mL) Date Analyzed: 02/25/2014 18:12 Con. Extract Vol.: 10000(uL) Dilution Factor: 1 Injection Volume: 150(uL) GC Column: C-18 ID: 4.6 (mm)

% Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 68808

RDX

CAS NO. COMPOUND NAME RESULT LOQ DL13980-04-6 0.47 J 0.20 0.031 99-65-0 1,3-Dinitrobenzene 5.3 М 0.20 0.028 80251-29-2 DNX 0.36 JM 0.20 0.029 1 5755-27-1 MNX 0.31 0.20 0.018 121-14-2 2,4-Dinitrotoluene 0.31 JM 0.20 B 0.046 606-20-2 2,6-Dinitrotoluene 0.039 U M 0.20 0.039 35572-78-2 2-Amino-4,6-dinitrotoluene 6.4 М 0.20 0.021 19406-51-0 4-Amino-2,6-dinitrotoluene 3.8 М 0.20 0.022 K 99-99-0 4-Nitrotoluene 0.058 П 0.20 0.058 88-72-2 2-Nitrotoluene 3.1 JM 0.20 0.032 55-63-0 Nitroglycerin 47

Units: ug/L

J M 7

8.7

4.0

0.20

1.4

0.044

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	135	ΜQ	75-130

121-82-4

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-98791-1 SDG No.: 680-98791-1 Client Sample ID: 54MW12 Lab Sample ID: 680-98791-5 Matrix: Water Lab File ID: 63200022.D Date Collected: 02/19/2014 13:30 Analysis Method: 8330B Extraction Method: 8330-Prep Date Extracted: 02/25/2014 08:49 Sample wt/vol: 500(mL) Date Analyzed: 02/26/2014 00:16 Con. Extract Vol.: 10000(uL) Dilution Factor: 1

Injection Volume: 450(uL) GC Column: Biphenyl ID: 4.6(mm)

% Moisture: GPC Cleanup: (Y/N) N

Units: ug/L Analysis Batch No.: 68817

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
13980-04-6	TNX	0.77	JM J	0.20	0.031
99-65-0	1,3-Dinitrobenzene	3.7	K	0.20	0.028
80251-29-2	DNX	1.1	J M 7	0.20	0.029
5755-27-1	MNX	0.39	M B	0.20	0.018
121-14-2	2,4-Dinitrotoluene	0.065	JMG	0.20	0.046
35572-78-2	2-Amino-4,6-dinitrotoluene	6.1	V.	0.20	0.021
19406-51-0	4-Amino-2,6-dinitrotoluene	3.0	V.	0.20	0.022
88-72-2	2-Nitrotoluene	0.60	JM J	0.20	0.032
55-63-0	Nitroglycerin	17	JM J	4.0	1.4
121-82-4	RDX	6.2	K	0.20	0.044

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	206	JQ	75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-98791-1 SDG No.: 680-98791-1 Client Sample ID: 54MW12 DL Lab Sample ID: 680-98791-5 DL Matrix: Water Lab File ID: 63580003.D Date Collected: 02/19/2014 13:30 Analysis Method: 8330B Extraction Method: 8330-Prep Date Extracted: 02/25/2014 08:49 Sample wt/vol: 500(mL) Date Analyzed: 02/27/2014 13:15 Con. Extract Vol.: 10000(uL) Dilution Factor: 3 GC Column: Biphenyl Injection Volume: 450(uL) ID: 4.6(mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 68916 Units: ug/L CAS NO. COMPOUND NAME RESULT Q LOQ DL118-96-7 2,4,6-Trinitrotoluene 29 0.60 0.069 CAS NO. SURROGATE %REC

528-29-0

1,2-Dinitrobenzene

Q

Q

199

LIMITS

75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington	Job No.: 680-98791-1			
SDG No.: 680-98791-1				
Client Sample ID: 54MW12 DL	Lab Sample ID: 680-98791-5 DL			
Matrix: Water	Lab File ID: 63570003.D			
Analysis Method: 8330B	Date Collected: 02/19/2014 13:30			
Extraction Method: 8330-Prep	Date Extracted: 02/25/2014 08:49			
Sample wt/vol: 500(mL)	Date Analyzed: 02/27/2014 14:40			
Con. Extract Vol.: 10000(uL)	Dilution Factor: 3			
Injection Volume: 150(uL)	GC Column: C-18 ID: 4.6(mm)			
% Moisture:	GPC Cleanup: (Y/N) N			
Analysis Batch No.: 68915	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
118-96-7	2,4,6-Trinitrotoluene	28	М	0.60	0.069

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	138	M Q	75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-98791-1

SDG No.: 680-98791-1

Client Sample ID: 54TM12 Lab Sample ID: 680-98791-6

Matrix: Water Lab File ID: 63150012.D

Analysis Method: 8330B Date Collected: 02/19/2014 13:30

Extraction Method: 8330-Prep Date Extracted: 02/25/2014 08:49

Sample wt/vol: 500(mL) Date Analyzed: 02/25/2014 18:50

Con. Extract Vol.: 10000(uL) Dilution Factor: 1

Injection Volume: 150(uL) GC Column: C-18 ID: 4.6(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 68808 Units: ug/L

13980-04-6 99-65-0	TNX 1,3-Dinitrobenzene	0.47	J 5	0.20	0.031
99-65-0	1,3-Dinitrobenzene			3.20	0.031
		5.5	JM 5	0.20	0.028
80251-29-2	DNX	0.35	JM J	0.20	0.029
5755-27-1	MNX	0.32	В	0.20	0.018
121-14-2	2,4-Dinitrotoluene	0.30	лм <u>В</u>	0.20	0.046
606-20-2	2,6-Dinitrotoluene	0.039	UM	0.20	0.039
35572-78-2	2-Amino-4,6-dinitrotoluene	6.3	MK	0.20	0.021
19406-51-0	4-Amino-2,6-dinitrotoluene	3.8	M V	0.20	0.022
99-99-0	4-Nitrotoluene	0.058	U	0.20	0.058
88-72-2	2-Nitrotoluene	3.0	JM 7	0.20	0.032
55-63-0	Nitroglycerin	46	JMJ	4.0	1.4
121-82-4	RDX	8.6	K	0.20	0.044

CAS NO.	SURROGATE	%REC	Q	LIMITS
 8-29-0	1,2-Dinitrobenzene	136	M Q	75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Job No.: 680-98791-1

SDG No.: 680-98791-1

Client Sample ID: 54TM12

Lab Sample ID: 680-98791-6

Matrix: Water

Lab File ID: 63200023.D

Analysis Method: 8330B Date Collected: 02/19/2014 13:30

Extraction Method: 8330-Prep Date Extracted: 02/25/2014 08:49

Sample wt/vol: 500(mL) Date Analyzed: 02/26/2014 00:50

Con. Extract Vol.: 10000(uL) Dilution Factor: 1

Injection Volume: 450(uL) GC Column: Biphenyl ID: 4.6(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 68817 Units: ug/L

Lab Name: TestAmerica Burlington

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
13980-04-6	TNX	0.76	JM J	0.20	0.031
99-65-0	1,3-Dinitrobenzene	3.6	J	0.20	0.028
80251-29-2	DNX	1.1	JM-T	0.20	0.029
5755-27-1	MNX	0.34	MÄ	0.20	0.018
121-14-2	2,4-Dinitrotoluene	0.063	JMB	0.20	0.046
35572-78-2	2-Amino-4,6-dinitrotoluene	6.1	K	0.20	0.021
19406-51-0	4-Amino-2,6-dinitrotoluene	3.0	12	0.20	0.022
88-72-2	2-Nitrotoluene	0.59	JM	0.20	0.032
55-63-0	Nitroglycerin	19	JM	4.0	1.4
121-82-4	RDX	6.1	16	0.20	0.044

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	204	JQ	75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-98791-1

SDG No.: 680-98791-1

Client Sample ID: 54TM12 DL Lab Sample ID: 680-98791-6 DL

Matrix: Water Lab File ID: 63580004.D

Analysis Method: 8330B Date Collected: 02/19/2014 13:30

Extraction Method: 8330-Prep Date Extracted: 02/25/2014 08:49

Sample wt/vol: 500(mL) Date Analyzed: 02/27/2014 13:49

Con. Extract Vol.: 10000(uL) Dilution Factor: 3

Injection Volume: 450(uL) GC Column: Biphenyl ID: 4.6(mm)

% Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 68916 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
118-96-7	2,4,6-Trinitrotoluene	28		0.60	0.069

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0		203		75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-98791-1 SDG No.: 680-98791-1 Client Sample ID: 54TM12 DL Lab Sample ID: 680-98791-6 DL Matrix: Water Lab File ID: 63570004.D Analysis Method: 8330B Date Collected: 02/19/2014 13:30 Extraction Method: 8330-Prep Date Extracted: 02/25/2014 08:49 Sample wt/vol: 500(mL) Date Analyzed: 02/27/2014 15:18 Con. Extract Vol.: 10000(uL) Dilution Factor: 3 Injection Volume: 150(uL) GC Column: C-18 ID: 4.6(mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 68915 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
118-96-7 2,4,6-Trinitrotoluene		28	М	0.60	0.069

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	139	M Q	75-130

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100 Fax: +1 (410) 273-7103 Eric.malarek@CBIfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CB&I Federal Services, LLC (CB&I) Radford Army Ammunition Plant (RFAAP)

Project Manager

FROM:

Eric Malarek, CB&I Project Chemist

SUBJECT:

RFAAP Data Validation - Chloride, Chlorate, Chlorite, Nitrate, and Sulfate

Test America Laboratories, Inc., SDG 680-98791

DATE:

June 18, 2014

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on February 19, 2014. Samples were analyzed for chlorite and chlorate using USEPA Method 300.1 and for chloride, nitrate, and sulfate using USEPA Method 300.0. A total of six aqueous samples (includes one rinse blank) were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
54MW10	680-98791-1	54MW01	680-98791-4
54MW13	680-98791-2	54MW12	680-98791-5
54RB021914	680-98791-3	54TM12	680-98791-6

Data were reviewed and validated using a combination of project QAPP, DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010 (DoD, 2010), and method-specific criteria. The data qualifier scheme was consistent with the Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993). Parameters evaluated are presented in Table 1. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

	lified ata	Parameter
Yes	No	
	Χ	Holding Times and Preservation
	Х	Initial and Continuing Calibration
	Х	Blank Analysis
	Х	System Monitoring Compounds
	Х	Laboratory Control Sample
	Х	Laboratory Duplicate Sample
	X Matrix Spike and Spike Duplicate	
	Х	Field Duplicate Sample
X Quantitation Verification and Data Revi		Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT ANIONS REVIEW SDG 680-98791

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. Holding time criteria: Cool 4°C±2°C and 28 days for sulfate, chloride, and chlorate; Cool 4°C±2°C and 14 days for chlorite; and Cool to 4°C±2°C with H₂SO₄ to pH<2 and 2 days for nitrate. The dates and times were compared between the sample collection and laboratory analysis (USEPA criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 02/19/14, the coolers were received on 02/20/14 by the primary laboratory (Test America Laboratories, Inc.) at 3.4°C, 2.4°C, and 5.8°C. All criteria were met. No qualifiers were applied.
- Holding Time Review: Samples were collected on 02/19/14. The samples were analyzed on 02/20/14 for nitrate analysis; on 02/27/14 and 02/28/14 for chloride and sulfate analysis; on 02/22/14 for chlorite analysis; and on 02/28/14 for chlorate analysis, respectively. Sample collection dates may be found on the attached form 1s. All criteria were met. No qualifiers were applied.

II-Initial and Continuing Calibration

Requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data. Initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of the analysis run, and continuing calibration verification documents that the initial calibration is still valid.

Chloride, nitrate, and sulfate: 1 – blank

 $5 - \text{standards} (r > 0.995 \text{ or } r^2 \ge 0.99)$

ICV/CCV (90-110%)

Method Reporting Limit (MRL) (75-125%)

Chlorite and chlorate: 1 – blank

5 – standards (r>0.995 or $r^2 \ge 0.99$; RSD≤15%)

ICV/CCV (≤15%D)

• Chloride and sulfate analysis was calibrated on 02/27/14 using linear equation techniques to calculate final calculations. Nitrate analysis was calibrated on 01/31/14 using linear equation techniques to calculate final calculations. Chlorite analysis was calibrated on 02/21/14 using linear regression with final concentrations determined using external calibration factor techniques. Chlorate analysis was calibrated on 02/26/14 using linear regression with final concentrations determined using external calibration factor techniques. All coefficients of determinations were r²≥0.99 for chloride, chlorite, chlorate, sulfate, and nitrate. All ICV/CCV/MRL criteria were met for all anions and runs. No qualifiers were applied. Samples 54MW10 (680-98791-1), 54MW13 (680-98791-2), 54RB021914 (680-98791-3), 54MW01 (680-98791-4), 54MW12 (680-98791-5), and 54TM12 (680-98791-6) apply to these initial and continuing calibrations.

III-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. Calibration blanks were analyzed initially and at a 10% frequency thereafter for each batch. No contaminants should be detected in any of the associated blanks >MDL. The DoD QSM criteria specifies all concentrations should be less than $\frac{1}{2}$ MRL (<MRL for common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters) and <2MDL for the calibration blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is \leq 10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, 2-butanone, and phthalate esters, or 5 times (5X) the maximum amount for other target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB021914 (680-98791-3) applies to all samples in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	Analysis	QC Blank ID	Max Conc. mg/L	Action Level mg/L	B qualified samples (for this SDG)
02/27/14	Chloride	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
02/27/14	Sulfate	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
02/28/14	Sulfate	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
02/20/14	Nitrate	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
02/27/14	Chloride	MB 680-317560/8	<1/2MRL	NA	None
02/27/14	Sulfate	MB 680-317560/8	<1/2MRL	NA	None
02/27/14	Chloride	MB 680-317649/35	<1/2MRL	NA	None
02/27/14	Sulfate	MB 680-317649/35	<1/2MRL	NA	None
02/28/14	Sulfate	MB 680-317777/5	<1/2MRL	NA	None
02/20/14	Nitrate	MB 680-316449/5	<1½MRL	NA	None
02/27/14	Chloride	54RB021914	<1/2MRL	NA	None
02/27/14	Sulfate	54RB021914	<1/2MRL	NA	None
02/20/14	Nitrate	54RB021914	<1/2MRL	NA	None
Analysis	Analysis	QC Blank ID	Max Conc.	Action Level	B qualified samples
Date			μg/L	μg/L	(for this SDG)
02/22/14	Chlorite	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
02/28/14	Chlorate	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
02/22/14	Chlorite	MB 680-316767/11	<1/2MRL	NA	None
02/28/14	Chlorate	MB 680-317730/26	<1⁄₂MRL	NA	None
02/22/14	Chlorite	54RB021914	<1/2MRL	NA	None
02/28/14	Chlorate	54RB021914	<1/2MRL	NA	None

LOD = Limit of Detection

MRL = Method Reporting Limit

MDL = Method Detection Limit

NA = Not Applicable

IV-System Monitoring Compound (Surrogates)

Laboratory performance on individual samples is established by means of spiking activities. Surrogates were performed for chlorite analysis. The percent recovery (%R) for all samples and blanks must be within the laboratory control limits. DoD surrogate recovery limits are specified in Table G-3 of the DoD QSM (DoD, 2010). If the surrogate is not listed, then the laboratory criteria shall be used.

Chlorite and chlorate: Dichloroacetic acid (DCAA) (90-115%)

• All criteria were met for all reported samples. No qualifiers were applied.

V-Laboratory Control Sample and Laboratory Control Sample Duplicate

The laboratory control sample (LCS) and LCSD serve as a monitor of the overall performance of each step during the analysis, including the sample preparation. LCS and LCSD are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Per DoD QSM, all LCS/LCSD results must fall within the specified control limits:

Chloride, nitrate, and sulfate:

90-110%; RPD≤30% (DOD QSM = 80-120%; RPD≤20%)

Chlorite and chlorate:

85-115%; RPD≤10% (DOD QSM = None Listed)

- Samples LCS 680-317560/9 and LCSD 680-317560/10 were used as the aqueous LCS/LCSD for chloride and sulfate analysis on 02/27/14. All criteria were met. No qualifiers were applied. Samples 54MW13 (680-98791-2), 54RB021914 (680-98791-3), 54MW01 (680-98791-4), and 54MW12 (680-98791-5) apply to this LCS/LCSD for chloride and sulfate. Sample 54MW10 (680-98791-1) applies to this LCS/LCSD for chloride.
- Samples LCS 680-317649/36 and LCSD 680-317649/37 were used as the aqueous LCS/LCSD for chloride and sulfate analysis on 02/27/14. All criteria were met. No qualifiers were applied. Sample 54TM12 (680-98791-6) applies to this LCS/LCSD for chloride and sulfate.
- Samples LCS 680-317777/6 and LCSD 680-317777/7 were used as the aqueous LCS/LCSD for sulfate analysis on 02/28/14. All criteria were met. No qualifiers were applied. Sample 54MW10 (680-98791-1) applies to this LCS/LCSD.
- Samples LCS 680-316449/6 and LCSD 680-316449/7 were used as the aqueous LCS/LCSD for nitrate analysis on 02/20/14. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-98791-1), 54MW13 (680-98791-2), 54RB021914 (680-98791-3), 54MW01 (680-98791-4), 54MW12 (680-98791-5), and 54TM12 (680-98791-6) apply to this LCS/LCSD.
- Samples LCS 680-316767/13 and LCSD 680-316767/14 were used as the aqueous LCS/LCSD for chlorite analysis on 02/22/14. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-98791-1), 54MW13 (680-98791-2), 54RB021914 (680-98791-3), 54MW01 (680-98791-4), 54MW12 (680-98791-5), and 54TM12 (680-98791-6) apply to this LCS/LCSD.
- Samples LCS 680-317730/28 and LCSD 680-317730/29 were used as the aqueous LCS/LCSD for chlorate analysis on 02/28/14. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-98791-1), 54MW13 (680-98791-2), 54RB021914 (680-98791-3), 54MW01 (680-98791-4), 54MW12 (680-98791-5), and 54TM12 (680-98791-6) apply to this LCS/LCSD.

VI-Duplicate Sample Analysis

Duplicate sample determinations are used to demonstrate acceptable method precision by the laboratory at the time of analysis. Duplicate analysis is performed to generate data in order to determine the long-term precision of the analytical method on various matrices. Per DoD QSM, RPDs must be within established control limits (≤20%RPD).

No site lab duplicate was performed with this SDG; therefore, was not evaluated.

VII-Matrix Spike and Matrix Spike Duplicate

Matrix spikes (MSs) and MSDs are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at a frequency of one MS/MSD per 20 samples or preparatory batch of similar matrix. Per DoD QSM, MS/MSD recoveries and RPDs should be within the specified limits:

Chloride, nitrate, and sulfate:

90-110%; RPD≤30% (DOD QSM = 80-120%; RPD≤20%)

Chlorite and chlorate:

75-125%; RPD≤10% (DOD QSM = None Listed)

- Sample 54MW01 (680-98791-4) was used as the aqueous MS/MSD for chloride and sulfate analysis on 02/27/14. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-98791-1), 54MW13 (680-98791-2), 54RB021914 (680-98791-3), 54MW01 (680-98791-4), 54MW12 (680-98791-5), and 54TM12 (680-98791-6) apply to this MS/MSD.
- Sample 54MW01 (680-98791-4) was used as the aqueous MS/MSD for nitrate analysis on 02/20/14. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-98791-1), 54MW13 (680-98791-2), 54RB021914 (680-98791-3), 54MW01 (680-98791-4), 54MW12 (680-98791-5), and 54TM12 (680-98791-6) apply to this MS/MSD.
- Sample 54MW01 (680-98791-4) was used as the aqueous MS/MSD for chlorite analysis on 02/22/14.
 All criteria were met. No qualifiers were applied. Samples 54MW10 (680-98791-1), 54MW13 (680-98791-2), 54RB021914 (680-98791-3), 54MW01 (680-98791-4), 54MW12 (680-98791-5), and 54TM12 (680-98791-6) apply to this MS/MSD.
- Sample 54MW01 (680-98791-4) was used as the aqueous MS/MSD for chlorate analysis on 02/28/14. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-98791-1), 54MW13 (680-98791-2), 54RB021914 (680-98791-3), 54MW01 (680-98791-4), 54MW12 (680-98791-5), and 54TM12 (680-98791-6) apply to this MS/MSD.

VIII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

 Field groundwater sample duplicate pair 54MW12 (680-98791-5) and 54TM12 (680-98791-6) was analyzed for anion analysis in this SDG. All detected anions found in the sample and its duplicate pair and associated %RPD are noted in **Table 3**. All other target anions were non-detect for the duplicate pair. All criteria were met. No qualifiers were applied.

Table 3 Field Precision Analysis Hits Summary for Anions for Duplicate Pair 54MW12 (680-98791-5) and 54TM12 (680-98791-6)

Compound	Original Sample (mg/L)	Duplicate Pair (mg/L)	%RPD
Chloride	5.6	5.7	1.8
Nitrate as N	3.1	3.1	0.0
Sulfate	36	36	0.0

IX-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The following calculations were performed for verification.

- The percent difference (%D) between the calculated and the reported values should be within 10%.
- Any sample value >MDL and <MRL or <3*MDL (whichever is greater) was qualified as estimated, "J."

Sample: 54MW10 (680-98791-1), sulfate

```
Y = mX + b

Y = Sample Area
m = slope of curve
X = Concentration (mg/L)
b = Y-intercept
DF = Dilution Factor

Given:
m = 14210997.1
b = -2495771.7
Y = Area = 629271187
DF = 2

X = 44.46 mg/L * DF = 44.46 mg/L * 2 = 89 mg/L
Reported concentration = 89 mg/L
%D = 0.0%
Values were within 10% difference.
```

Sample: LCS 680-316767/13, chlorite

```
Conc. \mu g/L = (Amt * DF * Vt) / (CF * Vo)

where: Amt = the response on column (ng/mL) of the sample CF = Calibration Factor (from initial calibration)

Vt = volume of final extract (mL)

DF = dilution factor

Vo = volume of the sample extracted (mL)

Conc. \mu g/L = (5899418 \text{ ng/mL} * 1 * 5 \text{ mL}) / (59076.6839 * 5 \text{ mL})
= 99.9 ng/mL = 99.9 \mu g/L
```

Reported concentration = 99.9 μg/L %D = 0.0%

Values were within 10% difference.

Sample: LCS 680-317730/28, chlorate

```
Conc. \mug/L = (Amt * DF * Vt) / (CF * Vo)
```

= the response on column (ng/mL) of the sample = Calibration Factor (from initial calibration) where: Amt

CF

Vt = volume of final extract (mL)

DF = dilution factor

Vo = volume of the sample extracted (mL)

Conc. μ g/L = (2030586 ng/mL * 1 * 5 mL) / (36466.7219 * 5 mL) = $55.7 \text{ ng/mL} = 55.7 \mu\text{g/L}$

Reported concentration = 55.7 µg/L %D = 0.0%

Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition			
Laboratory Qualifiers ¹				
No Code	Confirmed identification.			
U	Undetected at the limit of detection: The associated data value is the			
	limit of detection, adjusted by any dilution factor used in the analysis.			
J	Estimated: The analyte was positively identified; the quantitation is estimation.			
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.			
N	Non-target analyte: The analyte is a tentatively identified compound (using mass spectroscopy).			
Q	One or more quality control criteria failed.			
Į.	SEPA Region III Data Validation Qualifiers ²			
R	Unreliable result. Analyte may or may not be present in the sample.			
	Supporting data necessary to confirm result.			
В	Not detected substantially above the level of the reported in laboratory or field blanks.			
J	Analyte present. Reported value may not be accurate or precise.			
UJ	Not detected, quantitation limit may be inaccurate or imprecise.			
N	Tentative Identification. Consider present. Special methods may be to confirm its presence or absence in future sampling efforts.			
NJ	Qualitative identification questionable due to poor resolution. Presumptively present at approximate quantity.			
К	Analyte present. Reported value may be biased high. Actual value is expected to be lower.			
L	Analyte present. Reported value may be biased low. Actual value is expected to be higher.			
UL	Not detected, quantitation limit is probably higher.			

¹The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

²The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993).

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah Job No.: 680-98791-1 SDG No.: 680-98791-1 Client Sample ID: 54MW10 Lab Sample ID: 680-98791-1 Lab File ID: 0227141840-31.d Matrix: Water Analysis Method: 300.0 Date Collected: 02/19/2014 10:40 Date Extracted: Extraction Method: Date Analyzed: 02/27/2014 18:40 Sample wt/vol: 1(mL) Con. Extract Vol.: 1(mL) Dilution Factor: 1 GC Column: Dionex AS18 ID: 4 (mm) Injection Volume: 25(uL) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 317560 Units: mg/L CAS NO. COMPOUND NAME RESULT Q DLLOQ

4.2

0.50

0.25

16887-00-6

Chloride

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah		Jol	No.: 680-9	8791-1		
SDG No.: 680-9879	1-1					
Client Sample ID:	54MW10	Lal	Sample ID:	680-98	791-1	
Matrix: Water		Lal	File ID:	2281414	07-14.d	
Analysis Method:	300.0	Dat	ce Collected:	02/19	/2014 10:40)
Extraction Method:		Date Extracted:				
Sample wt/vol: 1(mL)		Date Analyzed: 02/28/2014 14:07				
Con. Extract Vol.: 1(mL)		Dilution Factor: 2				
Injection Volume:	25 (uL)	GC Column: Dionex AS18 ID: 4(mm)				
% Moisture:		GPC Cleanup: (Y/N) N				
Analysis Batch No.: 317777		Uni	ts: mg/L			
CAS NO.	COMPOUND NAME	<u>. </u>	RESULT	Q	LOQ	DL

14808-79-8

Sulfate

1.0

89

0.50

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah			Job No.: 680-98791-1				
SDG No.: 680	-98791-1						
Client Sample ID: 54MW10			Sample ID:	680-98	791-1		
Matrix: Wate	r	Lal	File ID: 0	2201414	12-16.d		
Analysis Meth	nod: 300.0	Dat	ce Collected:	02/19	/2014 10:40		
Extraction Method:		Dat	e Extracted:	· .			
Sample wt/vol	Sample wt/vol: 5(mL)		Date Analyzed: 02/20/2014 14:12				
Con. Extract	Vol.: 5(mL)	Dilution Factor: 1					
Injection Vol	ume: 25(uL)	GC Column: AS18 ID: 4 (mm)					
% Moisture:		GPC Cleanup: (Y/N) N					
Analysis Batch No.: 316449		Uni	ts: mg/L				
CAS NO.	COMPOUND NAME		RESULT	Q	LOQ	DL	
14797-55-8	Nitrate as N		0.47		0.050	0.025	

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah Job No.: 680-98791-1 SDG No.: 680-98791-1 Lab Sample ID: 680-98791-1 Client Sample ID: 54MW10 Matrix: Water Lab File ID: 0222140452-28.d Analysis Method: 300.1B Date Collected: 02/19/2014 10:40 Extraction Method: Date Extracted: Date Analyzed: 02/22/2014 04:52 Sample wt/vol: 5(mL) Con. Extract Vol.: 5(mL) Dilution Factor: 1 GC Column: Dionex AS9-HC ID: 2(mm) Injection Volume: 50(uL) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 316767 Units: ug/L CAS NO. COMPOUND NAME RESULT Q LOQ DL3.7 14998-27-7 Chlorite 3.7 U 20

SURROGATE

Dichloroacetic acid(Surr)

%REC

101

Q

LIMITS

90-115

CAS NO.

79-43-6

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah	Job No.: 680-98791-1
SDG No.: 680-98791-1	
Client Sample ID: 54MW10	Lab Sample ID: 680-98791-1
Matrix: Water	Lab File ID: 0228140935-40.d
Analysis Method: 300.1B	Date Collected: 02/19/2014 10:40
Extraction Method:	Date Extracted:
Sample wt/vol: 5(mL)	Date Analyzed: 02/28/2014 09:35
Con. Extract Vol.: 5(mL)	Dilution Factor: 1
Injection Volume: 50(uL)	GC Column: Dionex AS9-HC ID: 2(mm)
% Moisture:	GPC Cleanup: (Y/N) N
Analysis Batch No.: 317730	Units: ug/L
CAS NO. COMPOUND NAME	RESULT Q LOQ DL

2.1 U

10

2.1

7790-93-4

Chlorate

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Job No.: 680-98791-1 Lab Name: TestAmerica Savannah SDG No.: 680-98791-1 Client Sample ID: 54MW13 Lab Sample ID: 680-98791-2 Lab File ID: 0227141855-32.d Matrix: Water Analysis Method: 300.0 Date Collected: 02/19/2014 09:30 Extraction Method: Date Extracted: Sample wt/vol: 1(mL) Date Analyzed: 02/27/2014 18:55 Dilution Factor: 1 Con. Extract Vol.: 1(mL) GC Column: Dionex AS18 ID: 4 (mm) Injection Volume: 25(uL) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 317560 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
14808-79-8	Sulfate	31		0.50	0.25
16887-00-6	Chloride	2.2		0.50	0.25

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Job No.: 680-98791-1 Lab Name: TestAmerica Savannah SDG No.: 680-98791-1 Lab Sample ID: 680-98791-2 Client Sample ID: 54MW13 Lab File ID: 0220141428-17.d Matrix: Water Analysis Method: 300.0 Date Collected: 02/19/2014 09:30 Extraction Method: Date Extracted: Sample wt/vol: 5(mL) Date Analyzed: 02/20/2014 14:28 Dilution Factor: 1 Con. Extract Vol.: 5(mL) GC Column: AS18 ID: 4 (mm) Injection Volume: 25(uL) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 316449 Units: mg/L COMPOUND NAME RESULT Q CAS NO. LOQ DL

0.44

0.050

0.025

14797-55-8

Nitrate as N

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah		Job No.: 680-98791-1				
SDG No.: 680-9	3791-1					
Client Sample ID: 54MW13		Lab Sample ID: 680-98791-2				
Matrix: Water		Lab File ID: 0222140526-29.d				
Analysis Method	: 300.1B	Date Collected: 02/19/2014 09:30				
Extraction Method:		Date Extracted:				
Sample wt/vol: 5(mL)		Date Analyzed: 02/22/2014 05:26				
Con. Extract Vo	1.: 5(mL)	Dilution Factor: 1				
Injection Volum	e: 50(uL)	GC Column: Dionex AS9-HC ID: 2(mm)				
% Moisture:		GPC Cleanup: (Y/N) N				
Analysis Batch No.: 316767		Units: ug/L				
CAS NO.	COMPOUND NAME	RESULT Q LOQ DL				
14998-27-7	Chlorite	3.7 U 20 3				

SURROGATE

Dichloroacetic acid(Surr)

%REC

102

Q

CAS NO.

79-43-6

LIMITS

90-115

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah	Job No.: 680-98791-1				
SDG No.: 680-98791-1					
Client Sample ID: 54MW13	Lab Sample ID: 680-98791-2				
Matrix: Water	Lab File ID: 0228141009-41.d				
Analysis Method: 300.1B	Date Collected: 02/19/2014 09:30				
Extraction Method:	Date Extracted:				
Sample wt/vol: 5(mL)	Date Analyzed: 02/28/2014 10:09				
Con. Extract Vol.: 5(mL)	Dilution Factor: 2				
Injection Volume: 50(uL)	GC Column: Dionex AS9-HC ID: 2(mm)				
% Moisture:	GPC Cleanup: (Y/N) N				
Analysis Batch No.: 317730	Units: ug/L				
CAS NO. COMPOUND NAME	RESULT Q LOQ DL				

4.2 U

20

4.2

7790-93-4

Chlorate

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah Job No.: 680-98791-1 SDG No.: 680-98791-1 Lab Sample ID: 680-98791-3 Client Sample ID: 54RB021914 Lab File ID: 0227141910-33.d Matrix: Water Date Collected: 02/19/2014 09:45 Analysis Method: 300.0 Extraction Method: Date Extracted: Sample wt/vol: 1(mL) Date Analyzed: 02/27/2014 19:10 Con. Extract Vol.: 1(mL) Dilution Factor: 1 GC Column: Dionex AS18 ID: 4(mm) Injection Volume: 25(uL) GPC Cleanup: (Y/N) N % Moisture: Analysis Batch No.: 317560 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
14808-79-8	Sulfate	0.25	U	0.50	0.25
16887-00-6	Chloride	0.25	U	0.50	0.25

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah	Job No.: 680-98791-1				
SDG No.: 680-98791-1					
Client Sample ID: 54RB021914	Lab Sample ID: 680-98791-3				
Matrix: Water	Lab File ID: 0220141443-18.d				
Analysis Method: 300.0	Date Collected: 02/19/2014 09:45				
Extraction Method:	Date Extracted:				
Sample wt/vol: 5(mL)	Date Analyzed: 02/20/2014 14:43				
Con. Extract Vol.: 5(mL)	Dilution Factor: 1				
Injection Volume: 25(uL)	GC Column: AS18 ID: 4 (mm)				
% Moisture:	GPC Cleanup: (Y/N) N				
Analysis Batch No.: 316449	Units: mg/L				
CAS NO. COMPOUND NAME	RESULT Q LOQ DL				

14797-55-8

Nitrate as N

Page 357 of 1599

0.050

0.025

0.025 U

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah	Job No.: 680-98791-1		
SDG No.: 680-98791-1			
Client Sample ID: 54RB021914	Lab Sample ID: 680-98791-3		
Matrix: Water	Lab File ID: 0222140601-30.d		
Analysis Method: 300.1B	Date Collected: 02/19/2014 09:45		
Extraction Method:	Date Extracted:		
Sample wt/vol: 5(mL)	Date Analyzed: 02/22/2014 06:01		
Con. Extract Vol.: 5(mL)	Dilution Factor: 1		
Injection Volume: 50(uL)	GC Column: Dionex AS9-HC ID: 2(mm)		
% Moisture:	GPC Cleanup: (Y/N) N		
Analysis Batch No.: 316767	Units: ug/L		

14998-27-7 Chlorite 3.7 U 20 3	CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
	14998-27-7	Chlorite	3.7		20	

CAS NO.	SURROGATE	%REC	Q	LIMITS
79-43-6 Dichloroacetic acid(Surr)		101		90-115

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah	Job No.: 680-98791-1
SDG No.: 680-98791-1	
Client Sample ID: 54RB021914	Lab Sample ID: 680-98791-3
Matrix: Water	Lab File ID: 0228141044-42.d
Analysis Method: 300.1B	Date Collected: 02/19/2014 09:45
Extraction Method:	Date Extracted:
Sample wt/vol: 5(mL)	Date Analyzed: 02/28/2014 10:44
Con. Extract Vol.: 5(mL)	Dilution Factor: 1
Injection Volume: 50(uL)	GC Column: Dionex AS9-HC ID: 2(mm)
% Moisture:	GPC Cleanup: (Y/N) N
Analysis Batch No.: 317730	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
7790-93-4	Chlorate	2.1	Ü	10	2.1

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah Job No.: 680-98791-1 SDG No.: 680-98791-1 Client Sample ID: 54MW01 Lab Sample ID: 680-98791-4 Lab File ID: 0227141926-34.d Matrix: Water Date Collected: 02/19/2014 12:00 Analysis Method: 300.0 Extraction Method: Date Extracted: Date Analyzed: 02/27/2014 19:26 Sample wt/vol: 1(mL) Con. Extract Vol.: 1(mL) Dilution Factor: 1 GC Column: Dionex AS18 ID: 4 (mm) Injection Volume: 25(uL) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 317560 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
14808-79-8	Sulfate	30		0.50	0.25
16887-00-6	Chloride	1.4		0.50	0.25

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah		Jok	No.: 680-9	8791-1		
SDG No.: 680-98	791-1					
Client Sample ID: 54MW01		Lab Sample ID: 680-98791-4				
Matrix: Water		Lab	File ID: 0	2201415	29-21.d	
Analysis Method: 300.0		Dat	e Collected:	02/19	/2014 12:00)
Extraction Method:		Date Extracted:				
Sample wt/vol: 5(mL)		Date Analyzed: 02/20/2014 15:29				
Con. Extract Vol.: 5(mL)		Dilution Factor: 1				
Injection Volume	25 (uL)	GC Column: AS18 ID: 4 (mm)				
% Moisture:		GPC Cleanup:(Y/N) N				
Analysis Batch No.: 316449		Uni	ts: mg/L			
CAS NO.	COMPOUND NAME		RESULT	Q	LOQ	DL

0.025 U

0.050

0.025

14797-55-8

Nitrate as N

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah	Job No.: 680-98791-1
SDG No.: 680-98791-1	
Client Sample ID: 54MW01	Lab Sample ID: 680-98791-4
Matrix: Water	Lab File ID: 0222140635-31.d
Analysis Method: 300.1B	Date Collected: 02/19/2014 12:00
Extraction Method:	Date Extracted:
Sample wt/vol: 5(mL)	Date Analyzed: 02/22/2014 06:35
Con. Extract Vol.: 5(mL)	Dilution Factor: 1
Injection Volume: 50(uL)	GC Column: Dionex AS9-HC ID: 2(mm)
% Moisture:	GPC Cleanup: (Y/N) N
Analysis Batch No.: 316767	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
14998-27-7	Chlorite	3.7	U	20.	3.7

CAS NO.	SURROGATE	%REC	Q	LIMITS
79-43-6 Dichloroacetic acid(Surr)		102		90-115

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah		Job No.: 680-98791-1				
SDG No.: 680-98791-1						
Client Sample ID: 54MW01		Lab Sample ID: 680-98791-4				
Matrix: Water	-	Lab File ID: 0228141118-43.d				
Analysis Method: 300.1B		Date Collected: 02/19/2014 12:00				
Extraction Method:		Date Extracted:				
Sample wt/vol: 5(mL)		Date Analyzed: 02/28/2014 11:18				
Con. Extract Vol.: 5(mL)		Dilution Factor: 1				
Injection Vol	ume: 50(uL)	GC Column: Dionex AS9-HC ID: 2 (mm)				
% Moisture:		GPC Cleanup: (Y/N) N				
Analysis Batch No.: 317730		Units: ug/L				
CAS NO.	COMPOUND NAME	RESULT Q LOQ DL				
7790-93-4	Chlorate	2.1 U 10 2.				

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah		Job No.: 680-98791-1				
SDG No.: 680-	98791-1					
Client Sample ID: 54MW12		Lab Sample ID: 680-98791-5				
Matrix: Water		Lab File ID: 0227142012-37.d				
Analysis Method: 300.0		Date Collected: 02/19/2014 13:30				
Extraction Method:		Date Extracted:				
Sample wt/vol: 1(mL)		Date Analyzed: 02/27/2014 20:12				
Con. Extract V	ol.: 1(mL)	Dilution Factor: 1				
Injection Volu	me: 25(uL)	GC Column: Dionex AS18 ID: 4 (mm)				
% Moisture:		GPC Cleanup: (Y/N) N				
Analysis Batch No.: 317560		Units: mg/L				
CAS NO.	COMPOUND NAME	RESULT Q LOQ DL				

36

5.6

0.50

0.50

0.25

0.25

14808-79-8

16887-00-6

Sulfate

Chloride

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah Job No.: 680-98791-1 SDG No.: 680-98791-1 Client Sample ID: 54MW12 Lab Sample ID: 680-98791-5 Lab File ID: 0220141711-26.d Matrix: Water Analysis Method: 300.0 Date Collected: 02/19/2014 13:30 Extraction Method: Date Extracted: Sample wt/vol: 5(mL) Date Analyzed: 02/20/2014 17:11 Con. Extract Vol.: 5(mL) Dilution Factor: 4 Injection Volume: 25(uL) GC Column: AS18 ID: 4 (mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 316449 Units: mg/L CAS NO. COMPOUND NAME RESULT Q LOQ DL 14797-55-8 Nitrate as N 3.1 0.20 0.10

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah		Job No.: 680-98791-1					
SDG No.: 680	-98791-1						
Client Sample ID: 54MW12		Lab Sample ID: 680-98791-5					
Matrix: Water		Lab File ID: 0222140818-34.d					
Analysis Method: 300.1B		Date Collected: 02/19/2014 13:30					
Extraction Method:		Date Extracted:					
Sample wt/vol: 5(mL)		Date Analyzed: 02/22/2014 08:18					
Con. Extract Vol.: 5(mL)		Dilution Factor: 1					
Injection Volume: 50(uL)		GC Column: Dionex AS9-HC ID: 2(mm)					
% Moisture:		GPC Cleanup: (Y/N) N					
Analysis Batch No.: 316767		Units: ug/L					
CAS NO.	COMPOUND NAME		RESULT	Q	LOQ	DL	
14998-27-7	Chlorite		3.7	Ŭ	20	3.7	
14330 21 1	CHICLIC		3.1		20	3.7	

SURROGATE

Dichloroacetic acid(Surr)

%REC

102

Q

LIMITS

90-115

CAS NO.

79-43-6

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah		Job No.: 680-98791-1					
SDG No.: 680-	-98791-1						
Client Sample ID: 54MW12		Lab Sample ID: 680-98791-5					
Matrix: Water		Lab File ID: 0228141301-46.d					
Analysis Method: 300.1B		Date Collected: 02/19/2014 13:30					
Extraction Method:		Date Extracted:					
Sample wt/vol: 5(mL)		Date Analyzed: 02/28/2014 13:01					
Con. Extract Vol.: 5(mL)		Dilution Factor: 1					
Injection Volume: 50(uL)		GC Column: Dionex AS9-HC ID: 2(mm)					
% Moisture:		GPC Cleanup: (Y/N) N					
Analysis Batch No.: 317730		Units: ug/L					
CAS NO.	COMPOUND NAME	RESULT Q LOQ DL					
7790-93-4	Chlorate	2.1 U 10 2					

Page 144 of 1599

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah Job No.: 680-98791-1 SDG No.: 680-98791-1 Client Sample ID: 54TM12 Lab Sample ID: 680-98791-6 Lab File ID: 0227142128-42.d Matrix: Water Analysis Method: 300.0 Date Collected: 02/19/2014 13:30 Extraction Method: Date Extracted: Sample wt/vol: 1(mL) Date Analyzed: 02/27/2014 21:28 Con. Extract Vol.: 1(mL) Dilution Factor: 1 Injection Volume: 25(uL) GC Column: Dionex AS18 ID: 4 (mm) GPC Cleanup: (Y/N) N % Moisture: Analysis Batch No.: 317649 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
14808-79-8	Sulfate	36		0.50	0.25
16887-00-6	Chloride	5.7		0.50	0.25

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah Job No.: 680-98791-1 SDG No.: 680-98791-1 Client Sample ID: 54TM12 Lab Sample ID: 680-98791-6 Matrix: Water Lab File ID: 0220141726-27.d Analysis Method: 300.0 Date Collected: 02/19/2014 13:30 Extraction Method: Date Extracted: Sample wt/vol: 5(mL) Date Analyzed: 02/20/2014 17:26 Con. Extract Vol.: 5(mL) Dilution Factor: 4 Injection Volume: 25(uL) GC Column: AS18 ID: 4 (mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 316449 Units: mg/L CAS NO. COMPOUND NAME RESULT Q LOQ DL

3.1

14797-55-8

Nitrate as N

0.20

0.10

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: Tes	stAmerica Savannah	Jok	No.: 680-9	8791-1					
SDG No.: 680-	98791-1								
Client Sample	ID: 54TM12	Lab Sample ID: 680-98791-6							
Matrix: Water			File ID: 0	22214085	3-35.d				
Analysis Method: 300.1B			e Collected:	02/19/	2014 13:3	0			
Extraction Met	chod:	Dat	e Extracted:						
Sample wt/vol: 5(mL)			Date Analyzed: 02/22/2014 08:53						
Con. Extract V	/ol.: 5(mL)	Dilution Factor: 1							
Injection Volu	me: 50(uL)	GC Column: Dionex AS9-HC ID: 2(mm)							
% Moisture:		GPC Cleanup: (Y/N) N							
Analysis Batch	No.: 316767	Uni	ts: ug/L						
CAS NO.	COMPOUND NAME		RESULT	Q	LOQ	DL			
14998-27-7 Chlorite			3.7	U	20	3.7			
CAS NO. SURROGATE				%REC	Q	LIMITS			

101

79-43-6

Dichloroacetic acid(Surr)

90-115

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah	Job No.: 680-98791-1
SDG No.: 680-98791-1	
Client Sample ID: 54TM12	Lab Sample ID: 680-98791-6
Matrix: Water	Lab File ID: 0228141336-47.d
Analysis Method: 300.1B	Date Collected: 02/19/2014 13:30
Extraction Method:	Date Extracted:
Sample wt/vol: 5(mL)	Date Analyzed: 02/28/2014 13:36
Con. Extract Vol.: 5(mL)	Dilution Factor: 1
Injection Volume: 50(uL)	GC Column: Dionex AS9-HC ID: 2(mm)
% Moisture:	GPC Cleanup: (Y/N) N
Analysis Batch No.: 317730	Units: ug/L

RESULT

Q

2.1 U

LOQ

10

DL

2.1

COMPOUND NAME

CAS NO.

Chlorate

7790-93-4

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100 Fax: +1 (410) 273-7103 Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CB&I Federal Services, LLC (CB&I) Radford Army Ammunition Plant (RFAAP)

Project Manager

FROM:

Eric Malarek, CB&I Project Chemist

SUBJECT:

RFAAP Data Validation - Total and Dissolved Organic and Inorganic Carbon

Test America Laboratories, Inc., SDG 680-95852

DATE:

June 16, 2014

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on November 5, 2013. Samples were analyzed for Total Organic Carbon (TOC), Dissolved Organic Carbon (DOC), Total Inorganic Carbon (TIC), and Dissolved Inorganic Carbon (DIC) using USEPA 9060. A total of six aqueous samples (includes one rinse blank) were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
54MW10	680-95852-1	54MW2	680-95852-4
54RB11513	680-95852-2	54MW12	680-95852-5
54MW13	680-95852-3	54TM12	680-95852-6

Data were reviewed and validated using a combination of project QAPP, *DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010* (DoD, 2010), and method-specific criteria. The data qualifier scheme was consistent with the *Region III Modifications to the National Functional Guidelines for Inorganic Data Review* (April, 1993). Parameters evaluated are presented in **Table 1**. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualific	ed Data	Parameter
Yes	No	
	Х	Holding Times and Preservation
	Х	Initial and Continuing Calibration
	Х	Blank Analysis
	Χ	Laboratory Control Sample
	Х	Matrix Spike and Spike Duplicate
	Χ	Laboratory Duplicate
	Х	Field Duplicate
X		Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT TOC, TIC, DOC, & DIC REVIEW SDG 680-95852

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. Holding time criteria: Cool 4°C±2°C, HCl pH<2, 28 days for TOC, TIC, DOC, and DIC (USEPA criteria). The dates and times were compared between the sample collection and laboratory analysis.

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 11/05/13, the coolers were received on 11/06/13 by the primary laboratory (Test America Laboratories, Inc.) at 3.8°C, 4.0°C, and 5.0°C. All criteria were met. No qualifiers were applied.
- Holding Time Review: The samples were collected on 11/05/13. The TOC, TIC, DOC, and DIC analysis were run on 11/09/13. Sample collection dates may be found on the attached form 1s. All criteria were met. No qualifier was applied.

II-Initial and Continuing Calibration

Bench and run summary sheets were reviewed to determine whether calibration was performed at the beginning of sample analysis using the following criteria. Percent recoveries for initial and continuing calibration (90-110%) must be within limits.

TOC, TIC, DOC, and DIC:

1 - blank

5 - standards (r≥0.995) ICV/CCV (90-110%)

• The TOC, TIC, DOC, and DIC analysis were run on 11/09/13. The initial calibration for TC was analyzed on 10/03/13 with a coefficient of determination of 0.9998. The ICV and CCVs were evaluated for where they bracketed reported samples. All ICV/CCVs that bracketed reported samples were within criteria. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-95852-1), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to these initial and continuing calibrations.

III-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. Calibration blanks were analyzed initially and at a 10% frequency thereafter for each batch. No contaminants should be detected in any of the associated blanks >MDL. The DoD QSM criteria specifies all concentrations should be less than ½ MRL (<MRL for common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters) and <LOD (i.e. <2MDL) for the calibration blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters, or 5 times (5x) the maximum amount for other target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB11513 (680-95852-2) applies to all of the total samples (TOC, TIC) and dissolved samples (DOC and DIC) in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	Analysis	QC Blank ID	Max Conc. mg/L	Action Level mg/L	B qualified samples (For this SDG)
11/09/13	TOC	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
11/09/13	DOC	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
11/09/13	TOC	MB 680-302559/26	<1/2MRL	NA	None
11/09/13	DOC	MB 680-302579/2-A	<1/2MRL	NA	None
11/09/13	TOC	54RB11513	<1/2MRL	NA	None
11/09/13	TIC	54RB11513	<1/2MRL	NA	None
11/09/13	DOC	54RB11513	<1/2MRL	NA	None
11/09/13	DIC	54RB11513	<1/2MRL	NA	None

LOD = Limit of Detection

MRL = Method Reporting Limit

MDL = Method Detection Limit

NA = Not Applicable

IV-Laboratory Control Sample

The laboratory control sample (LCS) serve as a monitor of the overall performance of each step during the analysis, including the sample preparation. LCS are generated to determine long-term accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. All aqueous LCS results must fall within the control limits (80-120%).

- Sample LCS 680-302559/29 was used as the aqueous LCS for TOC analysis on 11/09/13. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-95852-1), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to this LCS.
- Sample LCS 680-302579/1-A was used as the aqueous LCS for DOC analysis on 11/09/13. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-95852-1), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to this LCS.

V-Matrix Spike and Spike Duplicate

Matrix spikes (MSs) and matrix spike duplicates (MSDs) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at a frequency of one MS/MSD per 20 samples of similar matrix. The percent recoveries (%Rs or RPD) must be within the specified control limits (80-120%; RPD≤25%).

Sample 54MW12 (680-95852-5) was used as the aqueous MS/MSD for TOC and DOC analysis on 11/09/13. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-95852-1), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to this MS/MSD.

VI-Laboratory Duplicate Sample Analysis

Duplicate sample determinations are used to demonstrate acceptable method precision by the laboratory at the time of analysis. Duplicate analysis is performed to generate data in order to determine the long-term precision of the analytical method on various matrices. RPDs must be within established control limits (≤30%RPD).

 No aqueous laboratory duplicate was analyzed for TOC, TIC, DOC, and DIC with this SDG; therefore, it was not evaluated. See Section IV for lab precision statements using LCS/LCSD.

VII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

 Field groundwater sample duplicate pair 54MW12 (680-95852-5) and 54TM12 (680-95852-6) was analyzed for TOC, TIC, DOC, and DIC analysis in this SDG. All concentrations found in the sample and its duplicate pair and associated %RPD are noted in **Table 3**. All criteria were met. No qualifiers were applied.

Table 3 Field Precision Analysis Hits Summary for TOC, TIC, DOC, and DIC for Duplicate Pair 54MW12 (680-95852-5) and 54TM12 (680-95852-6)

Compound	Original Sample (mg/L)	Duplicate Pair (mg/L)	%RPD
Dissolved Inorganic Carbon	55	54	1.8
Dissolved Organic Carbon	1.0U	1.0U	NA
Total Inorganic Carbon	58	57	1.7
Total Organic Carbon	0.50J	0.50U	NA

J = Estimated value.

VIII-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. The following calculations were performed for verification.

- Any sample value >MDL and <MRL or <3*MDL (whichever is greater) was qualified as estimated, "J."
- The total and dissolved fractions were compared. The organic and inorganic carbon data results for samples 54MW10 (680-95852-1), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) are presented in **Table 3**. Data qualification was applied based upon professional judgment. Generally, if the concentrations are greater than the MRL and the dissolved concentration is greater than its total concentration by >10%D, then both results have been flagged as estimated with a "J." We are looking at the TOC/TIC to evaluate the immobilization potential of TNT and RDX. The DOC/DIC is a byproduct of organic compound oxidation and indicates the difference in microbial oxidation processes within and outside the plume area. If the samples exhibit continual microbial oxidation coupled with the time differences of sample preservation from sample collection (i.e. TOC in field and DOC at the lab), this might be the cause of total / dissolved imbalance here.

U = Not Detected as <LOD.

LOD = Limit of Detection

NA = Not Applicable

Table 3 Total/Dissolved Summary

Sample ID	Analyte	LOD (mg/L)	Total Fraction (mg/L)	Dissolved Fraction (mg/L)	%D	Qualifier
54MW10	TOC/DOC	0.50; 1.0	0,68J	1.0U	NA	None
54MW10	TIC/DIC	1.0; 1.0	70	66	NA	None
54RB11513	TOC/DOC	0.50; 1.0	0.50U	1.0U	NA	None
54RB11513	TIC/DIC	1.0; 1.0	1.0U	1.0U	NA	None
54MW13	TOC/DOC	0.50; 1.0	0.50U	1.0U	NA	None
54MW13	TIC/DIC	1.0; 1.0	80	76	NA	None
54MW2	TOC/DOC	0.50; 1.0	2.5	2.4	NA	None
54MW2	TIC/DIC	1.0; 1.0	75	74	NA	None
54MW12	TOC/DOC	0.50; 1.0	0.50J	1.0U	NA	None
54MW12	TIC/DIC	1.0; 1.0	58	55	NA	None
54TM12	TOC/DOC	0.50; 1.0	0.50U	1.0U	NA	None
54TM12	TIC/DIC	1.0; 1.0	57	54	NA	None

J = Estimated value.

Sample: 54MW10 (680-95852-1), TOC

TOC:
$$Y = m*X (mg/L) + b$$

m = 1.784

b = 1.185

Y = 2.393

DF = 1

$$X = (0.68 \text{ mg/L}) * 1 = 0.68 \text{ mg/L}$$

$$TOC (mg/L) = 0.68 mg/L$$

Reported Value = 0.68 mg/L % Difference = 0.0%

Values were within 10% difference.

U = Not Detected as <LOD.

LOD = Limit of Detection

NA = Not Applicable

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the
	limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound (using mass spectroscopy).
Q	One or more quality control criteria failed.
l .	JSEPA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample.
	Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in laboratory or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution. Presumptively present at approximate quantity.
К	Analyte present. Reported value may be biased high. Actual value is expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is expected to be higher.
UL.	Not detected, quantitation limit is probably higher.

¹The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: *DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2* (DoD, 2010).

²The USEPA data validation qualifiers are referenced from *Region III Modifications to the National Functional Guidelines for Inorganic Data Review* (April, 1993).

1B-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54MW10 Lab Sample ID: 680-95852-1 Lab Name: TestAmerica Savannah Job No.: 680-95852-1 SDG ID.: Date Sampled: 11/05/2013 09:55 Matrix: Water Reporting Basis: WET Date Received: 11/06/2013 09:37 CAS No. Analyte Result LOQ DTUnits С DIL Method 7440-44-0 0.68 0.50 mg/L 1 9060 Total Organic Carbon 1.0 J

IB-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

lient Sample ID: 54MW10 ab Name: TestAmerica Savannah				Lab Sample	ID: 680-	-95852-1			
				Job No.: 680-95852-1					
DG ID.:									
atrix: Wat	er			Date Sampled: 11/05/2013 09:55					
eporting Bas	is: WET			Date Receiv	ed: 11/0	6/2013	09:37		
CAS No.	Analyte	Result	LOQ		Units	С	Q	DIL	Method
	Total Inorganic	70	1.0		mg/L			1	9060

1B-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY - DISSOLVED

Client Sample ID: 54MW10 Lab Sample ID: 680-95852-1

Lab Name: TestAmerica Savannah Job No.: 680-95852-1

SDG ID.:

Matrix: Water Date Sampled: 11/05/2013 09:55

Reporting Basis: WET Date Received: 11/06/2013 09:37

CAS No.	Analyte	Result	roð	Units	С	Q	DIL	Method
7440-44-0	Dissolved Organic Carbon	1.0	1.0	mg/L	U		1	9060
7440-44-0	Dissolved Inorganic Carbon	66	1.0	mg/L			1	9060

1B-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

CAS No.	Analyte	Result	LOQ	DL	Units	С	Q	DIL	Method
7440-44-0	Total Organic Carbon	0.50	1.0	0.50	mg/L	U		1	9060

1B-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54RB11513				Lab Sample I	D: 680	-95852-2							
Lab Name: T	Lab Name: TestAmerica Savannah				TestAmerica Savannah Job No.: 680-95852-1								
SDG ID.:													
Matrix: Wate	er			Date Sampled: 11/05/2013 09:55									
Reporting Bas	is: WET			Date Received	d: 11/	06/2013	09:37						
CAS No.	Analyte	Result	TOÖ		Units	С	Q	DIL	Method				
	Total Inorganic Carbon	1.0	1.0	I	mg/L	U		1	9060				

1B-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY - DISSOLVED

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
7440-44-0	Dissolved Organic Carbon	1.0	1.0	mg/L	Ū		1	9060
7440-44-0	Dissolved Inorganic Carbon	1.0	1.0	mg/L	U		1	9060

INORGANIC ANALYSIS DATA SHEET

GENERAL CHEMISTRY

Client Sample ID: 54MW13 Lab Sample ID: 680-95852-3 Lab Name: TestAmerica Savannah Job No.: 680-95852-1 SDG ID.: Matrix: Water Date Sampled: 11/05/2013 11:25 Reporting Basis: WET Date Received: 11/06/2013 09:37 CAS No. Analyte Result LOQ Units С Q DIL Method

1.0

0.50 mg/L

U

0.50

1 9060

7440-44-0

Total Organic Carbon

om I Copy

1B-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample	D: 54MW13	Lab Sample ID:	680-	-95852-3						
Lab Name: I	CestAmerica Savannah			Job No.: 680-95852-1						
SDG ID.:										
Matrix: Wate	er	Date Sampled:	11/05	/2013 1	1:25					
Reporting Bas	sis: WET		<u>.</u>	Date Received:	11/0	06/2013	09:37			
CAS No.	Analyte	Result	LOQ	U	nits	С	Q	DIL	Method	
	Total Inorganic Carbon	80	1.0	mg/	L			1	9060	

INORGANIC ANALYSIS DATA SHEET

GENERAL CHEMISTRY - DISSOLVED

Reporting Basis: WET Date Received: 11/06/2013 09:37

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
7440-44-0	Dissolved Organic Carbon	1.0	1.0	mg/L	U		1	9060
7440-44-0	Dissolved Inorganic Carbon	76	1.0	mg/L			1	9060

1B-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample	ID: 54MW2			Lab Sample	ID: 680-	-95852-4				
Lab Name: T	estAmerica Savannah			Job No.: 680-95852-1						
SDG ID.:										
Matrix: Wate	er		Date Sample	ed: 11/05	/2013 1	3:00				
Reporting Bas	is: WET			Date Recei	ved: 11/0	06/2013	09:37			
CAS No.	Analyte	Result	LOQ	DL	Units	С	Q	DIL	Method	
7440-44-0	Total Organic Carbon	2.5	1.0	0.50	mg/L	<u> </u>		1	9060	

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: 54MW2 Lab Sample ID: 680-95852-4 Lab Name: TestAmerica Savannah Job No.: 680-95852-1 SDG ID.: Matrix: Water Date Sampled: 11/05/2013 13:00 Reporting Basis: WET Date Received: 11/06/2013 09:37 CAS No. Analyte Result LOQ Units С Q DIL Method Total Inorganic Carbon 75 mg/L 9060 1.0

1B-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY - DISSOLVED

Client Sample ID: 54MW2 Lab Sample ID: 680-95852-4

Lab Name: TestAmerica Savannah Job No.: 680-95852-1

SDG ID.:

Matrix: Water Date Sampled: 11/05/2013 13:00

Reporting Basis: WET Date Received: 11/06/2013 09:37

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
7440-44-0	Dissolved Organic Carbon	2.4	1.0	mg/L			1	9060
7440-44-0	Dissolved Inorganic Carbon	74	1.0	mg/L			1	9060

1B-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample	lient Sample ID: 54MW12				ID: 680	-95852-5					
Lab Name: T	estAmerica Savannah			Job No.: 680-95852-1							
SDG ID.:	G ID.:										
Matrix: Wate	trix: Water				ed: 11/0	5/2013 1	4:15				
Reporting Bas	is: WET			Date Recei	ved: 11/	06/2013	09:37				
CAS No.	Analyte	Result	LOQ	DL	Units	С	Q	DIL	Method		
7440-44-0	Total Organic Carbon	0.50	1.0	0.50	mg/L	J	***************************************	1	9060		

INORGANIC ANALYSIS DATA SHEET

GENERAL CHEMISTRY

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
	Total Inorganic Carbon	58	1.0	mg/L			1	

roum I Copy

1B-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY - DISSOLVED

Client Sample ID: 54MW12 Lab Sample ID: 680-95852-5

Lab Name: TestAmerica Savannah Job No.: 680-95852-1

SDG ID.:

Matrix: Water Date Sampled: 11/05/2013 14:15

Reporting Basis: WET Date Received: 11/06/2013 09:37

CAS No.	Analyte	Result	LOQ	Units	С	Ω	DIL	Method
7440-44-0	Dissolved Organic Carbon	1.0	1.0	mg/L	U		1	9060
7440-44-0	Dissolved Inorganic Carbon	55	1.0	mg/L			1	9060

IB-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

CAS No.	Analyte	Result	LOQ	DL	Units	С	Q	DIL	Method
7440-44-0	Total Organic Carbon	0.50	1.0	0.50	mg/L	Ū		1	9060

1B-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

lient Sample	9 ID: 54TM12		Lab Sample I	D: 680-	95852-6				
ab Name: "	PestAmerica Savannah		Job No.: 680-95852-1						
DG ID.:									
atrix: Wate	er		Date Sampled	: 11/05	/2013 1	4:15			
eporting Bas	sis: WET			Date Receive	i: <u>11/0</u>	6/2013	09:37		
CAS No.	Analyte	Result	LOQ		Units	С	Q	DIL	Method
	Total Inorganic	57	1.0	1	ng/L			1	9060

INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY - DISSOLVED

Client Sample ID: 54TM12 Lab Sample ID: 680-95852-6 Lab Name: TestAmerica Savannah Job No.: 680-95852-1 SDG ID.: Matrix: Water Date Sampled: 11/05/2013 14:15 Reporting Basis: WET

Date Received: 11/06/2013 09:37

CAS No.	Analyte	Result	LOQ	Units	С	Q	DIL	Method
7440-44-0	Dissolved Organic Carbon	1.0	1.0	mg/L	U		1	9060
7440-44-0	Dissolved Inorganic Carbon	54	1.0	mg/L			1	9060

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100 Fax: +1 (410) 273-7103

Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CB&I Federal Services, LLC (CB&I) Radford Army Ammunition Plant (RFAAP)

Project Manager

FROM:

Eric Malarek, CB&I Project Chemist

SUBJECT:

RFAAP Data Validation - Perchlorate

Test America Laboratories, Inc., SDG 680-95852

DATE:

June 13, 2014

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on November 5, 2013. Aqueous samples were analyzed for perchlorate analysis using liquid chromatography mass spectroscopy (LC/MS) SW-846 method 6850 Modified by Test America Laboratories, Inc. A total of six aqueous samples (includes one rinse blank) were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
54MW10	680-95852-1	54MW2	680-95852-4
54RB11513	680-95852-2	54MW12	680-95852-5
54MW13	680-95852-3	54TM12	680-95852-6

Data were reviewed and validated by Eric Malarek using a combination of project QAPP, *DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010* (DoD, 2010), *DoD Perchlorate Handbook August, Rev1, Change 1, 2007* (DoD, 2007), method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the *Region III Modifications to the National Functional Guidelines for Inorganic Data Review* (April, 1993). Parameters evaluated are presented in **Table 1**. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualified Data		Parameter	
Yes	No		
	X	Holding Times and Preservation	
	X	Instrument Performance Check	
	Х	Initial and Continuing Calibration	
	Х	Blank Analysis	
	X	Internal Standards	
	X	Interference Check Sample	
	Х	Laboratory Control Sample (LCS)	
	X	Matrix Spike (MS) and Spike Duplicate (MSD)	
	Х	Field Duplicate	
	Х	Quantitation Verification and Data Review	

The quality of data collected in support of this sampling activity is considered acceptable.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT PERCHLORATE REVIEW SDG 680-95852

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. For perchlorate analysis, aqueous samples are received and stored at cool @4°C±2°C with a maximum holding time of 28 days from collection (DoD Perchlorate Handbook criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 11/05/13, the coolers were received on 11/06/13 by the primary laboratory (Test America Laboratories, Inc.) at 3.8°C, 4.0°C, and 5.0°C. All criteria were met. No qualifiers were applied.
- <u>Holding Time Review</u>: The aqueous samples were collected on 11/05/13 for perchlorate analysis. The aqueous samples were prepped and analyzed on 11/21/13. Sample collection dates may be found on the attached form 1s. All holding time criteria were met. No qualifiers were applied.

II-Instrument Performance Check

LC/MS instrument performance checks are performed to ensure mass resolution, identification and, to some degree, sensitivity. The analysis of the instrument performance check solution must be performed at the beginning of each 12-hour period during which samples are analyzed.

 The instrument performance check, ¹⁸O-Perchlorate, met the mass calibration criteria. No qualification was applied.

III-Initial and Continuing Calibration

Requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data. Initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of the analysis run, and continuing calibration verification documents that the initial calibration is still valid.

Perchlorate:

1- blank (<1/2MRL DoD Perchlorate Handbook)

5 – standards (r≥0.995 or RSD≤20% DoD Perchlorate Handbook)

ICV (≤15%D DoD Perchlorate Handbook) CCV/ICS (≤15%D DoD Perchlorate Handbook) LODV (±30%D DoD Perchlorate Handbook)

• For aqueous perchlorate initial calibration performed on 10/04/13 on instrument LC3062, all criteria were met for all target compounds (RSD≤20%). All ICV/CCV/ICS/LODV standards were within criteria. No qualifiers were applied. Perchlorate was determined using linear regression method with coefficients of determination ≥0.99 for primary and confirmation columns. Samples 54MW10 (680-95852-1), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to this initial calibration.

IV-Blanks

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. No contaminants should be detected in any of the associated blanks >MDL. The DoD Perchlorate Handbook criterion specifies all concentrations should be less than $\frac{1}{2}$ MRL for method blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤ 5 times (5x) the maximum amount for target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB11513 (680-95852-2) applies to all samples in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	QC Blank ID	Compound	Max Conc. μg/L	Action Level µg/L	B qualified samples (for this SDG)
11/21/13	ICB/CCBs	All perchlorate <1/2MRL	NA	NA	None
11/21/13	MB200-64811/4	All perchlorate <1/2MRL	NA	NA	None
11/21/13	54RB11513	All perchlorate <1/2MRL	NA	NA	None

MRL = Method Reporting Limit.

NA = Not Applicable.

V-Internal Standards

Internal standards performance criteria ensure that LC/MS sensitivity and response are stable during every analytical run. Internal standard area counts for samples and blanks must not vary by more than a factor of two (-50% to +100%) from the associated calibration standard. The DoD Handbook specifies retention times (RT) $1.0 \pm 2\%$ of last calibration standard and the ratio of RT of sample to standard should be 3.06 and fall between 2.3 and 3.8. The internal standard peak area responses should fall between 50% to 150% recoveries.

All criteria were met. No qualifiers were applied.

VI-Interference Check Sample (ICS)

The interference check sample (ICS) verifies inter-element and background correction factors. The ICS is performed at the beginning of each sample analysis run. Control limits are 70-130%.

All criteria were met for all other runs. No qualifiers were applied.

VII-Laboratory Control Sample

The laboratory control sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. DoD Perchlorate Handbook and laboratory aqueous limits are 80-120%.

Sample LCS 200-64811/5 was used as aqueous LCS for perchlorate analysis dated 11/21/13. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-95852-1), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to this LCS sample.

VIII-Matrix Spike (MS) and Spike Duplicate (MSD)

Matrix Spike (MS) and Spike Duplicate (MSD) are generated to determine long-term accuracy and precision of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at a frequency of one MS/MSD per 20 samples of similar matrix. MS/MSD recoveries and relative percent differences between MS recoveries should be within the specified limits. DoD Perchlorate Handbook limits are 80-120%; RPD≤15%. The laboratory limits are 80-120%; RPD≤15%.

Sample 54MW12 (680-95852-5) was used as aqueous MS/MSD for perchlorate analysis dated 11/21/13. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-95852-1), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to this MS/MSD sample.

IX-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

• Field groundwater sample duplicate pair 54MW12 (680-95852-5) and 54TM12 (680-95852-6) was analyzed for perchlorate analysis in this SDG. Perchlorate was detected at 1.1 μg/L in the parent sample and at 1.1 μg/L in the duplicate pair; resulting in a RPD of 0.0%. All criteria were met. No qualifiers were applied.

X-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The percent difference (%D) between the calculated and the reported values should be within 10%. The following calculations were performed for verification.

Any sample value >MDL and <MRL or <3*MDL (whichever was greater) was qualified as estimated,
 ".I."

Sample: 54MW10 (680-95852-1), Perchlorate

Y = mX + b

Y = Response Ratio = Sample Area/Area Internal Standard O18LP m = slope of curve X = Amount Ratio = Conc. Analyte/Conc. Internal Std. b = Y-intercept

Given:

m = 1.0098 b = 0.0266 Y = Area = 263947/113480 = 2.326 X = 2.28 Conc. μ g/L = (Ax * Cis * DF)

where: Conc. = Sample concentration in μg/L
Ax = Amount Ratio = Conc. Analyte/Conc. Internal Standard
Cis = Conc. Of internal Standard (μg/L)

DF = Dilution factor

Conc. μ g/L = (2.28 * 1 * 1) = 2.3 μ g/L (Signal #1)

Reported Value = 2.3 μ g/L % Difference = 0.0%

Values were within 10% difference

Laboratory and Data Validation Qualifiers

Qualifier	Definition			
Laboratory Qualifiers ¹				
No Code	Confirmed identification.			
U	Undetected at the limit of detection: The associated data value is the			
	limit of detection, adjusted by any dilution factor used in the analysis.			
J	Estimated: The analyte was positively identified; the quantitation is estimation.			
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.			
N .	Non-target analyte: The analyte is a tentatively identified compound (using mass spectroscopy).			
Q	One or more quality control criteria failed.			
USEPA Region III Data Validation Qualifiers ²				
R	Unreliable result. Analyte may or may not be present in the sample.			
	Supporting data necessary to confirm result.			
В	Not detected substantially above the level of the reported in laboratory or field blanks.			
J	Analyte present. Reported value may not be accurate or precise.			
UJ	Not detected, quantitation limit may be inaccurate or imprecise.			
N	Tentative Identification. Consider present. Special methods may be to confirm its presence or absence in future sampling efforts.			
NJ	Qualitative identification questionable due to poor resolution. Presumptively present at approximate quantity.			
К	Analyte present. Reported value may be biased high. Actual value is expected to be lower.			
L	Analyte present. Reported value may be biased low. Actual value is expected to be higher.			
UL	Not detected, quantitation limit is probably higher.			

¹The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: *DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2* (DoD, 2010).

²The USEPA data validation qualifiers are referenced from *Region III Modifications to the National Functional Guidelines for Inorganic Data Review* (April, 1993).

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Te	estAmerica Burlington	Job No.: 680-95852-1				
SDG No.:						
Client Sample	e ID: 54MW10	Lab Sample ID: 680-95852-1				
Matrix: Wate	er	Lab File ID: P112113B22.d				
Analysis Meth	hod: 6850	Date Collected: 11/05/2013 09:55				
Extraction Me	ethod:	Date Extracted:				
Sample wt/vol	1: 5(mL)	Date Analyzed: 11/21/2013 22:02				
Con. Extract	Vol.: 5(mL)	Dilution Factor: 1				
Injection Vol	lume: 100(uL)	GC Column: IC-Pak AnionH/R ID: 4.6(mm)				
% Moisture:		GPC Cleanup: (Y/N) N				
Analysis Bato	ch No.: 64811	Units: ug/L				
CAS NO.	COMPOUND NAME	RESULT Q LOQ DL				
14797-73-0	Perchlorate	2.3 0.20 0.019				

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington	ngton Job No.: 680-95852-1					
SDG No.:						
Client Sample ID: 54RB11513	Lab Sample ID: 680-95852-2					
Matrix: Water	Lab File ID: P112113B23.d					
Analysis Method: 6850	Date Collected: 11/05/2013 09:55					
Extraction Method:	Date Extracted:					
Sample wt/vol: 5(mL)	Date Analyzed: 11/21/2013 22:18					
Con. Extract Vol.: 5 (mL)	Dilution Factor: 1					
Injection Volume: 100(uL)	GC Column: IC-Pak AnionH/R ID: 4.6(mm)					
% Moisture:	GPC Cleanup: (Y/N) N					
Analysis Batch No.: 64811 Units: ug/L						
CAS NO. COMPOUND NAME	RESULT Q LOQ DL					

0.019 U

0.20

0.019

14797-73-0

Perchlorate

Lab Name: Tes	stAmerica Burlington	Job No.: 680-95852-1			
SDG No.:					
Client Sample	ID: 54MW13	Lab Sample ID: 680-95852-3			
Matrix: Water		Lab File ID: P112113B24.d			
Analysis Metho	od: 6850	Date Collected: 11/05/2013 11:25			
Extraction Met	thod:	Date Extracted:			
Sample wt/vol	: 5(mL)	Date Analyzed: 11/21/2013 22:33			
Con. Extract V	Vol.: 5(mL)	Dilution Factor: 1			
Injection Volu	me: 100(uL)	GC Column: IC-Pak AnionH/R ID: 4.6(mm)			
% Moisture:		GPC Cleanup: (Y/N) N			
Analysis Batch	n No.: 64811	Units: ug/L			
CAS NO.	COMPOUND NAME	RESULT Q LOQ DL			
14797-73-0	Perchlorate	0.43 0.20 0.019			

Lab Name: Tes	stAmerica Burlington	Job No.: 680-95852-1			
SDG No.:					
Client Sample	ID: 54MW2	Lab Sample ID:	680-958	352-4	
Matrix: Water		Lab File ID: P	112113B2	25.d	
Client Sample ID: 54MW2 Lab Sample ID: 680-95852-4 Matrix: Water Lab File ID: P112113B25.d Analysis Method: 6850 Date Collected: 11/05/2013 13:00 Extraction Method: Date Extracted: Sample wt/vol: 5(mL) Date Analyzed: 11/21/2013 22:48 Con. Extract Vol.: 5(mL) Dilution Factor: 1 Injection Volume: 100(uL) GC Column: IC-Pak AnionH/R ID: 4.6(mm) % Moisture: GPC Cleanup: (Y/N)					
Extraction Met	thod:	Date Extracted:			
Sample wt/vol	: 5 (mL)	Date Analyzed: 11/21/2013 22:48			
Con. Extract V	Vol.: 5 (mL)				
				6 (mm)	
% Moisture:		GPC Cleanup: (Y/	и) и		
Analysis Batch	n No.: 64811	Units: ug/L			
CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
14797-73-0	Perchlorate	0.26		0.20	0.019

Lab Name: Te	stAmerica Burlington	Job No.: 680-95852-1			
SDG No.:					
Client Sample	ID: 54MW12	Lab Sample ID:	680-95	8525	
Matrix: Water	5	Lab File ID: P	112113B	26.d	
Analysis Meth	od: 6850	Date Collected: 11/05/2013 14:15			
Extraction Me	thod:	Date Extracted:			
Sample wt/vol	: 5 (mL)	Date Analyzed: 11/21/2013 23:04			
Con. Extract	Vol.: 5(mL)	Dilution Factor: 1			
Injection Vol	ume: 100(uL)	GC Column: IC-	Pak Anio	onH/R ID: 4	.6 (mm)
% Moisture:		GPC Cleanup: (Y/	N) N		
Analysis Batch	rsis Batch No.: 64811 Units: ug/L				
CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
14797-73-0	Perchlorate	1.1		0.20	0.019

Lab Name: Te	stAmerica Burlington	Job No.: 680-95852-1				
SDG No.:						
Client Sample	e ID: 54TM12	Lab Sample ID: 680-95852-6				
Matrix: Water Lab File ID: P112113B27.d						
Analysis Meth	od: 6850	Date Collected: 11/05/2013 14:15				
Extraction Me	thod:	Date Extracted:				
Sample wt/vol	: 5 (mL)	Date Analyzed: 11/21/2013 23:19				
Con. Extract	Vol.: 5(mL)	Dilution Factor: 1				
Injection Vol	ume: 100(uL)	GC Column: IC-Pak AnionH/R ID: 4.6(mm)				
% Moisture:		GPC Cleanup: (Y/N) N				
Analysis Batc	h No.: 64811	Units: ug/L				
CAS NO.	COMPOUND NAME	RESULT Q LOQ DL				
14797-73-0	Perchlorate	1.1 0.20 0.0				

CB&I Federal Services, LLC
4696 Millennium Drive, Suite 320
Belcamp, Maryland 21017
Tel: +1 (410) 273-7100
Fax: +1 (410) 273-7103
Eric.malarek@CBlfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CB&I Federal Services, LLC (CB&I) Radford Army Ammunition Plant (RFAAP)

Project Manager

FROM:

Eric Malarek, CB&I Project Chemist

SUBJECT:

RFAAP Data Validation - Explosives

Test America Laboratories, Inc., SDG 680-95852

DATE:

June 13, 2014

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on November 5, 2013. Samples were analyzed for select explosives using USEPA SW846 Method SW-846 8330B for aqueous matrices. A total of seven aqueous samples (includes one dilution sample and a rinse blank) were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
54MW10	680-95852-1	54MW2	680-95852-4
54MW10	680-95852-1DL	54MW12	680-95852-5
54RB11513	680-95852-2	54TM12	680-95852-6
54MW13	680-95852-3		

Data were reviewed by Eric Malarek and validated using a combination of project QAPP, *Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010* (DoD, 2010) (DoD QSM), method-specific criteria, and laboratory SOP criteria. The data qualifier scheme was consistent with the *Region III Modifications to the National Functional Guidelines for Organic Data Review* (September 1994). Parameters evaluated are presented in **Table 1**. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

Qualifi	ed Data	Parameter	
Yes	No		
	Х	Holding Times and Preservation	
Х		Blank Analysis	
	Х	Initial Calibration	
	Х	Continuing Calibration	
	Х	System Monitoring Compounds	
	Х	Laboratory Control Sample	
Х		Matrix Spike/Spike Duplicate	
Х		Field Duplicate	
Х		Quantitation Verification and Data Review	

The quality of data collected in support of this sampling activity is considered acceptable with noted qualifications.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT EXPLOSIVES REVIEW SDG 680-95852

I-Holding Times and Preservation

The objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample extraction and analysis. Holding time criteria: For aqueous samples, explosive compounds are shipped cooled ($@4^{\circ}C \pm 2^{\circ}C$) with a maximum holding time of 7 days from sample collection to preparative extraction and 40 days from preparative extraction to determinative analysis (USEPA criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 11/05/13, the coolers were received on 11/06/13 by the primary laboratory (Test America Laboratories, Inc.) at 3.8°C, 4.0°C, and 5.0°C. All criteria were met. No qualifiers were applied.
- <u>Holding Time Review</u>: The aqueous samples were collected on 11/05/13. The samples were extracted on 11/12/13 and were analyzed on 11/22/13 for explosives. Sample collection dates may be found on the attached form 1s. All criteria were met. No qualifiers were applied.

II-Blank Analysis

The purpose of laboratory or field blank analyses is to determine the existence and magnitude of contamination problems resulting from laboratory or field activities. One method blank per analytical batch must be run on each instrument used to analyze samples. No contaminants should be present in the blanks. The DoD QSM criterion specifies all concentrations should be less than one-half MRL. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is ≤ 5 times (5x) the maximum amount for explosive target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB11513 (680-95852-2) applies to all samples in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	QC Blank ID	Compound	Max Conc. μg/L	Action Level μg/L	B qualified samples (For this SDG)
11/21/13	MB 200-64167/1-A	All target explosives <1/2MRL	NA	NA	None
11/22/13	54RB11513	2,4,6-Trinitrotoluene	0.18J	0.90	None
11/22/13	54RB11513	2,6-Dinitrotoluene	0.32J	1.60	54MW13
11/22/13	54RB11513	4-Amino-2,6-dinitrotoluene	0.077J	0.39	None

J = Estimated value <LOQ and >DL.

LOQ = Limit of Quantitation

MRL = Method Reporting Limit

DL = Detection Limit

NA = Not Applicable

III-Initial Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the target compounds. The initial 5-point calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run. The DoD QSM specifies that the correlation coefficient must be ≥ 0.995 , the coefficient of determination ≥ 0.99 , and/or the percent relative standard deviation (%RSD) must be $\leq 20\%$.

- For the explosives initial calibration performed on 02/21/13 on instrument CH1208, all criteria were met for target explosives compounds. All target compounds were determined using linear regression with coefficients of determination ≥0.99. No qualifiers were applied. Samples 54MW10 (680-95852-1), 54MW10 (680-95852-1DL), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to this initial calibration.
- For the TNX, DNX, and MNX initial calibration performed on 02/21/13 on instrument CH1208, all criteria were met for target explosives compounds. All target compounds were determined using linear regression with coefficients of determination ≥0.99. No qualifiers were applied. Samples 54MW10 (680-95852-1), 54MW10 (680-95852-1DL), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to this initial calibration.
- For the confirmatory explosives initial calibration performed on 02/21/13 on instrument CH1488, all criteria were met for target explosives compounds. All target compounds were determined using linear regression with coefficients of determination ≥0.99. No qualifiers were applied. Confirmations for samples 54MW10 (680-95852-1), 54MW10 (680-95852-1DL), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to this initial calibration.
- For the TNX, DNX, and MNX initial calibration performed on 02/21/13 on instrument CH1488, all criteria were met for target explosives compounds. All target compounds were determined using linear regression with coefficients of determination ≥0.99. No qualifiers were applied. Confirmations for samples 54MW10 (680-95852-1), 54MW10 (680-95852-1DL), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to this initial calibration.

IV-Continuing Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the target compounds. Continuing calibration standards are analyzed after every 10 injections, and at the end of the analysis sequence. The DoD QSM specifies that the percent difference (%D) from initial calibration should be no greater than $\pm 20\%$.

- For explosives initial calibration verification performed on 02/21/13 @23:40 on instrument CH1208, all
 criteria were met for target compounds. No qualifiers were applied. No aqueous samples were
 reported using this initial verification calibration.
- For TNX, DNX, and MNX initial calibration verification performed on 02/22/13 @04:39 on instrument CH1208, all criteria were met for target compounds. No qualifiers were applied. No aqueous samples were reported using this initial verification calibration.
- For explosives continuing calibration performed on 11/21/13 @22:39 on instrument CH1208, all criteria were met. No qualifiers were applied. Samples 54MW10 (680-95852-1), 54MW10 (680-95852-1), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) were reported using this continuing calibration.

- For TNX, DNX, and MNX continuing calibration performed on 11/21/13 @23:16 on instrument CH1208, all criteria were met. No qualifiers were applied. Samples 54MW10 (680-95852-1), 54MW10 (680-95852-1DL), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) were reported using this continuing calibration.
- For explosives continuing calibration performed on 11/22/13 @08:37 on instrument CH1208, all
 criteria were met. No qualifiers were applied. No aqueous samples were reported using this
 continuing calibration.
- For TNX, DNX, and MNX continuing calibration performed on 11/22/13 @09:15 on instrument CH1208, all criteria were met. No qualifiers were applied. No aqueous samples were reported using this continuing calibration.
- For confirmatory explosives initial calibration verification performed on 02/21/13 @23:08 on instrument CH1488, all criteria were met for target compounds. No qualifiers were applied. No aqueous samples were reported using this initial verification calibration.
- For confirmatory TNX, DNX, and MNX initial calibration verification performed on 02/22/13 @03:41 on instrument CH1488, all criteria were met for target compounds. No qualifiers were applied. No aqueous samples were reported using this initial verification calibration.
- For confirmatory explosives continuing calibration performed on 11/21/13 @21:24 on instrument CH1488, all criteria were met. No qualifiers were applied. Confirmations for samples 54MW10 (680-95852-1), 54MW10 (680-95852-1DL), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to this continuing calibration.
- For confirmatory TNX, DNX, and MNX continuing calibration performed on 11/21/13 @21:59 on instrument CH1488, all criteria were met. No qualifiers were applied. Confirmations for samples 54MW10 (680-95852-1), 54MW10 (680-95852-1DL), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to this continuing calibration.
- For confirmatory explosives continuing calibration performed on 11/22/13 @06:31 on instrument CH1488, all criteria were met. No qualifiers were applied. No aqueous samples were reported using this continuing calibration.
- For confirmatory TNX, DNX, and MNX continuing calibration performed on 11/22/13 @07:06 on instrument CH1488, all criteria were met. No qualifiers were applied. No aqueous samples were reported using this continuing calibration.

V-System Monitoring Compound (Surrogates)

Laboratory performance on individual samples is established by means of spiking activities. The percent recovery (%R) for all samples and blanks must be within the laboratory control limits. DoD surrogate recovery limits are specified in Table G-3 of the DoD QSM (DoD, 2010). If the surrogate is not listed, then the laboratory criteria shall be used.

Aqueous Criteria:

1,2-dinitrobenzene (75-130%)

All criteria were met for all reported samples. No qualifiers were applied.

VI-Laboratory Control Sample

Laboratory control samples (LCS) are used to monitor long-term accuracy of the analytical method. The analysis is performed at a frequency of 1 per analytical batch. The percent recoveries (%Rs) must be within the laboratory control limits. DoD QSM aqueous LCS recovery limits are specified in Table G-12 of the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used.

- Sample LCS 200-64167/2-A was used as the aqueous LCS for the explosives analysis on 11/22/13.
 All criteria were met. No qualifiers were applied. Samples 54MW10 (680-95852-1), 54MW10 (680-95852-1), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to this LCS.
- Sample LCS 200-64167/3-A was used as the aqueous LCS for the TNX, DNX, and MNX analysis on 11/22/13. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-95852-1), 54MW10 (680-95852-1DL), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to this LCS.

VII-Matrix Spike/Matrix Spike Duplicate

Data for matrix spike/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The percent recoveries (%Rs) and the relative percent difference (RPD) must be within the laboratory control limits. DoD QSM aqueous MS/MSD recovery limits follow the LCS criteria and are specified in Table G-12 of the DoD QSM (DoD, 2010). If the compound is not listed, then the laboratory criteria shall be used. The DoD QSM aqueous precision limit for explosives is ≤20% RPD.

Sample 54MW12 (680-95852-5) was used as the aqueous MS/MSD for the explosives analysis on 11/22/13. Target compounds TNX (466%, 476%), 1,3-dinitrobenzene (78%, 72%), nitroglycerin (78%), and RDX (129%, 135%) were outside criteria. All RPD criteria were met. The associated LCS was within criteria for all target compounds (Section VI). Target compounds TNX and RDX were detected in the spiked sample; therefore were qualified estimated "K" for detections based upon the high recoveries. Target compounds 1,3-dinitrobenzene and nitroglycerin were qualified estimated "L" for detections and "UL" for non-detections for the spiked sample based upon the low recoveries. Samples 54MW10 (680-95852-1), 54MW10 (680-95852-1DL), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to this MS/MSD.

VIII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 50% RPD for the aqueous samples.

Field groundwater sample duplicate pair 54MW12 (680-95852-5) and 54TM12 (680-95852-6) was analyzed for explosives analysis in this SDG. All detected explosives found in the sample and its duplicate pair and associated %RPD are noted in **Table 3**. All other target analytes were non-detect for the duplicate pair. Target compound 2-nitrotoluene (98.0%) was outside criteria; therefore, was qualified estimated "J" for the duplicate pair based upon the high RPD. The high RPD probably due to low compound concentrations below the LOQ levels.

Table 3 Field Precision Analysis Summary for Explosives for Duplicate Pair 54MW12 (680-95852-5) and 54TM12 (680-95852-6)

Compound	Original Sample (µg/L)	Duplicate Pair (µg/L)	%RPD
1,3-Dinitrobenzene	1.4J	1.4J	0.0
2,4,6-Trinitrotoluene	17	18	5.7
2,4-Dinitrotoluene	0.20J	0.048U	NA
2-Amino-4,6-dinitrotoluene	8.0	8.1	1.2
2-Nitrotoluene	0.19J	0.065J	98.0
4-Amino-2,6-dinitrotoluene	4.4	4.5	2.3
DNX	0.25J	0.25J	0.0
MNX	0.092J	0.096J	4.3
RDX	0.54J	0.51J	5.7
TNX	0.58J	0.59	1.7

J = Estimated value <LOQ and >DL.

IX-Quantitation Verification and Data Review

The accuracy of analytical results was verified through the calculation of several parameters.

- All values >MDL and <MRL or <3*MDL (whichever was greater) were qualified as estimated "J" (if required).
- The absolute percent difference (%D) between the calculated and the reported value must be within 10% difference. The calculation was based calibration factors.
- All positive values must have less than or equal to 40% RPD between the primary and secondary columns.
- For sample 54MW10 (680-95852-1), TNX (63.9%), DNX (136%), and 1,3-dinitrobenzene (79.6%) were outside confirmatory criteria; therefore, were qualified estimated "J" for the associated sample based upon these outliers.
- For sample 54RB11513 (680-95852-2), 2,4,6-trinitrotoluene (72.4%), 4-amino-2,6-dinitrotoluene (46.1%), and 2,6-dinitrotoluene (113%) were outside confirmatory criteria; therefore, were qualified estimated "J" for the associated sample based upon these outliers.
- For sample 54MW13 (680-95852-3), TNX (73.6%), DNX (143%), MNX (118%), RDX (64.9%), 1,3-dinitrobenzene (116%), and 2,6-dinitrotoluene (81.6%) were outside confirmatory criteria; therefore, were qualified estimated "J" for the associated sample based upon these outliers.
- For sample 54MW12 (680-95852-5), DNX (126%), MNX (118%), RDX (52.0%), 1,3-dinitrobenzene (61.2%), 2,4-dinitrotoluene (116%), and 2-nitrotoluene (49.3%) were outside confirmatory criteria; therefore, were qualified estimated "J" for the associated sample based upon these outliers.
- For sample 54TM12 (680-95852-6), DNX (125%), MNX (71.9%), RDX (53.7%), 1,3-dinitrobenzene (70.0%), and 2-nitrotoluene (138%) were outside confirmatory criteria; therefore, were qualified estimated "J" for the associated sample based upon these outliers.

LOQ = Limit of Quantitation

DL = Detection Limit

Sample: 54MW10 (680-95852-1), 4-amino-2,6-dinitrotoluene

Y = mX + b

Y = Area of target compound for sample m = slope of curve
X = Amount on column b = Y-intercept

Given:

m = 69089.1333 b = -31925.667 Y = Area = 14830081

X = 215.11

Conc. μ g/L = (Ax * Vt * DF) / (Vs)

where: Conc. = Sample concentration in μ g/L

Ax = Amount of compound being measured (µg/L).
Vt = Volume of total extract (mL) from bench sheet.

Vs = Volume of sample extracted (mL).

DF = Dilution factor

Conc. $\mu g/L = (215.11 * 10 * 1) / (500) = 4.3 \mu g/L (Signal #1)$

Reported Value = 4.3 μg/L % Difference = 0.0%

Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition		
	Laboratory Qualifiers ¹		
No Code	Confirmed identification.		
U	Undetected at the limit of detection: The associated data value is the limit of detection, adjusted by any dilution factor used in the analysis.		
J	Estimated: The analyte was positively identified; the quantitation is estimation.		
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.		
N	Non-target analyte: The analyte is a tentatively identified compound (using mass spectroscopy).		
Q	One or more quality control criteria failed.		
US	EPA Region III Data Validation Qualifiers ²		
R	Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.		
В	Not detected substantially above the level of the reported in laboratory or field blanks.		
J	Analyte present. Reported value may not be accurate or precise.		
UJ	Not detected, quantitation limit may be inaccurate or imprecise.		
N	Tentative Identification. Consider present. Special methods may be to confirm its presence or absence in future sampling efforts.		
NJ	Qualitative identification questionable due to poor resolution. Presumptively present at approximate quantity.		
К	Analyte present. Reported value may be biased high. Actual value is expected to be lower.		
L	Analyte present. Reported value may be biased low. Actual value is expected to be higher.		
UL	Not detected, quantitation limit is probably higher.		

¹The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: *DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2* (DoD, 2010).

²The USEPA data validation qualifiers are referenced from *Region III Modifications to the National Functional Guidelines for Organic Data Review* (September 1994).

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-95852-1 SDG No.: Client Sample ID: 54MW10 Lab Sample ID: 680-95852-1 Lab File ID: PAEGV030.D Matrix: Water Date Collected: 11/05/2013 09:55 Analysis Method: 8330B Date Extracted: 11/12/2013 09:06 Extraction Method: 8330-Prep Date Analyzed: 11/22/2013 02:23 Sample wt/vol: 500(mL) Con. Extract Vol.: 10000(uL) Dilution Factor: 1 GC Column: C-18 ID: 4.6(mm) Injection Volume: 150(uL) GPC Cleanup: (Y/N) N % Moisture: Analysis Batch No.: 64795 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
13980-04-6	TNX	0.30	J	0.20	0.031
99-65-0	1,3-Dinitrobenzene	2.2	мј	0.20	0.028
80251-29-2	DNX	0.21	J	0.20	0.029
5755-27-1	MNX	0.41	М	0.20	0.018
121-14-2	2,4-Dinitrotoluene	0.20	М	0.20	0.046
606-20-2	2,6-Dinitrotoluene	0.039	U	0.20	0.039
35572-78-2	2-Amino-4,6-dinitrotoluene	4.5	M	0.20	0.021
19406-51-0	4-Amino-2,6-dinitrotoluene	4.3	M	0.20	0.022
99-99-0	4-Nitrotoluene	0.058	U	0.20	0.058
88-72-2	2-Nitrotoluene	0.032	Ŭ	0.20	0.032
55-63-0	Nitroglycerin	1.4	U	4.0	1.4

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	120		75-130

Lab Name: TestAmerica Burlington	Job No.: 680-95852-1
SDG No.:	
Client Sample ID: 54MW10 DL	Lab Sample ID: 680-95852-1 DL
Matrix: Water	Lab File ID: PAEGV029.D
Analysis Method: 8330B	Date Collected: 11/05/2013 09:55
Extraction Method: 8330-Prep	Date Extracted: 11/12/2013 09:06
Sample wt/vol: 500 (mL)	Date Analyzed: 11/22/2013 01:46
Con. Extract Vol.: 10000(uL)	Dilution Factor: 3
Injection Volume: 150(uL)	GC Column: C-18 ID: 4.6(mm)
% Moisture:	GPC Cleanup: (Y/N) N
Analysis Batch No.: 64795	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
118-96-7	2,4,6-Trinitrotoluene	50	М	0.60	0.069
121-82-4	RDX	21	М	0.60	0.13

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	119		75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Job No.: 680-95852-1 Lab Name: TestAmerica Burlington SDG No.: Client Sample ID: 54RB11513 Lab Sample ID: 680-95852-2 Lab File ID: PAEGV031.D Matrix: Water Analysis Method: 8330B Date Collected: 11/05/2013 09:55 Extraction Method: 8330-Prep Date Extracted: 11/12/2013 09:06 Sample wt/vol: 500(mL) Date Analyzed: 11/22/2013 03:01 Dilution Factor: 1 Con. Extract Vol.: 10000(uL) GC Column: C-18 ID: 4.6 (mm) Injection Volume: 150(uL) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 64795 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
13980-04-6	TNX	0.031	Ū	0.20	0.031
99-65-0	1,3-Dinitrobenzene	0.028	U	0.20	0.028
118-96-7	2,4,6-Trinitrotoluene	0.18	MJ	0.20	0.023
80251-29-2	DNX	0.029	U	0.20	0.029
5755-27-1	MNX	0.018	UM	0.20	0.018
121-14-2	2,4-Dinitrotoluene	0.046	U	0.20	0.046
606-20-2	2,6-Dinitrotoluene	0.32	МJ	5 0.20	0.039
35572-78-2	2-Amino-4,6-dinitrotoluene	0.021	U	0.20	0.021
19406-51-0	4-Amino-2,6-dinitrotoluene	0.077	МЈ	J 0.20	0.022
99-99-0	4-Nitrotoluene	0.058	Ū	0.20	0.058
88-72-2	2-Nitrotoluene	0.032	UM	0.20	0.032
55-63-0	Nitroglycerin	1.4	U	4.0	1.4
121-82-4	RDX	0.044	U	0.20	0.044

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	102		75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-95852-1 SDG No.: Lab Sample ID: 680-95852-3 Client Sample ID: 54MW13 Matrix: Water Lab File ID: PAEGV032.D Analysis Method: 8330B Date Collected: 11/05/2013 11:25 Extraction Method: 8330-Prep Date Extracted: 11/12/2013 09:06 Sample wt/vol: 500(mL) Date Analyzed: 11/22/2013 03:38 Con. Extract Vol.: 10000(uL) Dilution Factor: 1 Injection Volume: 150(uL) GC Column: C-18 ID: 4.6(mm) GPC Cleanup: (Y/N) N % Moisture: Analysis Batch No.: 64795 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q		LOQ	DL	
13980-04-6	TNX	0.20	J	7	0.20	0.031	
99-65-0	1,3-Dinitrobenzene	0.74	МJ	7	0.20	0.028	
118-96-7	2,4,6-Trinitrotoluene	9.8	M	-	0.20	0.023	
80251-29-2	DNX	0.17	МJ	7	0.20	0.029	
5755-27-1	MNX	0.064	J	~~~	0.20	0.018	
121-14-2	2,4-Dinitrotoluene	0.046	UM		0.20	0.046	
606-20-2	2,6-Dinitrotoluene	0.11	МЈ	В	0.20	0.039	
35572-78-2	2-Amino-4,6-dinitrotoluene	1.6	М		0.20	0.021	
19406-51-0	4-Amino-2,6-dinitrotoluene	1.3	М		0.20	0.022	
99-99-0	4-Nitrotoluene	0.058	U		0.20	0.058	
88-72-2	2-Nitrotoluene	0.032	Ū	1	0.20	0.032	
55-63-0	Nitroglycerin	1.4	Ū		4.0	1.4	
121-82-4	RDX	4.0	мл	~	0.20	0.044	

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	113	М	75-130

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 680-95852-1 SDG No.: Client Sample ID: 54MW2 Lab Sample ID: 680-95852-4 Matrix: Water Lab File ID: PAEGV033.D Analysis Method: 8330B Date Collected: 11/05/2013 13:00 Extraction Method: 8330-Prep Date Extracted: 11/12/2013 09:06 Sample wt/vol: 500(mL) Date Analyzed: 11/22/2013 04:15 Con. Extract Vol.: 10000(uL) Dilution Factor: 1 Injection Volume: 150(uL) GC Column: C-18 ID: 4.6(mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 64795 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q		LOQ	DL
13980-04-6	TNX	0.031	UM	Ť	0.20	0.031
99-65-0	1,3-Dinitrobenzene	0.064	JM	~	0.20	0.028
118-96-7	2,4,6-Trinitrotoluene	0.46	M	1	0.20	0.023
80251-29-2	DNX	0.029	Ū		0.20	0.029
5755-27-1	MNX	0.018	U		0.20	0.018
121-14-2	2,4-Dinitrotoluene	0.046	UM		0.20	0.046
606-20-2	2,6-Dinitrotoluene	0.039	Ū		0.20	0.039
35572-78-2	2-Amino-4,6-dinitrotoluene	0.73	М		0.20	0.021
19406-51-0	4-Amino-2,6-dinitrotoluene	0.45	M		0.20	0.022
99-99-0	4-Nitrotoluene	0.058	U		0.20	0.058
88-72-2	2-Nitrotoluene	0.032	U	1	0.20	0.032
55-63-0	Nitroglycerin	1.4	U	-	4.0	1.4
121-82-4	RDX	0.075	JM	3	0.20	0.044

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0		106		75-130

Lab Name: TestAmerica Burlington	Job No.: 680-95852-1
SDG No.:	
Client Sample ID: 54MW12	Lab Sample ID: 680-95852-5
Matrix: Water	Lab File ID: PAEGV035.D
Analysis Method: 8330B	Date Collected: 11/05/2013 14:15
Extraction Method: 8330-Prep	Date Extracted: 11/12/2013 09:06
Sample wt/vol: 500(mL)	Date Analyzed: 11/22/2013 05:30
Con. Extract Vol.: 10000(uL)	Dilution Factor: 1
Injection Volume: 150(uL)	GC Column: C-18 ID: 4.6(mm)
% Moisture:	GPC Cleanup: (Y/N) N
Analysis Batch No.: 64795	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
13980-04-6	TNX	0.58	JМ	0.20	0.031
99-65-0	1,3-Dinitrobenzene	1.4	JМ	0.20	0.028
118-96-7	2,4,6-Trinitrotoluene	17	М	0.20	0.023
80251-29-2	DNX	0.25	мј	7 0.20	0.029
5755-27-1	MNX	0.092	J	0.20	0.018
121-14-2	2,4-Dinitrotoluene	0.20	МJ	5 0.20	0.046
606-20-2	2,6-Dinitrotoluene	0.039	U	0.20	0.039
35572-78-2	2-Amino-4,6-dinitrotoluene	8.0	М	0.20	0.021
19406-51-0	4-Amino-2,6-dinitrotoluene	4.4	M	0.20	0.022
99-99-0	4-Nitrotoluene	0.058	U	0.20	0.058
88-72-2	2-Nitrotoluene	0.19	мј	0.20	0.032
55-63-0	Nitroglycerin	1.4	UJ	UL 4.0	1.4
121-82-4	RDX	0.54	JМ	K 0.20	0.044

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0	1,2-Dinitrobenzene	124		75-130

Lab Name: TestAmerica Burlington	Job No.: 680-95852-1
SDG No.:	
Client Sample ID: 54TM12	Lab Sample ID: 680-95852-6
Matrix: Water	Lab File ID: PAEGV037.D
Analysis Method: 8330B	Date Collected: 11/05/2013 14:15
Extraction Method: 8330-Prep	Date Extracted: 11/12/2013 09:06
Sample wt/vol: 500(mL)	Date Analyzed: 11/22/2013 06:45
Con. Extract Vol.: 10000(uL)	Dilution Factor: 1
Injection Volume: 150(uL)	GC Column: C-18 ID: 4.6(mm)
% Moisture:	GPC Cleanup: (Y/N) N
Analysis Batch No.: 64795	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q		LOQ	DL
13980-04-6	TNX	0.59	М		0.20	0.031
99-65-0	1,3-Dinitrobenzene	1.4	МЈ	7	0.20	0.028
118-96-7	2,4,6-Trinitrotoluene	18	M	† <u> </u>	0.20	0.023
80251-29-2	DNX	0.25	мј	7	0.20	0.029
5755-27-1	MNX	0.096	J	デ	0.20	0.018
121-14-2	2,4-Dinitrotoluene	0.046	UM	1	0.20	0.046
606-20-2	2,6-Dinitrotoluene	0.039	Ū		0.20	0.039
35572-78-2	2-Amino-4,6-dinitrotoluene	8.1	M		0.20	0.021
19406-51-0	4-Amino-2,6-dinitrotoluene	4.5	M	1	0.20	0.022
99-99-0	4-Nitrotoluene	0.058	Ū		0.20	0.058
88-72-2	2-Nitrotoluene	0.065	МJ	5	0.20	0.032
55-63-0	Nitroglycerin	1.4	Ū		4.0	1.4
121-82-4	RDX	0.51	МJ	1.7	0.20	0.044

CAS NO.	SURROGATE	%REC	Q	LIMITS
528-29-0		133		75-130

CB&I Federal Services, LLC 4696 Millennium Drive, Suite 320 Belcamp, Maryland 21017 Tel: +1 (410) 273-7100 Fax: +1 (410) 273-7103 Eric.malarek@CBIfederalservices.com

MEMORANDUM

TO:

Tim Leahy, CB&I Federal Services, LLC (CB&I) Radford Army Ammunition Plant (RFAAP)

Project Manager

FROM:

Eric Malarek, CB&I Project Chemist

SUBJECT:

RFAAP Data Validation - Chloride, Chlorate, Chlorite, Nitrate, and Sulfate

Test America Laboratories, Inc., SDG 680-95852

DATE:

June 16, 2014

The purpose of this memorandum is to present the data validation report for the samples collected at Main Manufacturing Area at RFAAP for SWMU54 RFI/IM on November 5, 2013. Samples were analyzed for chlorite and chlorate using USEPA Method 300.1 and for chloride, nitrate, and sulfate using USEPA Method 300.0. A total of six aqueous samples (includes one rinse blank) were validated. The sample IDs are:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
54MW10	680-95852-1	54MW2	680-95852-4
54RB11513	680-95852-2	54MW12	680-95852-5
54MW13	680-95852-3	54TM12	680-95852-6

Data were reviewed and validated using a combination of project QAPP, *DoD Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 25, 2010* (DoD, 2010), and method-specific criteria. The data qualifier scheme was consistent with the *Region III Modifications to the National Functional Guidelines for Inorganic Data Review* (April, 1993). Parameters evaluated are presented in **Table 1**. Data associated with parameters in compliance with quality control specifications have not been qualified. Data associated with parameters that did not comply with quality control specifications and directly impacted project data have been qualified in accordance with USEPA Region III specifications.

Table 1 Laboratory Performance Criteria

	lified ata	Parameter
Yes No		
Х		Holding Times and Preservation
Х		Initial and Continuing Calibration
X		Blank Analysis
X		System Monitoring Compounds
Х		Laboratory Control Sample
Х		Laboratory Duplicate Sample
Х		Matrix Spike and Spike Duplicate
	Х	Field Duplicate Sample
	Х	Quantitation Verification and Data Review

The quality of data collected in support of this sampling activity is considered acceptable.

Eric Malarek, Chemist

Date

RFAAP VALIDATION REPORT ANIONS REVIEW SDG 680-95852

I-Holding Times and Preservation

The primary objective is to ascertain the validity of results based on the holding time of the sample from time of collection to time of sample analysis. Holding time criteria: Cool $4^{\circ}C\pm2^{\circ}C$ and 28 days for sulfate, chloride, and chlorate; Cool $4^{\circ}C\pm2^{\circ}C$ and 14 days for chlorite; and Cool to $4^{\circ}C\pm2^{\circ}C$ with H_2SO_4 to pH<2 and 2 days for nitrate. The dates and times were compared between the sample collection and laboratory analysis (USEPA criteria).

- <u>Temperature Review</u>: The temperature blank was sent with each cooler and recorded by the lab upon receipt. For samples collected on 11/05/13, the coolers were received on 11/06/13 by the primary laboratory (Test America Laboratories, Inc.) at 3.8°C, 4.0°C, and 5.0°C. All criteria were met. No qualifiers were applied.
- Holding Time Review: Samples were collected on 11/05/13. The samples were analyzed on 11/06/13 and 11/07/13 for nitrate analysis; on 11/12/13 and 11/13/13 for chloride and sulfate analysis; on 11/9/13 for chlorite analysis; and on 11/15/13 for chlorate analysis, respectively. Sample collection dates may be found on the attached form 1s. All criteria were met. No qualifiers were applied.

II-Initial and Continuing Calibration

Requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data. Initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of the analysis run, and continuing calibration verification documents that the initial calibration is still valid.

Chloride, nitrate, and sulfate:

1 – blank

 $5 - \text{standards} \ (r \ge 0.995 \ \text{or} \ r^2 \ge 0.99)$

ICV/CCV (90-110%)

Method Reporting Limit (MRL) (75-125%)

Chlorite and chlorate:

1 – blank

5 – standards (r>0.995 or $r^2 \ge 0.99$; RSD $\le 15\%$)

ICV/CCV (≤15%D)

• Chloride, sulfate, and nitrate analysis was calibrated on 11/01/13 using linear equation techniques to calculate final calculations. Chlorite analysis was calibrated on 10/27/13 using linear regression with final concentrations determined using external calibration factor techniques. Chlorate analysis was calibrated on 11/13/13 using linear regression with final concentrations determined using external calibration factor techniques. All coefficients of determinations were r²≥0.99 for chloride, chlorite, chlorate, sulfate, and nitrate. All ICV/CCV/MRL criteria were met for all anions and runs. No qualifiers were applied. Samples 54MW10 (680-95852-1), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to these initial and continuing calibrations.

III-Blank Analysis

The purpose of blank analyses is to determine the presence and magnitude of contamination problems resulting from field and laboratory activities. One method blank per analytical batch must be run on each instrument used to analyze samples. Calibration blanks were analyzed initially and at a 10% frequency thereafter for each batch. No contaminants should be detected in any of the associated blanks >MDL. The DoD QSM criteria specifies all concentrations should be less than $\frac{1}{2}$ MRL (<MRL for common laboratory contaminants methylene chloride, acetone, toluene, 2-butanone, and phthalate esters) and <2MDL for the calibration blanks. Positive sample results are reported and qualified "B", if the concentration of the compound in the sample is \leq 10 times (10x) the maximum amount in any blank for the common laboratory contaminants methylene chloride, acetone, 2-butanone, and phthalate esters, or 5 times (5X) the maximum amount for other target compounds. **Table 2** summarizes the blank contamination analysis. Action levels are based upon dilution factor of one. The rinse blank 54RB11513 (680-95852-2) applies to all samples in this SDG.

Table 2 Blank Contamination Analysis Summary

Analysis Date	Analysis	QC Blank ID	Max Conc. mg/L	Action Level mg/L	B qualified samples (for this SDG)
11/12/13	Chloride	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
11/12/13	Sulfate	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
11/13/13	Sulfate	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
11/06/13	Nitrate	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
11/12/13	Chloride	MB 680-302842/17	<1/2MRL	NA	None
11/12/13	Sulfate	MB 680-302842/17	<1/2MRL	NA	None
11/13/13	Sulfate	MB 680-303027/5	<1½MRL	NA	None
11/06/13	Nitrate	MB 680-302042/54	<1⁄₂MRL	NA	None
11/12/13	Chloride	54RB11513	<1/2MRL	NA	None
11/12/13	Sulfate	54RB11513	<1/2MRL	NA	None
11/06/13	Nitrate	54RB11513	<1∕₂MRL	NA	None
Analysis	Analysis	QC Blank ID	Max Conc.	Action Level	B qualified samples
Date			μg/L	μg/L	(for this SDG)
11/09/13	Chlorite	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
11/15/13	Chlorate	ICB/CCBs	<lod< td=""><td>NA</td><td>None</td></lod<>	NA	None
11/09/13	Chlorite	MB 680-302151/29	<½MRL	NA	None
11/15/13	Chlorate	MB 680-303452/5	<1///MRL	NA	None
11/09/13	Chlorite	54RB11513	<½MRL	NA	None
11/15/13	Chlorate	54RB11513	<1/2MRL	NA	None

LOD = Limit of Detection
MRL = Method Reporting Limit

MDL = Method Detection Limit

NA = Not Applicable

IV-System Monitoring Compound (Surrogates)

Laboratory performance on individual samples is established by means of spiking activities. Surrogates were performed for chlorite analysis. The percent recovery (%R) for all samples and blanks must be within the laboratory control limits. DoD surrogate recovery limits are specified in Table G-3 of the DoD QSM (DoD, 2010). If the surrogate is not listed, then the laboratory criteria shall be used.

Chlorite and chlorate: Dichloroacetic acid (DCAA) (90-115%)

All criteria were met for all reported samples. No qualifiers were applied.

V-Laboratory Control Sample and Laboratory Control Sample Duplicate

The laboratory control sample (LCS) and LCSD serve as a monitor of the overall performance of each step during the analysis, including the sample preparation. LCS and LCSD are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Per DoD QSM, all LCS/LCSD results must fall within the specified control limits:

Chloride, nitrate, and sulfate: 90-110%; R

90-110%; RPD≤30% (DOD QSM = 80-120%; RPD≤20%)

Chlorite and chlorate:

85-115%; RPD≤10% (DOD QSM = None Listed)

Samples LCS 680-302842/18 and LCSD 680-302842/19 were used as the aqueous LCS/LCSD for chloride and sulfate analysis on 11/12/13. All criteria were met. No qualifiers were applied. Samples 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to this LCS/LCSD for chloride and sulfate. Sample 54MW10 (680-95852-1) applies to this LCS/LCSD for chloride.

- Samples LCS 680-303027/6 and LCSD 680-303027/7 were used as the aqueous LCS/LCSD for sulfate analysis on 11/13/13. All criteria were met. No qualifiers were applied. Sample 54MW10 (680-95852-1) applies to this LCS/LCSD.
- Samples LCS 680-302042/55 and LCSD 680-302042/56 were used as the aqueous LCS/LCSD for nitrate analysis on 11/06/13. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-95852-1), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to this LCS/LCSD.
- Samples LCS 680-302151/31 and LCSD 680-302151/32 were used as the aqueous LCS/LCSD for chlorite analysis on 11/09/13. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-95852-1), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to this LCS/LCSD.
- Samples LCS 680-303452/7 and LCSD 680-303452/8 were used as the aqueous LCS/LCSD for chlorate analysis on 11/15/13. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-95852-1), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to this LCS/LCSD.

VI-Duplicate Sample Analysis

Duplicate sample determinations are used to demonstrate acceptable method precision by the laboratory at the time of analysis. Duplicate analysis is performed to generate data in order to determine the long-term precision of the analytical method on various matrices. Per DoD QSM, RPDs must be within established control limits (≤20%RPD).

No site lab duplicate was performed with this SDG; therefore, was not evaluated.

VII-Matrix Spike and Matrix Spike Duplicate

Matrix spikes (MSs) and MSDs are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. Specific criteria include the analyses of matrix spike samples at a frequency of one MS/MSD per 20 samples or preparatory batch of similar matrix. Per DoD QSM, MS/MSD recoveries and RPDs should be within the specified limits:

Chloride, nitrate, and sulfate:

90-110%; RPD≤30% (DOD QSM = 80-120%; RPD≤20%)

Chlorite and chlorate:

75-125%; RPD≤10% (DOD QSM = None Listed)

- Sample 54MW12 (680-95852-5) was used as the aqueous MS/MSD for chloride and sulfate analysis on 11/12/13. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-95852-1), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to this MS/MSD.
- Sample 54MW12 (680-95852-5) was used as the aqueous MS/MSD for nitrate analysis on 11/06/13.
 All criteria were met. No qualifiers were applied. Samples 54MW10 (680-95852-1), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to this MS/MSD.
- Sample 54MW12 (680-95852-5) was used as the aqueous MS/MSD for chlorite analysis on 11/09/13.
 All criteria were met. No qualifiers were applied. Samples 54MW10 (680-95852-1), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to this MS/MSD.
- Sample 54MW12 (680-95852-5) was used as the aqueous MS/MSD for chlorate analysis on 11/15/13. All criteria were met. No qualifiers were applied. Samples 54MW10 (680-95852-1), 54RB11513 (680-95852-2), 54MW13 (680-95852-3), 54MW2 (680-95852-4), 54MW12 (680-95852-5), and 54TM12 (680-95852-6) apply to this MS/MSD.

VIII-Field Duplicate Sample Analysis

Field duplicates were collected to identify the cumulative precision of the sampling and analytical process and sent to the laboratory blind. The RPD was calculated only for those analytes which were detected at levels exceeding the method reporting limits in both samples of the duplicate pair. Analytes that were qualified rejected (R-qualified) in either sample of the duplicate pair were excluded from the duplicate assessment. Precision control criterion was established at 25% RPD for the aqueous samples.

• Field groundwater sample duplicate pair 54MW12 (680-95852-5) and 54TM12 (680-95852-6) was analyzed for anion analysis in this SDG. All detected anions found in the sample and its duplicate pair and associated %RPD are noted in **Table 3**. All other target anions were non-detect for the duplicate pair. All criteria were met. No qualifiers were applied.

Table 3 Field Precision Analysis Hits Summary for Anions for Duplicate Pair 54MW12 (680-95852-5) and 54TM12 (680-95852-6)

Compound	Original Sample (mg/L)	Duplicate Pair (mg/L)	%RPD
Chloride	5.4	5.4	0.0
Nitrate as N	1.1	1.1	0.0
Sulfate	26	26	0.0

IX-Quantitation Verification and Data Review

The accuracy of analytical results is verified through the calculation of several parameters. The following calculations were performed for verification.

- The percent difference (%D) between the calculated and the reported values should be within 10%.
- Any sample value >MDL and <MRL or <3*MDL (whichever is greater) was qualified as estimated, "J."

Sample: 54MW10 (680-95852-1), sulfate

```
Y = mX + b
Y = Sample Area
m = slope of curve
X = Concentration (mg/L)
b = Y-intercept
DF = Dilution Factor
Given:
m = 14523818
b = -46274.385
Y = Area = 412126713
DF = 2
X = 28.38 \text{ mg/L} * DF = 28.38 \text{ mg/L} * 2 = 57 \text{ mg/L}
Reported concentration = 57 mg/L
%D = 0.0\%
Values were within 10% difference.
Sample: LCS 680-302151/31, chlorite
Conc. \mug/L = (Amt * DF * Vt) / (CF * Vo)
        where: Amt
                        = the response on column (ng/mL) of the sample
                        = Calibration Factor (from initial calibration)
                CF
                        = volume of final extract (mL)
                Vt
                DF
                        = dilution factor
```

Conc. μ g/L = (5737256 ng/mL * 1 * 5 mL) / (51396.7663 * 5 mL) = 112 ng/mL = 112 μ g/L

= volume of the sample extracted (mL)

Reported concentration = 112 μg/L %D = 0.0% Values were within 10% difference.

Vo

Sample: LCS 680-303452/7, chlorate

Conc. μ g/L = (Amt * DF * Vt) / (CF * Vo)

= the response on column (ng/mL) of the sample= Calibration Factor (from initial calibration) where: Amt

CF

Vt = volume of final extract (mL)

DF = dilution factor

Vo = volume of the sample extracted (mL)

Conc. μ g/L = (2438540 ng/mL * 1 * 5 mL) / (48884.4503 * 5 mL) $= 49.9 \text{ ng/mL} = 49.9 \mu\text{g/L}$

Reported concentration = 49.9 µg/L $\%\dot{D} = 0.0\%$

Values were within 10% difference.

Laboratory and Data Validation Qualifiers

Qualifier	Definition
	Laboratory Qualifiers ¹
No Code	Confirmed identification.
U	Undetected at the limit of detection: The associated data value is the
	limit of detection, adjusted by any dilution factor used in the analysis.
J	Estimated: The analyte was positively identified; the quantitation is estimation.
В	Blank contamination: The analyte was detected above one-half the reporting limit in an associated blank.
N	Non-target analyte: The analyte is a tentatively identified compound
	(using mass spectroscopy).
Q	One or more quality control criteria failed.
U	SEPA Region III Data Validation Qualifiers ²
R	Unreliable result. Analyte may or may not be present in the sample.
	Supporting data necessary to confirm result.
В	Not detected substantially above the level of the reported in laboratory
	or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
N	Tentative Identification. Consider present. Special methods may be to
	confirm its presence or absence in future sampling efforts.
NJ	Qualitative identification questionable due to poor resolution.
	Presumptively present at approximate quantity.
К	Analyte present. Reported value may be biased high. Actual value is expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is expected to be higher.
UL	Not detected, quantitation limit is probably higher.

¹The noted laboratory qualifiers are a minimum. If a laboratory has more and they are consistent with DoD and properly defined, the laboratory may use them. Data qualifiers may be combined when appropriate. Ref.: DOD Quality Systems Manual for Environmental Laboratories, Final Version 4.2 (DoD, 2010).

²The USEPA data validation qualifiers are referenced from Region III Modifications to the National Functional Guidelines for Inorganic Data Review (April, 1993).

CB&I Federal Services LLC 4696 Millennium Drive, Suite 320 Belcamp, MD 21017 Ph: 410-273-7100 Fax: 410-273-7103

CB&I, BATON ROUGE, LA: 1-225-932-2500 4171 Essen Lane, Baton Rouge, LA 70809	129): 410-273-7116 :hen): 410-273-7105	TRAVEL CORP: 1-866-742-9885	-9885
HUDI FEDERAL SERVICES IT SUPPORT CENTER: 1-855-343-5600 HUDI HR SERVICE DESK: 1-855-343-5600, Option 3	HUDDLE ROOM (131): 410-273-7147 ption 3		
Authorized Media Snokosnowa Sana Ciana and and			
region for modia oponespersoni. Ocali olalicy 225-367-7128	Work Number: 1-800-367-5690 Employee Code: 11563		

IKON (Ricoh Copier Service): 1-888-456-6457 Copier (C5501) by Matt – I.D. #12263507 Copier (C3501) by Kitchen – I.D. #12212658	iliers.com 410-272-4905 (main office) Please try e-mail firstl
OFFICE CENTRE (Copy Shop) Marti: 410-939-1790 <u>marti@office-centre.net</u>	MANEKIN / Charlaine Eckstein: <u>Charlaine.Eckstein@Colliers.co</u>

NAME	DISCIPLINE	OFFICE NUMBER	HOME/CELL NUMBER
Bard, Ashley Basista, Matthew	Engineer Geologist	410-273-7207	412-537-0873 (cell)
Flaherty, Bonnie Groves, Bill	Subcontracts Administrator	410-273-7421	443-752-1220 (cell)
Hillebrand, Jeffrey	Geologist	410-273-7223 410-273-7223	443-243-1662 (cell) 443-504-3501 (cell)
Leany, TM Magness, Mark	Project Manager Project Manager	410-273-7228	443-619-2276 (cell)
Malarek, Eric	Chemist	410-273-723- 410-273-7233	973-723-6116 (cell) 443-243 8048 (cell)
Mehsling, Rebecca Rosshach, Appe	Finance Assistant	410-273-7241	443-794-5574 (cell)
Schrader, Jessica	reclinical Publications Assistant Technical Services Lead	410-273-7266 410-273-7289	410-254-3294 (H) / 443-610-8804 (cell)
Smith, Alex	Project Manager/Facility Director	410-273-7313	410-537-5379 (cell) 240-586-1341 (cell)
Thomas, Mark A.	Construction Field Engineering Manager Biologist	410-273-7322	410-924-5864 (cell) 410-638-9014 (H) / 410-937-8817 (cell)
l ucker, Emily	Scientist	410-273-7330	856-905-2899 (cell)

Lab Name: Te	stAmerica Savannah	Jok	Job No.: 680-95852-1					
SDG No.:		•						
Client Sample ID: 54MW10			Lab Sample ID: 680-95852-1					
Matrix: Wate	r	Lab	Lab File ID: 1112131507-21.d					
Analysis Meth	nod: 300.0	Dat	Date Collected: 11/05/2013 09:55					
Extraction Method:			Date Extracted:					
Sample wt/vol: 5(mL)			Date Analyzed: 11/12/2013 15:07					
Con. Extract Vol.: 5(mL)			Dilution Factor: 1					
Injection Vol	ume: 1(uL)	GC	GC Column: Dionex AS18 ID: 4 (mm)					
% Moisture:		GPC	GPC Cleanup: (Y/N) N					
Analysis Batch No.: 302842			ts: mg/L					
CAS NO.	COMPOUND NAME		RESULT	Q	LOQ	DL		
16887-00-6	Chloride		4.6	М	0.50	0.25		

Lab Name: TestAmerica Savannah		Joh	Job No.: 680-95852-1				
SDG No.:							
Client Sample ID: 54MW10		Lab	Lab Sample ID: 680-95852-1				
Matrix: Water		Lab	Lab File ID: 1113131531-15.d				
Analysis Meth	od: 300.0	Date Collected: 11/05/2013 09:55					
Extraction Method:		Dat	Date Extracted:				
Sample wt/vol: 5(mL)		Dat	Date Analyzed: 11/13/2013 15:31				
Con. Extract Vol.: 5(mL)		Dil	Dilution Factor: 2				
Injection Volume: 1(uL)		GC	GC Column: Dionex AS18 ID: 4(mm)				
% Moisture:		GPC	GPC Cleanup: (Y/N) N				
Analysis Batch No.: 303027		Uni	Units: mg/L				
CAS NO.	COMPOUND NAME		RESULT	Q	TOÖ	DL	
14808-79-8	Sulfate		57	М	1.0	0.50	

Lab Name: Te	estAmerica Savannah	Job No.: 680-95852-1					
SDG No.:							
Client Sample ID: 54MW10		Lab Sample ID: 680-95852-1					
Matrix: Water		Lab File ID: 1106132301-64.d					
Analysis Method: 300.0		Date Collected: 11/05/2013 09:55					
Extraction Method:		Date Extracted:					
Sample wt/vol: 5(mL)		Date Analyzed: 11/06/2013 23:01					
Con. Extract Vol.: 5(mL)		Dilution Factor: 1					
Injection Vol	lume: 1(uL)	GC Column: AS18 ID: 4(mm)					
% Moisture:		GPC Cleanup: (Y/N) N					
Analysis Batch No.: 302042		Units: mg/L					
CAS NO.	COMPOUND NAME	RESULT Q LOQ DL					
14797-55-8	Nitrate as N	0.67 0.050 0.0					

HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannal	n	Job No.: 680-95852-1					
SDG No.:							
Client Sample ID: 54MW10		Lab Sample ID: 680-95852-1					
Matrix: Water		Lab File ID: 1109130435-110.d					
Analysis Method: 300.1B		Date Collected: 11/05/2013 09:55					
Extraction Method:		Date Extracted:					
Sample wt/vol: 5(mL)		Date Analyzed: 11/09/2013 04:35					
Con. Extract Vol.: 5(mL)		Dilution Factor: 1					
Injection Volume: 50(uL)		GC Column: Dionex AS9-HC ID: 2(mm)					
% Moisture:		GPC Cleanup: (Y/N) N					
Analysis Batch No.: 302151		Units: ug/L					
CAS NO. COMPO	OUND MAME	RESULT	Q	LOQ	DL		
14998-27-7 Chlorite		3.7	Ū	20	3.7		
CAS NO.	SURROGATE		%REC	Q	LIMITS		

99

90-115

79-43-6

Dichloroacetic acid(Surr)

Lab Name: TestAmerica Savannah Job No.: 680-95852-1							
SDG No.:							
Client Sample ID: 54MW10		Lab Sample ID: 680-95852-1					
Matrix: Water		Lak	Lab File ID: 1115131620-11.d				
Analysis Method: 300.1B			Date Collected: 11/05/2013 09:55				
Extraction Method:		Dat	Date Extracted:				
Sample wt/vol: 5(mL)		Dat	Date Analyzed: 11/15/2013 16:20				
Con. Extract Vol.: 5(mL)		Dil	Dilution Factor: 1				
Injection Volume: 50(uL)		GC	GC Column: Dionex AS9-HC ID: 2(mm)				
% Moisture:		GPC	GPC Cleanup: (Y/N) N				
Analysis Batch No.: 303452		Uni	Units: ug/L				
	<u> </u>		1	1	Г		
CAS NO.	COMPOUND NAME		RESULT	Q	LOQ	DL	
7790-93-4	Chlorate		2.1	Ū	10	2.1	

Lab Name: TestAmerica Savannah		Jol	No.: 680-9	5852-1			
SDG No.:							
Client Sample ID: 54RB11513			Lab Sample ID: 680-95852-2				
Matrix: Wate	er	Lab	File ID: 1	.1121315	20-22.d		
Analysis Method: 300.0			e Collected:	11/05	/2013 09:55		
Extraction Method:		Dat	e Extracted:				
Sample wt/vol: 5(mL)		Dat	Date Analyzed: 11/12/2013 15:20				
Con. Extract Vol.: 5(mL)		Dil	Dilution Factor: 1				
Injection Volume: 1(uL)		GC	GC Column: Dionex AS18 ID: 4 (mm)				
% Moisture:		GPC	GPC Cleanup: (Y/N) N				
Analysis Batch No.: 302842		Units: mg/L					
CAS NO.	COMPOUND NAME		RESULT	Q	LOQ	DL	
14808-79-8	Sulfate		0.25	U	0.50	0.25	
16887-00-6	Chloride		0.25	U	0.50	0.25	

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah	Job No.: 680-95852-1			
SDG No.:				
Client Sample ID: 54RB11513	Lab Sample ID: 680-95852-2			
Matrix: Water	Lab File ID: 1106132317-65.d			
Analysis Method: 300.0	Date Collected: 11/05/2013 09:55			
Extraction Method:	Date Extracted:			
Sample wt/vol: 5(mL)	Date Analyzed: 11/06/2013 23:17			
Con. Extract Vol.: 5(mL)	Dilution Factor: 1			
Injection Volume: 1(uL)	GC Column: AS18 ID: 4 (mm)			
% Moisture:	GPC Cleanup: (Y/N) N			
Analysis Batch No.: 302042	Units: mg/L			
CAS NO. COMPOUND NAME	RESULT Q LOQ DL			

0.025 U

0.050

0.025

14797-55-8

Nitrate as N

Lab Name: TestAmerica Savannah		Job No.: 68	30-9	5852-1		
SDG No.:						
Client Sample	ID: 54RB11513	Lab Sample	ID:	680-95	852-2	
Matrix: Water	Lab File ID	: 1	1091305	11-111.d		
Analysis Meth	od: 300.1B	Date Collec	ted:	11/05	/2013 09:	55
Extraction Me	thod:	Date Extrac	ted:			
Sample wt/vol	: 5(mL)	Date Analyz	ed:	11/09/	2013 05:1	1
Con. Extract	Dilution Factor: 1					
Injection Volume: 50(uL)		GC Column: Dionex AS9-HC ID: 2 (mm)				
% Moisture:	GPC Cleanup	(Y/	N) N			
Analysis Batch	h No.: 302151	Units: ug/L				
CAS NO.	COMPOUND NAME	RESUL'	ľ	Q	LOQ	DL
14998-27-7	Chlorite		3.7	ŭ	2	3.7
CAS NO.	SURROGATE			%REC	. Q	LIMITS
79-43-6	Dichloroacetic acid(Surr)			1	.01	90-115

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah		Job No.: 680-95852-1			
SDG No.:					
Client Sample ID: 54RB11513		Lab Sample ID: 680-95852-2			
Matrix: Water		Lab File ID: 1115131656-12.d			
Analysis Method:	300.1B	Date Collected: 11/05/2013 09:55			
Extraction Method:		Date Extracted:			
Sample wt/vol: 5(mL)		Date Analyzed: 11/15/2013 16:56			
Con. Extract Vol.: 5(mL)		Dilution Factor: 1			
Injection Volume: 50(uL)		GC Column: Dionex AS9-HC ID: 2(mm)			
% Moisture:		GPC Cleanup:(Y/N) N			
Analysis Batch No.: 303452		Units: ug/L			
CAS NO.	COMPOUND NAME	RESULT Q LOQ DL			
1					

2.1 U

7790-93-4

Chlorate

2.1

10

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah	Job No.: 680-95852-1			
SDG No.:				
Client Sample ID: 54MW13	Lab Sample ID: 680-95852-3			
Matrix: Water	Lab File ID: 1112131532-23.d			
Analysis Method: 300.0	Date Collected: 11/05/2013 11:25			
Extraction Method:	Date Extracted:			
Sample wt/vol: 5(mL)	Date Analyzed: 11/12/2013 15:32			
Con. Extract Vol.: 5(mL)	Dilution Factor: 1			
Injection Volume: 1(uL)	GC Column: Dionex AS18 ID: 4 (mm)			
% Moisture:	GPC Cleanup: (Y/N) N			
Analysis Batch No.: 302842	Units: mg/L			
CAS NO. COMPOUND NAME	RESULT Q LOQ DL			

39 M

4.3 M

14808-79-8

16887-00-6

Sulfate

Chloride

0.25

0.25

0.50

0.50

Lab Name: TestAmerica Savannah	Job No.: 680-95852-1			
SDG No.:				
Client Sample ID: 54MW13	Lab Sample ID: 680-95852-3			
Matrix: Water	Lab File ID: 1106132332-66.d			
Analysis Method: 300.0	Date Collected: 11/05/2013 11:25			
Extraction Method:	Date Extracted:			
Sample wt/vol: 5(mL)	Date Analyzed: 11/06/2013 23:32			
Con. Extract Vol.: 5(mL)	Dilution Factor: 2			
Injection Volume: 1(uL)	GC Column: AS18 ID: 4 (mm)			
% Moisture:	GPC Cleanup: (Y/N) N			
Analysis Batch No.: 302042	Units: mg/L			
CAS NO. COMPOUND NAME	RESULT Q LOQ DL			
14797-55-8 Nitrate as N	0.45 0.10 0.050			

Lab Name: Te	stAmerica Savannah	Job	No.: 680-9	5852-1			
SDG No.:							
Client Sample	ID: 54MW13	Lab Sample ID: 680-95852-3					
Matrix: Wate	r	Lab	File ID: 1	1091305	47-11	12.d	
Analysis Meth	od: 300.1B	Dat	e Collected:	11/05	/2013	3 11:2	5
Extraction Me	thod:	Dat	e Extracted:				
Sample wt/vol: 5(mL)		Dat	e Analyzed:	11/09/	2013	05:47	
Con. Extract Vol.: 5(mL)		Dilution Factor: 1					
Injection Vol	ume: 50(uL)	GC Column: Dionex AS9-HC ID: 2 (mm)					
% Moisture:		GPC Cleanup: (Y/N) N					
Analysis Batc	h No.: 302151	Units: ug/L					
					T.		T
CAS NO.	COMPOUND NAME		RESULT	Q		LOQ	DL
14998-27-7	Chlorite		3.7	Ü		20	3.7
CAS NO.	CAS NO. SURROGATE			%REC		Q	LIMITS
79-43-6	79-43-6 Dichloroacetic acid(Surr)			97		90-115	

Lab Name: TestAmerica Savannah	Job No.: 680-95852-1			
SDG No.:				
Client Sample ID: 54MW13	Lab Sample ID: 680-95852-3			
Matrix: Water	Lab File ID: 1115131730-13.d			
Analysis Method: 300.1B	Date Collected: 11/05/2013 11:25			
Extraction Method:	Date Extracted:			
Sample wt/vol: 5(mL)	Date Analyzed: 11/15/2013 17:30			
Con. Extract Vol.: 5 (mL)	Dilution Factor: 2			
Injection Volume: 50(uL)	GC Column: Dionex AS9-HC ID: 2 (mm)			
% Moisture:	GPC Cleanup: (Y/N) N			
Analysis Batch No.: 303452	Units: ug/L			
CAS NO. COMPOUND NAME	RESULT Q LOQ DL			
7790-93-4 Chlorate	4.2 U 20 4.2			

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah	Job No.: 680-95852-1
SDG No.:	
Client Sample ID: 54MW2	Lab Sample ID: 680-95852-4
Matrix: Water	Lab File ID: 1112131544-24.d
Analysis Method: 300.0	Date Collected: 11/05/2013 13:00
Extraction Method:	Date Extracted:
Sample wt/vol: 5(mL)	Date Analyzed: 11/12/2013 15:44
Con. Extract Vol.: 5 (mL)	Dilution Factor: 1
Injection Volume: 1(uL)	GC Column: Dionex AS18 ID: 4 (mm)
% Moisture:	GPC Cleanup: (Y/N) N
Analysis Batch No.: 302842	Units: mg/L
CAS NO. COMPOUND NAME	RESULT Q LOQ DL

29 M

М

5.6

0.50

0.50

0.25

0.25

14808-79-8

16887-00-6

Sulfate

Chloride

Lab Name: Te	stAmerica Savannah	Job No.: 680-95852-1				
SDG No.:						
Client Sample ID: 54MW2		Lab Sample ID: 680-95852-4				
Matrix: Water	2	Lab File ID: 1106132348-67.d				
Analysis Meth	od: 300.0	Date Collected: 11/05/2013 13:00				
Extraction Method:		Date Extracted:				
Sample wt/vol: 5(mL)		Date Analyzed: 11/06/2013 23:48				
Con. Extract Vol.: 5(mL)		Dilution Factor: 1				
Injection Vol	ume: 1(uL)	GC Column: AS18 ID: 4 (mm)				
% Moisture:		GPC Cleanup: (Y/N) N				
Analysis Batch No.: 302042		Units: mg/L				
CAS NO.	COMPOUND NAME	RESULT Q LOQ DL				
14797-55-8	Nitrate as N	0.25 0.050 0.025				

Lab Name: To	estAmerica Savannah	Job No.: 680-95852-1			
SDG No.:					
Client Sampl	e ID: 54MW2	Lab Sample ID: 680-95852-4			
Matrix: Wate	er	Lab File ID: 1109130624-113.d			
Analysis Met	hod: 300.1B	Date Collected: 11/05/2013 13:00			
Extraction M	ethod:	Date Extracted:			
Sample wt/vo	1: 5(mL)	Date Analyzed: 11/09/2013 06:24			
Con. Extract	Vol.: 5(mL)	Dilution Factor: 1			
Injection Vo	lume: 50(uL)	GC Column: Dionex AS9-HC ID: 2(mm)			
% Moisture:		GPC Cleanup: (Y/N) N			
Analysis Bat	ch No.: 302151	Units: ug/L			
CAS NO.	COMPOUND NAME	RESULT Q LOQ DL			
14998-27-7	Chlorite	3.7 U 20 3.7			
CAS NO.	SURROGATE	%REC Q LIMITS			
79-43-6	Dichloroacetic acid(Surr)	105 90-115			

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah		Job No.: 680-95852-1				
SDG No.:						
Client Sample ID: 54MW2		Lab Sample ID: 680-95852-4				
Matrix: Water		Lab File ID: 1115131805-14.d				
Analysis Method: 300.1B		Date Collected: 11/05/2013 13:00				
Extraction Method:		Date Extracted:				
Sample wt/vol: 5(mL)		Date Analyzed: 11/15/2013 18:05				
Con. Extract Vol.: 5(mL)		Dilution Factor: 1				
Injection Volu	me: 50(uL)	GC Column: Dionex AS9-HC ID: 2(mm)				
% Moisture:		GPC Cleanup:(Y/N) N				
Analysis Batch No.: 303452		Units: ug/L				
CAS NO.	COMPOUND NAME	RESULT Q LOQ DL				

2.1 U

7790-93-4

Chlorate

2.1

10

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah	Job No.: 680-95852-1				
SDG No.:					
Client Sample ID: 54MW12	Lab Sample ID: 680-95852-5				
Matrix: Water	Lab File ID: 1112131557-25.d				
Analysis Method: 300.0	Date Collected: 11/05/2013 14:15				
Extraction Method:	Date Extracted:				
Sample wt/vol: 5(mL)	Date Analyzed: 11/12/2013 15:57				
Con. Extract Vol.: 5(mL)	Dilution Factor: 1				
Injection Volume: 1(uL)	GC Column: Dionex AS18 ID: 4 (mm)				
% Moisture:	GPC Cleanup:(Y/N) N				
Analysis Batch No.: 302842	Units: mg/L				
CAS NO. COMPOUND NAME	RESULT Q LOQ DL				

26 M

5.4 M

0.50

0.50

0.25

0.25

14808-79-8

16887-00-6

Sulfate

Chloride

Lab Name: Te	stAmerica Savannah	Job No.: 680-95852-1				
SDG No.:						
Client Sample	ID: 54MW12	Lab Sample ID: 680-95852-5				
Matrix: Wate	r	Lab File ID: 1107130034-70.d				
Analysis Meth	od: 300.0	Dat	e Collected:	11/05	/2013 14:15	
Extraction Me	thod:	Date Extracted:				
Sample wt/vol	: 5(mL)	Date Analyzed: 11/07/2013 00		2013 00:34		
Con. Extract	Vol.: 5(mL)	Dilution Factor: 1				
Injection Vol	ume: 1(uL)	GC Column: AS18 ID: 4 (mm)		mm)		
% Moisture:		GPC Cleanup: (Y/N) N				
Analysis Batch No.: 302042		Units: mg/L				
CAS NO.	COMPOUND NAME		RESULT	Q	LOQ	DL
14797-55-8	Nitrate as N		1.1		0.050	0.025

Lab Name: Te	estAmerica Savannah	Job No.: 680-95852-1						
SDG No.:								
Client Sampl	e ID: 54MW12	Lab Sample ID: 680-95852-5						
Matrix: Wate	er	Lab File ID: 1109130700-114.d						
Analysis Met	hod: 300.1B	Date Collected: 11/05/2013 14:15						
Extraction M	ethod:	Date Extracted:						
Sample wt/vol: 5(mL) Con. Extract Vol.: 5(mL) Injection Volume: 50(uL) % Moisture:		Date Analyzed: 11/09/2013 07:00						
		Dilution Factor: 1 GC Column: Dionex AS9-HC ID: 2(mm) GPC Cleanup: (Y/N) N						
						Analysis Bat	ch No.: 302151	Units: ug/L
						CAS NO.	COMPOUND NAME	RESULT Q LOQ DL
14998-27-7	Chlorite	3.7 U 20 3.7						
CAS NO.	SURROGATE	%REC Q LIMITS						
79-43-6	Dichloroacetic acid(Surr)	103 90-115						

Lab Name: Te	estAmerica Savannah	Job No.: 680-95852-1				
SDG No.:						
Client Sample	e ID: 54MW12	Lab Sample ID: 680-95852-5				
Matrix: Wate	r	Lab File ID: 1115131839-15.d				
Analysis Meth	nod: 300.1B	Date Collected: 11/05/2013 14:15				
Extraction Method:		Date Extracted:				
Sample wt/vol	: 5(mL)	Date Analyzed: 11/15/2013 18:39				
Con. Extract	Vol.: 1.0(mL)	Dilution Factor: 1				
Injection Volume: 50(uL)		GC Column: Dionex AS9-HC ID: 2(mm)				
% Moisture:		GPC Cleanup: (Y/N) N				
Analysis Batch No.: 303452		Units: ug/L				
CAS NO.	COMPOUND NAME	RESULT Q LOQ DL				
7790-93-4	Chlorate	2.1 U 10				

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: Tes	tAmerica Savannah	Job	No.: 680-9	5852-1			
SDG No.:							
Client Sample	ID: 54TM12	Lab	Sample ID:	680-95	852-6		
Matrix: Water		Lab	File ID: 1	.1121316	34-28.d		
Analysis Metho	od: 300.0	Date Collected: 11/05/2013 14:15					
Extraction Method:		Dat	Date Extracted:				
Sample wt/vol: 5(mL)		Dat	Date Analyzed: 11/12/2013 16:34				
Con. Extract V	7ol.: 5(mL)	Dilution Factor: 1					
Injection Volu	ction Volume: 1(uL) GC Column: Dionex AS18 ID: 4		(mm)				
% Moisture:		GPC	GPC Cleanup:(Y/N) N				
Analysis Batch No.: 302842		Uni	Units: mg/L				
CAS NO.	COMPOUND NAME		RESULT	Q	LOQ	DL	
14808-79-8	Sulfate		26	М	0.50	0.25	

5.4 M

0.50

0.25

16887-00-6

Chloride

Lab Name: TestAmerica Savannah		Job No.: 680-95852-1				
SDG No.:						
Client Sample ID: 54TM12		Lab Sample ID: 680-95852-6				
Matrix: Wate	r	Lab File ID: 1	.10713012	0-73.d		
Analysis Meth	nod: 300.0	Date Collected: 11/05/2013 14:15				
Extraction Method:		Date Extracted:				
Sample wt/vol: 5(mL)		Date Analyzed: 11/07/2013 01:20				
Con. Extract Vol.: 5(mL)		Dilution Factor: 1				
Injection Volume: 1(uL)		GC Column: AS18 ID: 4(mm)				
% Moisture:		GPC Cleanup:(Y/N) N				
Analysis Batch No.: 302042		Units: mg/L				
CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL	
14797-55-8	Nitrate as N	1.1		0.050	0.025	

Lab Name: TestAmerica Savannah		Job No.: 680-95852-1			
SDG No.:					
Client Sampl	e ID: 54TM12	Lab Sample ID:	680-9585	52-6	
Matrix: Wate	er	Lab File ID:	1109130849	9-117.d	
Analysis Met	hod: 300.1B	Date Collected	2013 14:15	.3 14:15	
Extraction Me	ethod:	Date Extracted	:		
Sample wt/vo	1: 5(mL)	Date Analyzed:	11/09/20	013 08:49	
Con. Extract Vol.: 5(mL)		Dilution Factor: 1			
Injection Volume: 50(uL)		GC Column: Dionex AS9-HC ID: 2(mm)			
% Moisture:		GPC Cleanup: (Y/N) N			
Analysis Bato	ch No.: 302151	Units: ug/L			
CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	DL
14998-27-7	Chlorite	3.7	Ū	20	3.7
CAS NO.	SURROGATE		%REC	Q	LIMITS
79-43-6	Dichloroacetic acid(Surr)		10	0	90-115

Lab Name: Te	stAmerica Savannah	Job No.: 680-95852-1					
SDG No.:							
Client Sample	ID: 54TM12	Lab Sample ID: 680-95852-6					
Matrix: Water	· ·	Lab File ID: 1115132022-18.d					
Analysis Meth	od: 300.1B	Date Collected: 11/05/2013 14:15					
Extraction Method:		Date Extracted:					
Sample wt/vol: 5(mL)		Date Analyzed: 11/15/2013 20:22					
Con. Extract	Dilution Factor: 1						
Injection Volume: 50(uL)		GC Column: Dionex AS9-HC ID: 2(mm)					
% Moisture:		GPC Cleanup: (Y/N) N					
Analysis Batch No.: 303452		Units: ug/L					
CAS NO.	COMPOUND NAME	RESULT Q LOQ DL					
7790-93-4	Chlorate	2.1 U 10 2.1					